Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,999)

Search Parameters:
Keywords = membrane protein production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3151 KiB  
Article
Towards a Consensus for the Analysis and Exchange of TFA as a Counterion in Synthetic Peptides and Its Influence on Membrane Permeation
by Vanessa Erckes, Alessandro Streuli, Laura Chamera Rendueles, Stefanie Dorothea Krämer and Christian Steuer
Pharmaceuticals 2025, 18(8), 1163; https://doi.org/10.3390/ph18081163 - 5 Aug 2025
Abstract
Background: With the increasing shift in drug design away from classical drug targets towards the modulation of protein-protein interactions, synthetic peptides are gaining increasing relevance. The synthesis and purification of peptides via solid-phase peptide synthesis (SPPS) strongly rely on trifluoroacetic acid (TFA) as [...] Read more.
Background: With the increasing shift in drug design away from classical drug targets towards the modulation of protein-protein interactions, synthetic peptides are gaining increasing relevance. The synthesis and purification of peptides via solid-phase peptide synthesis (SPPS) strongly rely on trifluoroacetic acid (TFA) as a cleavage agent and ion-pairing reagent, respectively, resulting in peptides being obtained as TFA salts. Although TFA has excellent properties for peptide production, numerous studies highlight the negative impact of using peptides from TFA salts in biological assays. Methods: Investigated peptides were synthesized via SPPS and the TFA counterion was exchanged for Cl via freeze-drying in different concentrations of HCl. Detection and quantification of residual TFA were carried out via FT-IR, 19F-NMR, and HPLC using an evaporative light-scattering detector (ELSD). A liposomal fluorescence assay was used to test for the influence of the counterion on the peptides’ passive membrane permeability. Results: All TFA detection methods were successfully validated according to ICH guidelines. TFA removal with 10 mM HCl was determined to be the optimal condition. No impact on peptide purity was observed at all HCl concentrations. Influences on permeability coefficients depending on peptide sequence and salt form were found. Conclusions: This study presents a systematic investigation of the removal of TFA counterions from synthetic peptides and their replacement with Cl counterions. Detected counterion contents were used to understand the impact of sequence differences, especially positive charges, on the amount and potential localization of counterions. Our findings emphasize the importance of counterion quantification and specification in assays with synthetic peptides. Full article
Show Figures

Graphical abstract

31 pages, 1512 KiB  
Review
Pathophysiology of Status Epilepticus Revisited
by Rawiah S. Alshehri, Moafaq S. Alrawaili, Basma M. H. Zawawi, Majed Alzahrany and Alaa H. Habib
Int. J. Mol. Sci. 2025, 26(15), 7502; https://doi.org/10.3390/ijms26157502 - 3 Aug 2025
Viewed by 142
Abstract
Status epilepticus occurs when a seizure lasts more than five minutes or when multiple seizures occur with incomplete return to baseline. SE induces a myriad of pathological changes involving synaptic and extra-synaptic factors. The transition from a self-limiting seizure to a self-sustaining one [...] Read more.
Status epilepticus occurs when a seizure lasts more than five minutes or when multiple seizures occur with incomplete return to baseline. SE induces a myriad of pathological changes involving synaptic and extra-synaptic factors. The transition from a self-limiting seizure to a self-sustaining one is established by maladaptive receptor trafficking, whereby GABAA receptors are progressively endocytosed while glutamatergic receptors (NMDA and AMPA) are transported to the synaptic membrane, causing excitotoxicity and alteration in glutamate-dependent downstream signaling. The subsequent influx of Ca2+ exposes neurons to increased levels of [Ca2+]i, which overwhelms mitochondrial buffering, resulting in irreversible mitochondrial membrane depolarization and mitochondrial injury. Oxidative stress resulting from mitochondrial leakage and increased production of reactive oxygen species activates the inflammasome and induces a damage-associated molecular pattern. Neuroinflammation perpetuates oxidative stress and exacerbates mitochondrial injury, thereby jeopardizing mitochondrial energy supply in a state of accelerated ATP consumption. Additionally, Ca2+ overload can directly damage neurons by activating enzymes involved in the breakdown of proteins, phospholipids, and nucleic acids. The cumulative effect of these effector pathways is neuronal injury and neuronal death. Surviving neurons undergo long-term alterations that serve as a substrate for epileptogenesis. This review highlights the multifaceted mechanisms underlying SE self-sustainability, pharmacoresistance, and subsequent epileptogenesis. Full article
(This article belongs to the Special Issue From Molecular Insights to Novel Therapies: Neurological Diseases)
Show Figures

