Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (305)

Search Parameters:
Keywords = membrane permeabilizing activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1620 KiB  
Article
Cellular Entry, Cytotoxicity, and Antifungal Activity of Newly Synthesized Dendrimers
by Aneliya Kostadinova, Ema Gaydarska, Tanya Topouzova-Hristova, Dayana Benkova, Galya Staneva, Ekaterina Krumova, Rusina Hazarosova, Miroslav Marinov, Asya Tsanova, Albena Jordanova and Ivo Grabchev
Appl. Sci. 2025, 15(14), 7764; https://doi.org/10.3390/app15147764 - 10 Jul 2025
Viewed by 353
Abstract
Dendrimers, 4-dimethylamino-1,8-naphthalimide (DAB) and its halogenated analog 3-bromo-4-dimethylamino-1,8-naphthalimide (DAB-Br), were evaluated on eukaryotic cells, human HFF-1 fibroblast cells, and five fungal species. Although both dendrimers have demonstrated antibacterial and antiviral potential, thus far, their effects on eukaryotic cells, particularly human and fungal cells, [...] Read more.
Dendrimers, 4-dimethylamino-1,8-naphthalimide (DAB) and its halogenated analog 3-bromo-4-dimethylamino-1,8-naphthalimide (DAB-Br), were evaluated on eukaryotic cells, human HFF-1 fibroblast cells, and five fungal species. Although both dendrimers have demonstrated antibacterial and antiviral potential, thus far, their effects on eukaryotic cells, particularly human and fungal cells, have not been investigated. For this purpose, their cytotoxicity, mechanisms of cellular entry, and antifungal activity were studied. Dynamic light scattering measurements revealed that both dendrimers exhibited positive surface charges (+28 to +35 mV), good colloidal stability, and nanoscale dimensions (117–234 nm), facilitating interactions with target cells. The MTT assay showed that DAB was more cytotoxic toward HFF-1 cells (IC50 = 27 µg/mL) compared to DAB-Br (IC50 = 68 µg/mL). In contrast, the resazurin-based antifungal assay demonstrated that DAB-Br had superior antifungal activity, achieving a lower minimum inhibitory concentration (0.148 µg/µL), compared to DAB (0.295 µg/µL). A trypan blue exclusion test revealed that both dendrimers entered cells through membrane permeabilization, either temporarily or permanently, depending on the concentration and exposure time. At concentrations above 30 µg/mL, irreversible permeabilization was observed within two hours of treatment, accompanied by a decrease in membrane lipid order, indicating altered membrane integrity and permeability. Conversely, at lower concentrations (7.5–15 µg/mL), dendrimers induced only temporary membrane permeabilization, with membranes remaining intact, suggesting a reversible interaction with the lipid bilayer. Conducting thorough and systematic research to fully explore their biological activities could provide valuable insight for future applications. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

