Transcriptome Analysis and CFEM Gene Overexpression in Metschnikowia bicuspidata Under Hemocyte and Iron Ion Stress
Abstract
1. Introduction
2. Method and Materials
2.1. Experimental Strains and Animals
2.2. Hemocyte Stress
2.2.1. M. bicuspidata Culture
2.2.2. Hemocyte Acquisition
2.2.3. Hemocyte Co-Culture Assay
2.2.4. Total RNA Extraction and Quality Assessment
2.2.5. Library Preparation and Sequencing
2.2.6. Library Construction and Quality Control
2.2.7. Transcriptome Annotation
2.2.8. Reference Genome Alignment and Quantification
2.2.9. CFEM Gene Overexpression
2.2.10. Validation of Overexpression Strains and Transcriptomic Profiling
2.2.11. Physiological Characterization of Overexpression Strains
2.2.12. Overexpression Strain Back-Sense Experiment
2.2.13. Statistical Analysis
3. Result
3.1. Sample Quality Control (QC)
3.2. Sample Correlation Analysis
3.3. Differential Gene Count
3.4. Comparison of Hemocyte Stress Gene Expression
3.4.1. Differentially Expressed Genes
3.4.2. GO Analysis of Differentially Expressed Gene DEGs
3.4.3. Analysis of KEGG Enrichment of Differentially Expressed Genes
3.5. Comparison of Iron Ion Stress Gene Expression
3.5.1. Screening of Differentially Expressed Genes DEGs
3.5.2. GO Analysis of Differentially Expressed Gene DEGs
3.5.3. KEGG Analysis of Differentially Expressed Gene DEGs
3.6. Comparison of Gene Expression in Hemocytes Co-Stressed with Fe Ions
3.6.1. Screening of Differentially Expressed Genes DEGs
3.6.2. GO Analysis of Differentially Expressed Gene DEGs
3.6.3. KEGG Analysis of Differentially Expressed Gene DEGs
3.7. Transcriptome QPCR Validation
3.8. CFEM Overexpression Strain Construction
3.8.1. Validation of Overexpression Strains
3.8.2. Basic Performance Analysis of Overexpression Strains
3.9. Overexpression of the Sense of Return
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X. New Technology of Northern River Crab Culture; China Agriculture Press: Beijing, China, 2006. [Google Scholar]
- Wang, D.; Gao, H. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2024. [Google Scholar] [CrossRef]
- Sun, N.; Bao, J.; Liang, F. Prevalence of ‘milky disease’ caused by Metschnikowia bicuspidata in Eriocheir sinensis in Panjin city, China. Aquac. Res. 2022, 53, 1136–1140. [Google Scholar] [CrossRef]
- Lei, S.; Zhang, M. Epidemiological characteristics and control technology of river crab “milk disease”. Jiangxi Agric. 2024, 190–192. [Google Scholar]
- Shen, H. Study on Pathogen Identification, Histopathology and Prevention Technology of Milky Disease in Chinese Mitten Crab Eriocheir Sinensis. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2020. [Google Scholar] [CrossRef]
- Xu, W. Research on “Emulsification Disease” in Pike Crabs. Master’s Thesis, Ocean University of China, Qingdao, China, 2005. [Google Scholar]
- Gui, J.; Zhang, X. The change of aquaculture mode in the new era. Yangtze River Tech. Econ. 2018, 2, 25–29. [Google Scholar] [CrossRef]
- Jiang, H.; Bao, J.; Xing, Y.; Feng, C.; Li, X.; Chen, Q. Proteomic Analysis of the Hemolymph After Metschnikowia bicuspidata Infection in the Chinese Mitten Crab Eriocheir sinensis. Front. Immunol. 2021, 12, 659723. [Google Scholar] [CrossRef]
- Bao, J.; Jiang, H.; Shen, H.; Xing, Y.; Feng, C.; Li, X.; Chen, Q. First description of milky disease in the Chinese mitten crab Eriocheir sinensis caused by the yeast Metschnikowia bicuspidata. Aquaculture 2021, 532, 735984. [Google Scholar] [CrossRef]