Figure 1

19 pages, 6096 KiB  
Article
Functional Characterization of Two Glutamate Dehydrogenase Genes in Bacillus altitudinis AS19 and Optimization of Soluble Recombinant Expression
by Fangfang Wang, Xiaoying Lv, Zhongyao Guo, Xianyi Wang, Yaohang Long and Hongmei Liu
Curr. Issues Mol. Biol. 2025, 47(8), 603; https://doi.org/10.3390/cimb47080603 - 1 Aug 2025
Viewed by 130
Abstract
Glutamate dehydrogenase (GDH) is ubiquitous in organisms and crucial for amino acid metabolism, energy production, and redox balance. The gdhA and gudB genes encoding GDH were identified in Bacillus altitudinis AS19 and shown to be regulated by iron. However, their functions remain unclear. [...] Read more.
Glutamate dehydrogenase (GDH) is ubiquitous in organisms and crucial for amino acid metabolism, energy production, and redox balance. The gdhA and gudB genes encoding GDH were identified in Bacillus altitudinis AS19 and shown to be regulated by iron. However, their functions remain unclear. In this study, gdhA and gudB were analyzed using bioinformatics tools, such as MEGA, Expasy, and SWISS-MODEL, expressed with a prokaryotic expression system, and the induction conditions were optimized to increase the yield of soluble proteins. Phylogenetic analysis revealed that GDH is evolutionarily conserved within the genus Bacillus. GdhA and GudB were identified as hydrophobic proteins, not secreted or membrane proteins. Their structures were primarily composed of irregular coils and α-helices. SWISS-MODEL predicts GdhA to be an NADP-specific GDH, whereas GudB is an NAD-specific GDH. SDS-PAGE analysis showed that GdhA was expressed as a soluble protein after induction with 0.2 mmol/L IPTG at 24 °C for 16 h. GudB was expressed as a soluble protein after induction with 0.1 mmol/L IPTG at 16 °C for 12 h. The proteins were confirmed by Western blot and mass spectrometry. The enzyme activity of recombinant GdhA was 62.7 U/mg with NADPH as the coenzyme. This study provides a foundation for uncovering the functions of two GDHs of B. altitudinis AS19. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

30 pages, 4119 KiB  
Article
Ubiquitination Regulates Reorganization of the Membrane System During Cytomegalovirus Infection
by Barbara Radić, Igor Štimac, Alen Omerović, Ivona Viduka, Marina Marcelić, Gordana Blagojević Zagorac, Pero Lučin and Hana Mahmutefendić Lučin
Life 2025, 15(8), 1212; https://doi.org/10.3390/life15081212 - 31 Jul 2025
Viewed by 287
Abstract
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the [...] Read more.
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the cell such as ubiquitination (Ub). In this study, we investigate whether the Ub system is required for the establishment and maintenance of the AC in murine CMV (MCMV)-infected cells Methods: NIH3T3 cells were infected with wild-type and recombinant MCMVs and the Ub system was inhibited with PYR-41. The expression of viral and host cell proteins was analyzed by Western blot. AC formation was monitored by immunofluorescence with confocal imaging and long-term live imaging as the dislocation of the Golgi and expansion of Rab10-positive tubular membranes (Rab10 TMs). A cell line with inducible expression of hemagglutinin (HA)-Ub was constructed to monitor ubiquitination. siRNA was used to deplete host cell factors. Infectious virion production was monitored using the plaque assay. Results: The Ub system is required for the establishment of the infection, progression of the replication cycle, viral gene expression and production of infectious virions. The Ub system also regulates the establishment and maintenance of the AC, including the expansion of Rab10 TMs. Increased ubiquitination of WASHC1, which is recruited to the machinery that drives the growth of Rab10 TMs, is consistent with Ub-dependent rheostatic control of membrane tubulation and the continued expansion of Rab10 TMs. Conclusions: The Ub system is intensively utilized at all stages of the MCMV replication cycle, including the reorganization of the membrane system into the AC. Disruption of rheostatic control of the membrane tubulation by ubiquitination and expansion of Rab10 TREs within the AC may contribute to the development of a sufficient amount of tubular membranes for virion envelopment. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

