Ocean Internal Waves and Circulation Dynamics in Climate Change

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Physical Oceanography".

Deadline for manuscript submissions: 30 October 2025 | Viewed by 2987

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, The Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
Interests: ocean circulation; internal wave; eddy; nearshore hydrodynamics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Internal waves (including internal solitary waves, internal tide waves, and near-inertial internal waves, etc.) and circulation/eddies are key hydrodynamic processes in the ocean; they play important roles in mass and energy transport. In the context of global warming, storm surges or cold spells induced by global climate change are becoming more frequent, which might impact ocean internal waves and circulation/eddies, thereby affecting ocean mixing, mass, and energy transport. The purpose of this Special Issue is to publish the most exciting research with respect to ocean internal waves and circulation/eddy dynamics in climate change based on the applications of high observational technology, satellite remote sensing, and numerical modelling. We are seeking high-quality papers for publication that are directly related to the above synopsis.

Prof. Dr. Shuqun Cai
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • internal wave
  • circulation/eddy
  • mixing
  • observation or modeling
  • case studies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 34102 KiB  
Article
Variability in Diurnal Internal Tides and Near-Inertial Waves in the Southern South China Sea Based on Mooring Observations
by Yilin Zhang, Yifan Wang, Chen Wang, Shoude Guan and Wei Zhao
J. Mar. Sci. Eng. 2025, 13(3), 577; https://doi.org/10.3390/jmse13030577 - 15 Mar 2025
Viewed by 303
Abstract
Temporal variations in diurnal internal tides (ITs) and near-inertial waves (NIWs) in the southern South China Sea (SCS) are characterized, based on two 13-month moored current observations. Diurnal ITs, dominated by O1 and K1, are found to exhibit spring–neap cycles [...] Read more.
Temporal variations in diurnal internal tides (ITs) and near-inertial waves (NIWs) in the southern South China Sea (SCS) are characterized, based on two 13-month moored current observations. Diurnal ITs, dominated by O1 and K1, are found to exhibit spring–neap cycles of about 14 days and significant seasonal variations. The incoherent components explain 54% and 56% of the total energy in the diurnal band, which further complicates its temporal variabilities. As for NIWs, wind energy input serves as the primary energy source and three strong events are observed. Tropical cyclone RAI passed through two moorings during the event 1 period, and triggered a peak near-inertial kinetic energy of 19.55 J m−3 (18.82 J m−3) at two moorings. After generation, the NIWs propagated downward to around 300 m, becoming the most intense event observed at DA2. In contrast, the NIWs response to tropical cyclone NOCK’s passage during event 3 was relatively weaker. The near-inertial KE generated by NOCK was confined to depths shallower than 150 m, with the average near-inertial KE being only 85% (52%) of that during event 1 for two moorings, despite the near-inertial energy input from NOCK being nearly 400% that of RAI. The modulation of background vorticity is considered the primary factor resulting in the difference in intensity of two NIW events. The penetrating depth of NIWs under the modulation of anticyclonic eddies was more than twice that under the cyclonic eddies. Furthermore, the strongest NIWs during event 2 that were observed below 350 m at mooring 2 (183% stronger than average) were also related to a strong anticyclonic eddy. Full article
(This article belongs to the Special Issue Ocean Internal Waves and Circulation Dynamics in Climate Change)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2165 KiB  
Review
The Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean
by Yang Li, Zhao Xu and Xianqing Lv
J. Mar. Sci. Eng. 2024, 12(9), 1565; https://doi.org/10.3390/jmse12091565 - 6 Sep 2024
Cited by 1 | Viewed by 1817
Abstract
Near-inertial waves (NIWs), a special form of internal waves with a frequency close to the local Coriolis frequency, are ubiquitous in the ocean. NIWs play a crucial role in ocean mixing, influencing energy transport, climate change, and biogeochemistry. This manuscript briefly reviews the [...] Read more.
Near-inertial waves (NIWs), a special form of internal waves with a frequency close to the local Coriolis frequency, are ubiquitous in the ocean. NIWs play a crucial role in ocean mixing, influencing energy transport, climate change, and biogeochemistry. This manuscript briefly reviews the generation and propagation of NIWS in the oceans. NIWs are primarily generated at the surface by wind forcing or through the water column by nonlinear wave-wave interaction. Especially at critical latitudes where the tidal frequency is equal to twice the local inertial frequency, NIWs can be generated by a specific subclass of triadic resonance, parametric subharmonic instability (PSI). There are also other mechanisms, including lee wave and spontaneous generation. NIWs can propagate horizontally for hundreds of kilometers from their generating region and radiate energy far away from their origin. NIWs also penetrate deep into the ocean, affecting nutrient and oxygen redistribution through altering mixing. NIW propagation is influenced by factors such as mesoscale eddies, background flow, and topography. This review also discussed some recent observational evidence of interactions between NIWs from different origins, suggesting a complicated nonlinear interaction and energy cascading. Despite the long research history, there are still many areas of NIWs that are not well defined. Full article
(This article belongs to the Special Issue Ocean Internal Waves and Circulation Dynamics in Climate Change)
Show Figures

Figure 1

Back to TopTop