- Cao, G. Effect of Temperature on the Occurrence of the Disease with Metschnikowia bicuspidata in Chinese Mitten Crab (Eriocheir sinensis). Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2023. [Google Scholar]
- Kinoshita, T.; Fujita, M.; Maeda, Y. Biosynthesis, remodelling and Functions of Mammalian GPI-anchored Proteins: Recent Progress. J. Biochem. 2008, 144, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Mayor, S.; Riezman, H. Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell Biol. 2004, 5, 110–120. [Google Scholar] [CrossRef]
- Kulkarni, R.D.; Kelkar, H.S.; Dean, R.A. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem. Sci. 2003, 28, 118–121. [Google Scholar] [CrossRef]
- Zhang, Z.-N.; Wu, Q.-Y.; Zhang, G.-Z.; Zhu, Y.-Y.; Murphy, R.W.; Liu, Z.; Zou, C.-G. Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi. Sci. Rep. 2015, 5, 13032. [Google Scholar] [CrossRef]
- Appella, E.; Weber, I.T.; Blasi, F. Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett. 1988, 231, 1–4. [Google Scholar] [CrossRef]
- Arya, G.C.; Srivastava, D.A.; Pandaranayaka, E.P.J.; Manasherova, E.; Prusky, D.B.; Elad, Y.; Frenkel, O.; Dvir, H.; Harel, A. Characterization of the Role of a Non-GPCR Membrane-Bound CFEM Protein in the Pathogenicity and Germination of Botrytis cinerea. Microorganisms 2020, 8, 1043. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z. Biological Function of Two CFEM Effect Proteins from Colletotrichum Gloeosporioides Caused Pepper Anthrancose. Master’s Thesis, Hunan University, Changsha, China, 2021. [Google Scholar]
- Vaknin, Y.; Shadkchan, Y.; Levdansky, E.; Morozov, M.; Romano, J.; Osherov, N. The three Aspergillus fumigatus CFEM-domain GPI-anchored proteins (CfmA-C) affect cell-wall stability but do not play a role in fungal virulence. Fungal Genet. Biol. 2014, 63, 55–64. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Fang, A.; Han, Y.; Yang, J.; Xue, M.; Bao, J.; Hu, D.; Zhou, B.; Sun, X.; et al. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat. Commun. 2014, 5, 3849. [Google Scholar] [CrossRef]
- Eva, P.; Roey, A. Ethanol Precipitation of Small DNA Fragments; ZappyLab Inc.: Berkeley, CA, USA, 2018. [Google Scholar] [CrossRef]
- An, J.; Wu, S.; Zeng, L.; Huang, X.; Feng, P.; Liang, T.; Yi, G. Comparison of different methods to extract total RNA from Saccharomyces cerevisiae. China Brew. 2021, 40, 82–86. [Google Scholar]
- Gokce, G.; Cerikcioglu, N.; Yagci, A. Acid proteinase, phospholipase, and biofilm production of Candida species isolated from blood cultures. Mycopathologia 2007, 164, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wen, B.; Cai, L.; Guo, Z. Drug susceptibility analysis of 384 strains of Candida albicans. Mod. Hosp. 2005, 5, 78–79. [Google Scholar] [CrossRef]
- Shen, X.-J.; Li, T.; Fu, J.-J.; Zhang, K.-Y.; Wang, X.-Y.; Liu, Y.-C.; Zhang, H.-J.; Fan, C.; Fei, C.-Z.; Xue, F.-Q. Proteomic analysis of the effect of diclazuril on second-generation merozoites of Eimeria tenella. Parasitol. Res. 2014, 113, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Moskalyk, L.A.; Oo, M.M.; Jacobs-Lorena, M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. Insect Mol. Biol. 1996, 5, 261–268. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Lay, J.; Andries, K.; McManus, C.J.; Bebe, F. Effects of live yeast on differential genetic and functional attributes of rumen microbiota in beef cattle. J. Anim. Sci. Biotechnol. 2019, 10, 68. [Google Scholar] [CrossRef]