17 pages, 2524 KiB  
Article
A Model-Driven Approach to Assessing the Fouling Mechanism in the Crossflow Filtration of Laccase Extract from Pleurotus ostreatus 202
by María Augusta Páez, Mary Casa-Villegas, Vanesa Naranjo-Moreno, Neyda Espín Félix, Katty Cabezas-Terán and Alfonsina Andreatta
Membranes 2025, 15(8), 226; https://doi.org/10.3390/membranes15080226 - 29 Jul 2025
Viewed by 377
Abstract
Membrane technology is primarily used for the separation and purification of biotechnological products, which contain proteins and enzymes. Membrane fouling during crossflow filtration remains a significant challenge. This study aims to initially validate crossflow filtration models, particularly related to pore-blocking mechanisms, through a [...] Read more.
Membrane technology is primarily used for the separation and purification of biotechnological products, which contain proteins and enzymes. Membrane fouling during crossflow filtration remains a significant challenge. This study aims to initially validate crossflow filtration models, particularly related to pore-blocking mechanisms, through a comparative analysis with dead-end filtration models. One crossflow microfiltration (MF) and six consecutive ultrafiltration (UF) stages were implemented to concentrate laccase extracts from Pleurotus ostreatus 202 fungi. The complete pore-blocking mechanism significantly impacts the MF, UF 1000, UF 100 and UF 10 stages, with the highest related filtration constant (KbF) estimated at 12.60 × 10−4 (m−1). Although the intermediate pore-blocking mechanism appears across all filtration stages, UF 100 is the most affected, with an associated filtration constant (KiF) of 16.70 (m−1). This trend is supported by the highest purification factor (6.95) and the presence of 65, 62 and 56 kDa laccases in the retentate. Standard pore blocking occurs at the end of filtration, only in the MF and UF 1000 stages, with filtration constants (KsF) of 29.83 (s−0.5m−0.5) and 31.17 (s−0.5m−0.5), respectively. The absence of cake formation and the volume of permeate recovered indicate that neither membrane was exposed to exhaustive fouling that could not be reversed by backwashing. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