15 pages, 1362 KiB  
Article
The Role of Natural Antimicrobials in Reducing the Virulence of Vibrio parahaemolyticus TPD in Shrimp Gut and Hepatopancreas Primary Cells and in a Post-Larvae Challenge Trial
by Lavinia Stef, Ioan Pet, Cosmin Alin Popescu, Gabi Dumitrescu, Liliana Petculescu Ciochina, Tiberiu Iancu, Iuliana Cretescu, Nicolae Corcionivoschi and Igori Balta
Int. J. Mol. Sci. 2025, 26(14), 6557; https://doi.org/10.3390/ijms26146557 - 8 Jul 2025
Viewed by 358
Abstract
Some Vibrio parahaemolyticus strains cause translucent post-larvae disease (VpTPD), leading to significant economic losses in shrimp farming. We aimed to identify whether a mixture of natural antimicrobials, AuraAqua (Aq), can protect white-leg shrimp (Penaeus vannamei) against the lethal [...] Read more.
Some Vibrio parahaemolyticus strains cause translucent post-larvae disease (VpTPD), leading to significant economic losses in shrimp farming. We aimed to identify whether a mixture of natural antimicrobials, AuraAqua (Aq), can protect white-leg shrimp (Penaeus vannamei) against the lethal effects of VpTPD and to understand its biological mode of action. Herein, we demonstrate that Aq, an antimicrobial mixture composed of a blend of organic acids, citrus, and olive extracts, suppressed VpTPD virulence at sub-inhibitory concentrations and conferred robust protection to shrimp. The minimum inhibitory and bactericidal concentrations against the VpTPD isolate were at 0.05% and 0.2%, respectively. At 0.05–0.1%, Aq reduced bacterial growth and downregulated six major virulence genes (vhvp-1, vhvp-2, vhvp-3, pirAVp, pirBVp, pirABVp), while leaving metabolic ldh expression unaltered. Parallel in vitro assays revealed diminished adhesion of VpTPD to primary shrimp gut and hepatopancreas epithelial cells and a ≈50% reduction in infection-induced extracellular H2O2, indicating an antioxidant effect. The treatment also triggered a time-dependent surge in extracellular alkaline phosphatase (ALP) activity, consistent with membrane permeabilization. In vivo, a challenge of post-larvae with 104 CFU/mL VpTPD resulted in 91% mortality after 45 h; co-treatment with 0.1% and 0.2% Aq reduced mortality to ≈12% and ≈6%, respectively, while 1% Aq achieved ≈98% survival. The clinical protection test confirmed that 0.1% Aq preserved high survival across four pathogen inocula (101–104 CFU/mL). Conclusively, Aq destabilized the pathogen and therefore transcriptionally silenced multiple virulence determinants, translating into significant in-pond protection for controlling VpTPD for shrimp aquaculture. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

16 pages, 1933 KiB  
Article
Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast
by Boyana Angelova, Momchil Paunov, Meglena Kitanova, Gabriela Atanasova and Nikolay Atanasov
Antioxidants 2025, 14(7), 820; https://doi.org/10.3390/antiox14070820 - 3 Jul 2025
Viewed by 446
Abstract
The study of the effects of 2.45 GHz electromagnetic fields on the health and safety of people and organisms as a whole is essential due to their widespread use in everyday life. It is known that they can cause thermal and non-thermal effects—at [...] Read more.
The study of the effects of 2.45 GHz electromagnetic fields on the health and safety of people and organisms as a whole is essential due to their widespread use in everyday life. It is known that they can cause thermal and non-thermal effects—at the molecular, cellular and organismal level. Yeast suspensions were treated with 2.45 GHz microwave radiation in the near-field of antenna at two distances (2 and 4 cm) and two time periods (20 and 60 min)—setups resembling the use of mobile devices. The release of UV-absorbing substances from the cells was studied as an indicator of membrane permeabilization, total intracellular antioxidant activity and reduced glutathione were determined, and a comet assay for damage to the DNA was performed. A correlation between reduced antioxidants and increased membrane permeability during EMF treatment was observed at a distance of 2 cm for 20 min, suggesting the presence of oxidative stress, while a similar effect was not observed with conventional heating. Slightly increased membrane permeability was observed after irradiation for 60 min at a distance of 4 cm, but this was not related to the antioxidant status of the cells. A trend towards increased DNA damage was observed under both conditions. Full article
Show Figures