- Huang, R.; Li, Z.; Zhu, X.; Yan, P.; Song, D.; Yin, H.; Hu, P.; Lin, R.; Wu, S.; Meng, T.; et al. Collagen Type III Alpha 1 chain regulated by GATA-Binding Protein 6 affects Type II IFN response and propanoate metabolism in the recurrence of lower grade glioma. J. Cell. Mol. Med. 2020, 24, 10803–10815. [Google Scholar] [CrossRef]
- Song, W.H.; Kim, H.-Y.; Lim, Y.S.; Hwang, S.Y.; Lee, C.; Lee, D.Y.; Moon, Y.; Song, Y.J.; Yoon, S. Fish Collagen Peptides Protect against Cisplatin-Induced Cytotoxicity and Oxidative Injury by Inhibiting MAPK Signaling Pathways in Mouse Thymic Epithelial Cells. Mar. Drugs 2022, 20, 232. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.-X.; Liu, Q.-Q.; Bai, N.; Zhu, M.-C.; Zhang, K.-Q.; Yang, J.-K. AoSsk1, a Response Regulator Required for Mycelial Growth and Development, Stress Responses, Trap Formation, and the Secondary Metabolism in Arthrobotrys oligospora. J. Fungi 2022, 8, 260. [Google Scholar] [CrossRef] [PubMed]
- Levi, S.; Rovida, E. The role of iron in mitochondrial function. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2009, 1790, 629–636. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Heerman, M.C.; Cook, S.C.; Evans, J.D.; DeGrandi-Hoffman, G.; Banmeke, O.; Zhang, Y.; Huang, S.; Hamilton, M.; Chen, Y.P.; et al. Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera. PLoS Pathog. 2021, 17, e1009270. [Google Scholar] [CrossRef] [PubMed]
- Imolorhe, I.A.; Cardona, S.T. 3-Hydroxyphenylacetic Acid Induces the Burkholderia cenocepacia Phenylacetic Acid Degradation Pathway—Toward Understanding the Contribution of Aromatic Catabolism to Pathogenesis. Front. Cell. Infect. Microbiol. 2011, 1, 15509. [Google Scholar] [CrossRef]
- Wofford, J.D.; Lindahl, P.A. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae. J. Biol. Chem. 2015, 290, 26968–26977. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Webb, J.L.; Bries, A.E.; Vogel, B.; Carrillo, C.; Harvison, L.; Day, T.A.; Kimber, M.J.; Valentine, R.J.; Rowling, M.J.; Clark, S.; et al. Whole egg consumption increases gene expression within the glutathione pathway in the liver of Zucker Diabetic Fatty rats. PLoS ONE 2020, 15, e0240885. [Google Scholar] [CrossRef]
- Mendiola, A.S.; Ryu, J.K.; Bardehle, S.; Meyer-Franke, A.; Ang, K.K.-H.; Wilson, C.; Baeten, K.M.; Hanspers, K.; Merlini, M.; Thomas, S.; et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 2020, 21 (Suppl. S1), 513–524. [Google Scholar] [CrossRef]
- Supandi, F.; van Beek, J.H. Computational prediction of changes in brain metabolic fluxes during Parkinson’s disease from mRNA expression. PLoS ONE 2018, 13, e0203687. [Google Scholar] [CrossRef]
- Chen, K.L.; Ven, T.N.; Crane, M.M.; Brunner, M.L.C.; Pun, A.K.; Helget, K.L.; Brower, K.; Chen, D.E.; Doan, H.; Dillard-Telm, J.D.; et al. Loss of vacuolar acidity results in iron sulfur cluster defects and divergent homeostatic responses during aging in Saccharomyces cerevisiae. GeroScience 2020, 42, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Lockshin, R.A.; Zakeri, Z. Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol. 2004, 36, 2405–2419. [Google Scholar] [CrossRef] [PubMed]
- Ni, P.; Xu, H.; Hu, L.; Hu, Y.; Jiang, X. Construction of eukaryotic expression vector of DRAM gene and its effect of expression on HepG2 cells. Diagn. Theory Pract. 2009, 165–170. Available online: https://kns.cnki.net/kcms2/article/abstract?v=fr434Wv7ssam3NCz69YXJsBSxPM2PuHaqAA5EMbe2jl3kwvu1HVC6EzDEjhb04a0Ecu1qVg5-jnS--KZ5x-HRUJseLXxVTVieBN11juG-Oe6mTfqmmV3JxjwHunHSfOfEBOaM7TG55qeUDklWfPWS7Xm9ztj5tPKcqhMdhz4KQ-jUgIcEk3zAw==&uniplatform=NZKPT&language=CHS (accessed on 1 June 2025).