18 pages, 652 KiB  
Review
The Role of Advanced Glycation End-Products in the Pathophysiology and Pharmacotherapy of Cardiovascular Disease
by Karina O. Mota, Carla M. L. de Vasconcelos, Lorrie A. Kirshenbaum and Naranjan S. Dhalla
Int. J. Mol. Sci. 2025, 26(15), 7311; https://doi.org/10.3390/ijms26157311 - 29 Jul 2025
Viewed by 306
Abstract
Advanced glycation end-products (AGEs) are formed by the non-enzymatic glycation of proteins, lipids, and nucleic acids due to the consumption of high-carbohydrate diets; their production is also promoted by a sedentary lifestyle as well as cigarette smoking. Elevated levels of AGEs in the [...] Read more.
Advanced glycation end-products (AGEs) are formed by the non-enzymatic glycation of proteins, lipids, and nucleic acids due to the consumption of high-carbohydrate diets; their production is also promoted by a sedentary lifestyle as well as cigarette smoking. Elevated levels of AGEs in the circulatory system and internal organs of the body are commonly observed in a number of cardiovascular diseases such as hypertension, diabetes, atherosclerosis, coronary artery disease, aortic aneurysm, atrial fibrillation, myocardial infarction, and heart failure, which are associated with the development of oxidative stress and myocardial inflammation. The adverse effects of AGEs on the cardiovascular system are elicited by both non-receptor mechanisms involving the cross-linking of extracellular and intracellular proteins, and by receptor-mediated mechanisms involving the binding of AGEs with advanced glycation end-product receptors (RAGEs) on the cell membrane. AGE–RAGE interactions along with the cross-linking of proteins promote the generation of oxidative stress, the production of inflammation, the occurrence of intracellular Ca2+-overload, and alterations in the extracellular matrix leading to the development of cardiovascular dysfunction. AGEs also bind with two other protein receptors in the circulatory system: soluble RAGEs (sRAGEs) are released upon the proteolysis of RAGEs due to the activation of matrix metalloproteinase, and endogenous secretory RAGEs (esRAGEs) are secreted as a spliced variant of endogenous RAGEs. While the AGE–RAGE signal transduction axis serves as a pathogenic mechanism, both sRAGEs and esRAGEs serve as cytoprotective interventions. The serum levels of sRAGEs are decreased in ischemic heart disease, vascular disease, and heart failure, as well as in other cardiovascular diseases, but are increased in chronic diabetes and renal disease. Several interventions which can reduce the formation of AGEs, block the AGE–RAGE axis, or increase the levels of circulating sRAGEs have been shown to exert beneficial effects in diverse cardiovascular diseases. These observations support the view that the AGE–RAGE axis not only plays a critical role in pathogenesis, but is also an excellent target for the treatment of cardiovascular disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 633
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

18 pages, 2943 KiB  
Article
Cadmium Inhibits Proliferation of Human Bronchial Epithelial BEAS-2B Cells Through Inducing Ferroptosis via Targeted Regulation of the Nrf2/SLC7A11/GPX4 Pathway
by Huan Li, Zixin Qiu, Long Chen, Tianbao Zhang, Diandian Wei, Xue Chen and Yun Wang
Int. J. Mol. Sci. 2025, 26(15), 7204; https://doi.org/10.3390/ijms26157204 - 25 Jul 2025
Viewed by 251
Abstract
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells [...] Read more.
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells to explore the impact of ferroptosis in the inhibition of Cd-induced BEAS-2B cells proliferation. BEAS-2B cells were exposed to Cd (5 μM) with/without Lut (10 μM), ferroptosis modulators (Ferrostatin-1 (Fer-1)/Erastin), or nuclear factor erythroid 2-related factor 2 (Nrf2) regulators (tert-butylhydroquinone (TBHQ)/ML385). Viability, iron content, reactive oxygen species (ROS), LPO, mitochondrial membrane potential (MMP), and glutathione peroxidase (GSH-PX) activity were assessed. Exposure to Cd significantly decreased cell viability, increased intracellular iron levels, ROS production, and LPO activity, while simultaneously reducing MMP and GSH-PX activity. Fer-1 mitigated Cd-induced cytotoxicity, but Erastin intensified these effects. Mechanistically, Cd exposure suppressed the Nrf2/Solute Carrier Family 7 Member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway, which plays a crucial role in maintaining redox homeostasis. Activation of Nrf2 using TBHQ mitigated oxidative stress and upregulated the expression of key proteins within this pathway, while inhibition of Nrf2 with ML385 exacerbated cellular damage. Notably, Lut treatment could significantly alleviate Cd-induced cytotoxicity, oxidative stress, and downregulation of Nrf2/SLC7A11/GPX4 proteins. These findings demonstrate that ferroptosis is a critical mechanism underlying Cd-mediated lung epithelial injury and identify Lut as a promising therapeutic candidate via its activation of Nrf2-driven antioxidant defense mechanisms. This study provides novel insights into molecular targets for the prevention and treatment of Cd-associated pulmonary disorders. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 3352 KiB  
Article
Inhibitory Effects and Underlying Mechanisms of a Selenium Compound Agent Against the Pathogenic Fungus Sclerotinia sclerotiorum Causing Sclerotinia Stem Rot in Brassica napus
by Xiaojuan Zhang, Yangzi Hou, Xiuqi Ma, Xiaomin Sun, Qiao Chen, Lele Wu and Chenlu Zhang
Agronomy 2025, 15(8), 1764; https://doi.org/10.3390/agronomy15081764 - 23 Jul 2025
Viewed by 222
Abstract
Sclerotinia sclerotiorum (S. sclerotiorum), a necrotrophic phytopathogen, causes sclerotinia stem rot (SSR) in many crops like oilseed rape, resulting in severe economic losses. Developing eco-friendly compound fungicides has become a critical research priority. This study explored the combination of sodium selenite [...] Read more.
Sclerotinia sclerotiorum (S. sclerotiorum), a necrotrophic phytopathogen, causes sclerotinia stem rot (SSR) in many crops like oilseed rape, resulting in severe economic losses. Developing eco-friendly compound fungicides has become a critical research priority. This study explored the combination of sodium selenite and cuminic acid to screen for the optimal mixing ratio and investigate its inhibitory effects and mechanisms against S. sclerotiorum. The results demonstrated that synergistic effects were observed with a 1:3 combination ratio of sodium selenite to cuminic acid. After treatment with the selenium compound agent, ultrastructural observations revealed that the hyphae of S. sclerotiorum became severely shriveled, deformed, and twisted. The agent significantly reduced oxalic acid production and the activities of polymethylgalacturonide (PMG) and carboxymethylcellulose enzymes (Cx), while increasing the exocytosis of nucleic acids and proteins from the mycelium. Foliar application of the selenium compound agent significantly reduced lesion areas in rapeseed. Combined with the results of transcriptome sequencing, this study suggests that the compound agent effectively inhibits the growth of S. sclerotiorum by disrupting its membrane system, reducing the activity of cell wall-degrading enzymes, and suppressing protein synthesis, etc. This research provides a foundation for developing environmentally friendly and effective fungicides to control S. sclerotiorum. Full article
(This article belongs to the Special Issue Environmentally Friendly Ways to Control Plant Disease)
Show Figures