Figure 1

26 pages, 8585 KiB  
Article
The Invertebrate-Derived Antimicrobial Peptide Cm-p5 Induces Cell Death and ROS Production in Melanoma Cells
by Ernesto M. Martell-Huguet, Daniel Alpízar-Pedraza, Armando Rodriguez, Marc Zumwinkel, Mark Grieshober, Fidel Morales-Vicente, Ann-Kathrin Kissmann, Markus Krämer, Steffen Stenger, Octavio L. Franco, Ludger Ständker, Anselmo J. Otero-Gonzalez and Frank Rosenau
Mar. Drugs 2025, 23(7), 273; https://doi.org/10.3390/md23070273 - 29 Jun 2025
Viewed by 1193
Abstract
Nowadays, healthcare systems face two global challenges: the rise of multidrug-resistant pathogens and the growing incidence of cancer. Due to their broad spectrum of activities, antimicrobial peptides emerged as potential alternatives against both threats. Our group previously described the antifungal activity of the [...] Read more.
Nowadays, healthcare systems face two global challenges: the rise of multidrug-resistant pathogens and the growing incidence of cancer. Due to their broad spectrum of activities, antimicrobial peptides emerged as potential alternatives against both threats. Our group previously described the antifungal activity of the α-helical peptide Cm-p5, a derivative of the natural peptide Cm-p1, isolated from the coastal mollusk Cenchritis muricatus; however, its anti-cancer properties remained unexplored. Analyses through calorimetry and molecular dynamics simulations suggest the relevance of phosphatidylserine for the attachment of Cm-p5 to cancer cell membranes. Cm-p5 exhibited cytotoxic activity in a dose-dependent manner against A375 melanoma cells, without toxicity against non-malignant cells or hemolytic activity. DAPI/PI and DiSC3(5) staining confirmed permeabilization, disruption, and depolarization of A375 cytoplasmic membranes by Cm-p5. Furthermore, Annexin V-FITC/PI assay revealed the induction of cellular death in melanoma cells, which can result from the cumulative membrane damage and oxidative stress due to the overproduction of reactive oxygen species (ROS). Moreover, after the treatment, the proliferation of A375 cells was dampened for several days, suggesting that Cm-p5 might inhibit the recurrence of melanomas. These findings highlight the multifunctional nature of Cm-p5 and its potential for treating malignant melanoma. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 4th Edition)
Show Figures

Figure 1

16 pages, 2407 KiB  
Article
Mutations in Genes with a Role in Cell Envelope Biosynthesis Render Gram-Negative Bacteria Highly Susceptible to the Anti-Infective Small Molecule D66
by Samual C. Allgood, Calvin A. Ewing, Weiping Chu, Steffen Porwollik, Michael McClelland and Corrella S. Detweiler
Microorganisms 2025, 13(7), 1521; https://doi.org/10.3390/microorganisms13071521 - 29 Jun 2025
Viewed by 379
Abstract
Anti-infectives include molecules that target microbes in the context of infection but lack antimicrobial activity under conventional growth conditions. We previously described D66, a small molecule that kills the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) within cultured macrophages and murine [...] Read more.
Anti-infectives include molecules that target microbes in the context of infection but lack antimicrobial activity under conventional growth conditions. We previously described D66, a small molecule that kills the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) within cultured macrophages and murine tissues, with low host toxicity. While D66 fails to inhibit bacterial growth in standard media, the compound is bacteriostatic and disrupts the cell membrane voltage gradient without lysis under growth conditions that permeabilize the outer membrane or reduce efflux pump activity. To gain insights into specific bacterial targets of D66, we pursued two genetic approaches. Selection for resistance to D66 revealed spontaneous point mutations that mapped within the gmhB gene, which encodes a protein involved in the biosynthesis of the lipopolysaccharide core molecule. E. coli and S. Typhimurium gmhB mutants exhibited increased resistance to antibiotics, indicating a more robust barrier to entry. Conversely, S. Typhimurium transposon insertions in genes involved in outer membrane permeability or efflux pump activity reduced fitness in the presence of D66. Together, these observations underscore the significance of the bacterial cell envelope in safeguarding Gram-negative bacteria from small molecules. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