- Liu, S. Structural Study on ATR and Its Related Complex in DNA Damage Response in Yeast. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2019. [Google Scholar]
- Misslinger, M.; Hortschansky, P.; Brakhage, A.A.; Haas, H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim. Biophys. Acta. Mol. Cell Res. 2021, 1868, 118885. [Google Scholar] [CrossRef]
- Stanford, F.A.; Matthies, N.; Cseresnyés, Z.; Figge, M.T.; Hassan, M.I.A.; Voigt, K. Expression Patterns in Reductive Iron Assimilation and Functional Consequences during Phagocytosis of Lichtheimia corymbifera, an Emerging Cause of Mucormycosis. J. Fungi 2021, 7, 272. [Google Scholar] [CrossRef]
- Lin, W. Identification of MAPK Pathways and VPS Genes Involved in Cadmium Tolerance in Saccharomyces Cerevisiae. Master’s Thesis, Tianjin University, Tianjin, China, 2010. [Google Scholar] [CrossRef]
- He, X. Study on the Mechanism of the Fe Transport System of Shewanella Putrefaciens CN32 Involved in Interfacial Electron Transfer in the Electricity-producing Environment. Ph.D. Thesis, Southwest University, Chongqing, China, 2020. [Google Scholar]
- Srivastava, V.K.; Suneetha, K.J.; Kaur, R. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata. Biochem. J. 2014, 463, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wei, W.; Wu, Y.; Zhou, Y.; Peng, F.; Zhang, S.; Chen, P.; Xu, X. BcCFEM1, a CFEM Domain-Containing Protein with Putative GPI-Anchored Site, Is Involved in Pathogenicity, Conidial Production, and Stress Tolerance in Botrytis cinerea. Front. Microbiol. 2017, 8, 1807. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.-D.; Song, J.; Li, J.-J.; Wang, J.; Li, R.; Klosterman, S.J.; Kong, Z.-Q.; Lin, F.-Z.; Dai, X.-F.; et al. Verticillium dahliae CFEM proteins manipulate host immunity and differentially contribute to virulence. BMC Biol. 2022, 20, 55. [Google Scholar] [CrossRef]
Primer Name | Sequence (5′ to 3′) |
---|---|
4797 | F tacttgaacacactaggatccATGTTGTATTACCTCCCTGTCTTGAC |
R tggcctatgtctagaggatccTCAGACTATAAGAGATAATATGATGACTGAAA | |
4818 | F tacttgaacacactaggatccATGTTGTCTGCTTTTATTCCTCTCG |
R ggcctatgtctagaggatccTTAGAGGATCAAAGCGACACCTG |
Primer Name | Sequence (5′ to 3′) |
---|---|
4797f | TGTGGCTTCATGTACGGCTG |
4797r | GCAGGCATCATCCACAAGTTGG |
4818f | GCCCGTTTGTGCGCAAGCAT |
4818r | GGAGGCAAAGTTGCTCATCACGCA |
β-actin-f | CAGGAAATGACCACTGCCGC |
β-actin-r | CGGAACCTCTCATTGCCGA |
2216f | TCTTTGGCGGCATCGACACA |
2216r | CCAAAGAAGTGCCAGAGTCCAA |
2333f | ATACGAGGGCTCCTTGACGA |
2333r | GACAAGTGCCAACGAGGTTC |
2655f | ACTCGCTGTTCTTCACCAACC |
2655r | R GATGGCAGACGGGAGGTAG |