Graphical abstract

11 pages, 829 KiB  
Article
BCAP Is an Interferon-Stimulated Gene That Enhances Type I Interferon Activity in Response to Lipopolysaccharide
by Marianna Di Rosa, Giulia Maria Piperno, Alessandra Tesser, Alessia Pin, Giada Sospiro, Erica Valencic, Valentina Boz, Serena Pastore, Alberto Tommasini and Federica Benvenuti
Int. J. Mol. Sci. 2025, 26(15), 7034; https://doi.org/10.3390/ijms26157034 - 22 Jul 2025
Viewed by 371
Abstract
The B-cell adapter for PI3K (BCAP) is a protein that connects membrane receptor signaling to the PI3K pathway. In fibroblasts or dendritic cells, priming the cGAS nucleic-acid-sensing pathway increases BCAP expression and enhances type I interferon (IFN-I) production upon lipopolysaccharide (LPS) stimulation. These [...] Read more.
The B-cell adapter for PI3K (BCAP) is a protein that connects membrane receptor signaling to the PI3K pathway. In fibroblasts or dendritic cells, priming the cGAS nucleic-acid-sensing pathway increases BCAP expression and enhances type I interferon (IFN-I) production upon lipopolysaccharide (LPS) stimulation. These findings corroborate the idea that BCAP may bias cytokine production toward IFN during inflammation, indicating its potential involvement in IFN-driven diseases like systemic lupus erythematosus (SLE). We investigate the role of BCAP in regulating the inflammatory response in SLE and its relationship with IFN-mediated inflammation. BCAP gene expression and IFN signature were analyzed in 36 subjects with SLE and 20 healthy controls. Two cellular models were used to assess BCAP’s role in LPS response and IFN signaling after cGAS stimulation. We found a correlation between BCAP and interferon-stimulated gene (ISG) expression in SLE. In a cellular model, tofacitinib and anifrolumab, acting as IFN signaling “inhibitors”, blocked BCAP overexpression triggered by cGAS, confirming BCAP as an ISG. Additional studies in BCAP−/− cells revealed that, in the absence of BCAP, these cells exhibited diminished IFN production upon LPS stimulation following prior exposure to cGAMP. Overall, BCAP is an ISG that acts as a positive regulator of Toll-like receptor 4-mediated IFN production. We speculate that its increased expression in SLE may contribute to a positive feedback loop, enhancing IFN production during bacterial infections. Full article
Show Figures