21 pages, 1391 KiB  
Review
The Toxicological Effects, Toxin-Producing Performance, and Molecular Mechanism of Marine Microalgae in Response to Environmental Estrogens: A Review
by Long Guo, Wenqing Chen, Chunyun Zhang, Yuanyuan Wang and Guofu Chen
Water 2025, 17(13), 1922; https://doi.org/10.3390/w17131922 - 27 Jun 2025
Viewed by 347
Abstract
As emerging contaminants increasingly detected in aquatic and terrestrial ecosystems, environmental estrogens (EEs) pose significant ecological risks to marine ecosystems, particularly affecting photosynthetic microorganisms occupying fundamental roles in marine food webs. This review summarizes the current knowledge on the toxicological effects of EEs [...] Read more.
As emerging contaminants increasingly detected in aquatic and terrestrial ecosystems, environmental estrogens (EEs) pose significant ecological risks to marine ecosystems, particularly affecting photosynthetic microorganisms occupying fundamental roles in marine food webs. This review summarizes the current knowledge on the toxicological effects of EEs in marine microalgae through a systematic analysis of dose-dependent physiological, biochemical, and molecular responses. Experimental evidence reveals a biphasic response pattern characterized by growth promotion and photosynthetic enhancement in microalgae under low-concentration EE exposure (0.1–10 μg/L), while marked inhibition of both growth and photosynthetic activity was observed at elevated EE concentrations (>50 μg/L). Notably, sustained EE exposure induces metabolic reprogramming, manifested through reduced protein and polysaccharide biosynthesis concurrent with accelerated lipid accumulation. Cellular stress responses include significant ultrastructural alterations such as chloroplast membrane disruption, cell wall thickening, and the formation of multicellular aggregates. The study further elucidates the concentration-dependent modulation of toxin metabolism, with sublethal doses stimulating intracellular microcystin synthesis (1.5–2.3-fold increase), while acute exposure triggers toxin release through membrane permeabilization. At molecular levels, transcriptomic analyses identify the up-regulation of heat shock proteins (HSP70/90) and the differential expression of genes governing cell cycle progression (cyclin-D), apoptotic pathways (caspase-3), photosynthetic electron transport (psbA), and oxidative stress responses (SOD, CAT). These findings demonstrate that EEs exert multilevel impacts on microalgal physiology through interference with fundamental metabolic processes, potentially disrupting marine primary productivity and biogeochemical cycles. The identified response mechanisms provide critical insights for environmental risk assessment and establish a conceptual framework for investigating estrogenic pollutant effects in aquatic ecosystems. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

29 pages, 1506 KiB  
Review
The Link Between Endoplasmic Reticulum Stress and Lysosomal Dysfunction Under Oxidative Stress in Cancer Cells
by Mariapia Vietri, Maria Rosaria Miranda, Giuseppina Amodio, Tania Ciaglia, Alessia Bertamino, Pietro Campiglia, Paolo Remondelli, Vincenzo Vestuto and Ornella Moltedo
Biomolecules 2025, 15(7), 930; https://doi.org/10.3390/biom15070930 - 25 Jun 2025
Viewed by 613
Abstract
Lysosomal dysfunction and endoplasmic reticulum (ER) stress play essential roles in cancer cell survival, growth, and stress adaptation. Among the various stressors in the tumor microenvironment, oxidative stress (OS) is a central driver that exacerbates both lysosomal and ER dysfunction. In healthy cells, [...] Read more.
Lysosomal dysfunction and endoplasmic reticulum (ER) stress play essential roles in cancer cell survival, growth, and stress adaptation. Among the various stressors in the tumor microenvironment, oxidative stress (OS) is a central driver that exacerbates both lysosomal and ER dysfunction. In healthy cells, the ER manages protein folding and redox balance, while lysosomes regulate autophagy and degradation. Cancer cells, however, are frequently exposed to elevated levels of reactive oxygen species (ROS), which disrupt protein folding in the ER and damage lysosomal membranes and enzymes, promoting dysfunction. Persistent OS activates the unfolded protein response (UPR) and contributes to lysosomal membrane permeabilization (LMP), leading to pro-survival autophagy or cell death depending on the context and on the modulation of pathways like PERK, IRE1, and ATF6. Cancer cells exploit these pathways by enhancing their tolerance to OS and shifting UPR signaling toward survival. Moreover, lysosomal impairment due to ROS accumulation compromises autophagy, resulting in the buildup of damaged organelles and further amplifying oxidative damage. This vicious cycle of ROS-induced ER stress and lysosomal dysfunction contributes to tumor progression, therapy resistance, and metabolic adaptation. Thus, targeting lysosomal and ER stress responses offers potential as cancer therapy, particularly in increasing oxidative stress and promoting apoptosis. This review explores the interconnected roles of lysosomal dysfunction, ER stress, and OS in cancer, focusing on the mechanisms driving their crosstalk and its implications for tumor progression and therapeutic resistance. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