Sample | Raw Read | Raw Bases | Q20% | Q30% | Trimmed Read | Trimmed Bases | Useful Read% | Useful Bases% | tRNA Pseudogene | tRNA | Protein Coding |
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | 49,272,578 | 7,440,159,278 | 97.67 | 93.75 | 48,380,248 | 7,287,767,821 | 98.19 | 97.95 | 11 | 870 | 18,566,434 |
M2 | 44,356,168 | 6,697,781,368 | 97.67 | 93.74 | 43,549,464 | 6,563,612,926 | 98.18 | 98 | 6 | 989 | 16,701,740 |
M3 | 54,429,536 | 8,218,859,936 | 97.1 | 94.78 | 53,451,518 | 8,027,390,053 | 98.2 | 97.67 | 14 | 975 | 20,542,974 |
MB1 | 37,283,104 | 5,629,748,704 | 97.73 | 93.87 | 36,616,604 | 5,518,129,766 | 98.21 | 98.02 | 2 | 714 | 14,086,880 |
MB2 | 37,386,686 | 5,645,389,586 | 97.53 | 93.48 | 36,628,310 | 5,519,487,920 | 97.97 | 97.77 | 1 | 748 | 14,056,547 |
MB3 | 48,731,056 | 7,358,389,456 | 97.69 | 93.78 | 47,861,688 | 7,215,326,824 | 98.22 | 98.06 | 3 | 1036 | 18,294,879 |
MF1 | 42,020,984 | 6,345,168,584 | 97.68 | 93.79 | 41,253,050 | 6,212,916,494 | 98.17 | 97.92 | 21 | 567 | 15,898,276 |
MF2 | 46,345,586 | 6,998,183,486 | 97.72 | 93.86 | 45,531,436 | 6,860,178,616 | 98.24 | 98.03 | 20 | 594 | 17,527,590 |
MF3 | 45,440,904 | 6,861,576,504 | 97.86 | 94.18 | 44,687,612 | 6,729,584,867 | 98.34 | 98.08 | 23 | 691 | 17,120,775 |
MFB1 | 39,501,182 | 5,964,678,482 | 97.81 | 94.08 | 38,847,978 | 5,853,839,115 | 98.35 | 98.14 | 11 | 403 | 15,003,958 |
MFB2 | 39,273,624 | 5,930,317,224 | 97.68 | 93.78 | 38,577,900 | 5,809,783,618 | 98.23 | 97.97 | 9 | 455 | 14,933,104 |
MFB3 | 42,929,950 | 6,482,422,450 | 97.78 | 94.04 | 42,184,496 | 6,355,544,543 | 98.26 | 98.04 | 7 | 478 | 16,296,246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, B.; Li, X.; Zhang, J.; Li, B.; Sun, N.; Liang, F. Transcriptome Analysis and CFEM Gene Overexpression in Metschnikowia bicuspidata Under Hemocyte and Iron Ion Stress. Pathogens 2025, 14, 691. https://doi.org/10.3390/pathogens14070691
Zuo B, Li X, Zhang J, Li B, Sun N, Liang F. Transcriptome Analysis and CFEM Gene Overexpression in Metschnikowia bicuspidata Under Hemocyte and Iron Ion Stress. Pathogens. 2025; 14(7):691. https://doi.org/10.3390/pathogens14070691
Chicago/Turabian StyleZuo, Bingnan, Xiaodong Li, Ji Zhang, Bingyu Li, Na Sun, and Fang Liang. 2025. "Transcriptome Analysis and CFEM Gene Overexpression in Metschnikowia bicuspidata Under Hemocyte and Iron Ion Stress" Pathogens 14, no. 7: 691. https://doi.org/10.3390/pathogens14070691
APA StyleZuo, B., Li, X., Zhang, J., Li, B., Sun, N., & Liang, F. (2025). Transcriptome Analysis and CFEM Gene Overexpression in Metschnikowia bicuspidata Under Hemocyte and Iron Ion Stress. Pathogens, 14(7), 691. https://doi.org/10.3390/pathogens14070691