Figure 1

29 pages, 15117 KiB  
Article
Reduction in SH-SY5Y Cell Stress Induced by Corticosterone and Attenuation of the Inflammatory Response in RAW 264.7 Cells Using Endomorphin Analogs
by Renata Perlikowska, Angelika Długosz-Pokorska, Małgorzata Domowicz, Sylwia Grabowicz, Mariusz Stasiołek and Małgorzata Zakłos-Szyda
Biomedicines 2025, 13(7), 1774; https://doi.org/10.3390/biomedicines13071774 - 20 Jul 2025
Viewed by 447
Abstract
Background: To identify drug candidates that reduce cellular stress, linear peptides known as endomorphin (EM) analogs containing proline surrogates in position 2 were tested in in vitro injury models induced by corticosterone (CORT). Methods: In this study, neuroblastoma (SH-SY5Y) cells were treated with [...] Read more.
Background: To identify drug candidates that reduce cellular stress, linear peptides known as endomorphin (EM) analogs containing proline surrogates in position 2 were tested in in vitro injury models induced by corticosterone (CORT). Methods: In this study, neuroblastoma (SH-SY5Y) cells were treated with CORT and synthesized peptides, and then the cell viability and morphology, reactive oxygen species production (ROS), mitochondrial membrane potential (ΔΨm), adenosine triphosphate (ATP), and intracellular calcium ion [Ca2+]i levels were evaluated. We also conducted an in-depth analysis of the apoptosis markers using quantitative real-time PCR (qPCR). Finally, we explore the brain-derived neurotrophic factor (BDNF) expression (qPCR) and protein levels (ELI-SA and Western blot). Results: The strongest neuroprotective effect in the CORT-induced stress model was shown by peptide 3 and peptide 7 (in the following sequence Tyr-Inp-Trp-Phe-NH2 and Tyr-Inp-Phe-Phe-NH2, respectively). These peptides significantly improved cell viability and reduced oxidative stress in CORT-treated cells. Conclusions: Their neuroprotective potential appears linked to anti-apoptotic effects, along with in-creased BDNF expression. Moreover, in the lipopolysaccharide (LPS)- and interferon-γ (IFN-γ)-induced damage model in macrophage RAW 264.7 cells, these two peptides reduced the secretion of inflammatory mediators nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Peptides exhibiting both neuroprotective and anti-inflammatory properties warrant further investigation as potential therapeutic agents. Full article
Show Figures

Figure 1

13 pages, 2212 KiB  
Article
Ablation of the Evolutionarily Acquired Functions of the Atp1b4 Gene Increases Metabolic Capacity and Reduces Obesity
by Nikolai N. Modyanov, Lucia Russo, Sumona Ghosh Lester, Tamara R. Castañeda, Himangi G. Marathe, Larisa V. Fedorova, Raymond E. Bourey, Sonia M. Najjar and Ivana L. de la Serna
Life 2025, 15(7), 1103; https://doi.org/10.3390/life15071103 - 14 Jul 2025
Viewed by 343
Abstract
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete [...] Read more.
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete loss of its ancestral function and became a skeletal and cardiac muscle-specific component of the inner nuclear membrane. BetaM is expressed at the highest level during perinatal development and is implicated in gene regulation. Here we report the long-term consequences of Atp1b4 ablation on metabolic parameters in adult mice. Male BetaM-deficient (Atp1b4−/Y) mice have remarkably lower body weight and adiposity than their wild-type littermates, despite higher food intake. Indirect calorimetry shows higher energy expenditure (heat production and oxygen consumption) with a greater spontaneous locomotor activity in Atp1b4−/Y males. Their lower respiratory exchange ratio suggests a greater reliance on fat metabolism compared to their wild-type counterparts. Consistently, Atp1b4−/Y KO mice exhibit enhanced β-oxidation in skeletal muscle, along with improved glucose and insulin tolerance. These robust metabolic changes induced by Atp1b4 disruption demonstrate that eutherian BetaM plays an important role in regulating adult mouse metabolism. This demonstrates that bypassing the co-option of Atp1b4 potentially reduces susceptibility to obesity. Thus, Atp1b4 ablation leading to the loss of evolutionarily acquired BetaM functions serves as a model for a potential alternative pathway in mammalian evolution. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

22 pages, 3313 KiB  
Article
Transcriptome Analysis and CFEM Gene Overexpression in Metschnikowia bicuspidata Under Hemocyte and Iron Ion Stress
by Bingnan Zuo, Xiaodong Li, Ji Zhang, Bingyu Li, Na Sun and Fang Liang
Pathogens 2025, 14(7), 691; https://doi.org/10.3390/pathogens14070691 - 14 Jul 2025
Viewed by 357
Abstract
The “milky disease” in Chinese mitten crabs (Eriocheir sinensis), caused by Metschnikowia bicuspidata, poses significant threats to aquaculture, though its pathogenic mechanisms remain poorly understood. This study employs transcriptomic sequencing to analyze gene expression changes in Metschnikowia bicuspidata under hemocyte [...] Read more.
The “milky disease” in Chinese mitten crabs (Eriocheir sinensis), caused by Metschnikowia bicuspidata, poses significant threats to aquaculture, though its pathogenic mechanisms remain poorly understood. This study employs transcriptomic sequencing to analyze gene expression changes in Metschnikowia bicuspidata under hemocyte challenge, iron overload (1 mmol/mL), and combined stress, with functional validation through Common in Fungal Extracellular Membrane (CFEMgene) overexpression strains. Key findings reveal that (1) hemocyte challenge activated base excision repair (−log10[P] = 7.58) and ribosome biogenesis pathways, indicating fungal adaptation through DNA repair and enhanced protein synthesis to counter host immune attacks (e.g., ROS-mediated damage). (2) Iron overload induced glutathione metabolism and pentose phosphate pathway enrichment, demonstrating mitigation of ferroptosis through NADPH/GSH antioxidant systems and autophagy/proteasome coordination. (3) Under combined stress, ribosome biogenesis (−log10[P] = 1.3) and non-homologous end-joining pathways coordinated DNA repair with stress protein synthesis, complemented by vacuolar V-ATPase-mediated iron compartmentalization. (4) CFEM genes showed significant upregulation under hemocyte stress, with overexpression strains exhibiting enhanced biofilm formation (35% increased MTT cytotoxicity) and infectivity (40% higher infection rate), confirming CFEM domains mediate pathogenesis through iron homeostasis and virulence factor production. This work elucidates how M. bicuspidata employs metabolic reprogramming, oxidative stress responses, and CFEM-mediated iron regulation to establish infection, providing critical insights for developing targeted control strategies against milky disease. Full article
Show Figures

Figure 1

21 pages, 3110 KiB  
Article
Long-Chain Fatty Acids Alter Estrogen Receptor Expression in Breast Cancer Cells
by Ruiko Ogata, Yi Luo, Rina Fujiwara-Tani, Rika Sasaki, Ayaka Ikemoto, Kaho Maehana, Ayaka Sasaki, Takamitsu Sasaki, Kiyomu Fujii, Hitoshi Ohmori and Hiroki Kuniyasu
Int. J. Mol. Sci. 2025, 26(14), 6722; https://doi.org/10.3390/ijms26146722 - 13 Jul 2025
Viewed by 490
Abstract
Long-chain fatty acids (LCFAs) have emerged as important regulators of cancer metabolism, but their impact on hormone receptor expression in breast cancer (BCA) remains poorly understood. In this study, we investigated the effects of five LCFAs—linoleic acid (LA), oleic acid (OA), elaidic acid [...] Read more.
Long-chain fatty acids (LCFAs) have emerged as important regulators of cancer metabolism, but their impact on hormone receptor expression in breast cancer (BCA) remains poorly understood. In this study, we investigated the effects of five LCFAs—linoleic acid (LA), oleic acid (OA), elaidic acid (EA), palmitic acid (PA), and α-linolenic acid (LNA)—on two BCA cell lines: luminal-type MCF7 and triple-negative MDA-MB-231 (MB231). All LCFAs suppressed cell viability and mitochondrial function in a dose-dependent manner, accompanied by decreased membrane potential, increased reactive oxygen species production, and a metabolic shift. Notably, OA reduced both mRNA and nuclear protein levels of estrogen receptor alpha (ERα) in MCF7 cells, leading to impaired responses to estradiol and tamoxifen. In contrast, PA induced nuclear ERα expression in MB231 cells, although ER signaling remained inactive. MicroRNA profiling revealed that OA upregulated ER-suppressive miR-22 and miR-221 in MCF7, while PA increased miR-34a in MB231, contributing to ERα induction. These findings suggest that specific LCFAs modulate ER expression through epigenetic and post-transcriptional mechanisms, altering hormonal responsiveness in BCA. Our results offer new insights into how dietary lipids may influence therapeutic efficacy and tumor behavior by regulating nuclear receptor signaling. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Targeted Therapies of Breast Cancer)
Show Figures

Figure 1

29 pages, 15583 KiB  
Article
Neuroinflammation Based Neurodegenerative In Vitro Model of SH-SY5Y Cells—Differential Effects on Oxidative Stress and Insulin Resistance Relevant to Alzheimer’s Pathology
by Csenge Böröczky, Alexandra Paszternák, Rudolf Laufer, Katinka Tarnóczi, Noémi Sikur, Fruzsina Bagaméry, Éva Szökő, Kamilla Varga and Tamás Tábi
Int. J. Mol. Sci. 2025, 26(14), 6581; https://doi.org/10.3390/ijms26146581 - 9 Jul 2025
Viewed by 532
Abstract
Neuroinflammation is a key process in Alzheimer’s disease (AD). We aimed to examine the development and evaluation of a comprehensive in vitro model that captures the complex interplay between neurons and immune cell types. Retinoic acid-differentiated SH-SY5Y neuroblastoma cells exposed to LPS-conditioned media [...] Read more.
Neuroinflammation is a key process in Alzheimer’s disease (AD). We aimed to examine the development and evaluation of a comprehensive in vitro model that captures the complex interplay between neurons and immune cell types. Retinoic acid-differentiated SH-SY5Y neuroblastoma cells exposed to LPS-conditioned media (CM) from RAW264.7 macrophages, BV2 microglia, and HL60 promyelocytic cells differentiated into neutrophil- or monocyte-like phenotypes were analyzed. The effects of CM containing inflammatory factors on neuronal viability and function were systematically evaluated. Neuronal oxidative stress, mitochondrial function, autophagy and protein aggregates were analyzed. The involvement of insulin resistance was studied by assaying glucose uptake and determining its IC50 values for cell viability improvement and GSK3β phosphorylation. After short-term exposure (3 h), most inflammatory CMs induced peroxide production in neurons, with the strongest effect observed in media from DMSO- or RA-differentiated HL60 cells. Mitochondrial membrane potential was markedly reduced by LPS-stimulated BV2 and HL60-derived CMs. Prolonged exposure (72 h) revealed partial normalization of oxidative stress and mitochondrial membrane potential. Glucose uptake was significantly impaired in cells treated with LPS-activated RAW264.7, BV2, and DMSO-differentiated HL60 cell media, while insulin partially rescued this effect, except for the CM of BV2 cells. Notably, insulin IC50 increased dramatically under LPS-treated BV2 cells induced inflammation (35 vs. 198 pM), confirming the development of insulin resistance. Immune cell-specific inflammation causes distinct effects on neuronal oxidative stress, mitochondrial function, protein aggregation, insulin signaling and viability. LPS-activated BV2-derived CM best recapitulates AD-related pathology, offering a relevant in vitro model for further studies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

Back to TopTop