30 pages, 3013 KiB  
Review
Inter-Organelle Crosstalk in Oxidative Distress: A Unified TRPM2-NOX2 Mediated Vicious Cycle Involving Ca2+, Zn2+, and ROS Amplification
by Esra Elhashmi Shitaw, Maali AlAhmad and Asipu Sivaprasadarao
Antioxidants 2025, 14(7), 776; https://doi.org/10.3390/antiox14070776 - 24 Jun 2025
Viewed by 648
Abstract
Reactive oxygen species (ROS) are critical signalling molecules, but their overproduction leads to oxidative stress (OS), a common denominator in the pathogenesis of numerous non-communicable diseases (NCDs) and aging. General antioxidant therapies have largely been unsuccessful, highlighting the need for a deeper understanding [...] Read more.
Reactive oxygen species (ROS) are critical signalling molecules, but their overproduction leads to oxidative stress (OS), a common denominator in the pathogenesis of numerous non-communicable diseases (NCDs) and aging. General antioxidant therapies have largely been unsuccessful, highlighting the need for a deeper understanding of ROS amplification mechanisms to develop targeted interventions. This review proposes a unified, self-amplifying “vicious cycle” of inter-organelle crosstalk that drives pathological ROS elevation and cellular damage. We outline a pathway initiated by extracellular stressors that co-activate plasma membrane TRPM2 channels and NADPH oxidase-2. This synergy elevates cytoplasmic Ca2+, leading to lysosomal dysfunction and permeabilization, which in turn releases sequestered Zn2+. Mitochondrial uptake of this labile Zn2+ impairs electron transport chain function, particularly at Complex III, resulting in mitochondrial fragmentation, loss of membrane potential and a burst of mitochondrial ROS (mtROS). These mtROS diffuse to the nucleus, activating PARP-1 and generating ADPR, which further stimulates TRPM2, thereby perpetuating the cycle. This “circular domino effect” integrates signals generated across the plasma membrane (Ca2+), lysosomes (Zn2+), mitochondria (ROS) and nucleus (ADPR), leading to progressive organelle failure, cellular dysfunction, and ultimately cell death. Understanding and targeting specific nodes within this TRPM2-NOX2-Ca2+-Zn2+-mtROS-ADPR axis offers novel therapeutic avenues for NCDs by selectively disrupting pathological ROS amplification while preserving essential physiological redox signalling. Full article
Show Figures

Figure 1

66 pages, 2196 KiB  
Review
Oleocanthal as a Multifunctional Anti-Cancer Agent: Mechanistic Insights, Advanced Delivery Strategies, and Synergies for Precision Oncology
by Shirin Jannati, Adiba Patel, Rajashree Patnaik and Yajnavalka Banerjee
Int. J. Mol. Sci. 2025, 26(12), 5521; https://doi.org/10.3390/ijms26125521 - 9 Jun 2025
Cited by 3 | Viewed by 1170
Abstract
Oleocanthal (OC), a secoiridoid phenolic compound exclusive to extra virgin olive oil (EVOO), has emerged as a promising nutraceutical with multifaceted anti-cancer properties. Despite its well-characterized anti-inflammatory and antioxidant effects, the mechanistic breadth and translational potential of OC in oncology remain underexplored and [...] Read more.
Oleocanthal (OC), a secoiridoid phenolic compound exclusive to extra virgin olive oil (EVOO), has emerged as a promising nutraceutical with multifaceted anti-cancer properties. Despite its well-characterized anti-inflammatory and antioxidant effects, the mechanistic breadth and translational potential of OC in oncology remain underexplored and fragmented across the literature. This comprehensive review synthesizes and critically analyzes recent advances in the molecular, pharmacological, and translational landscape of OC’s anti-cancer activities, providing an integrative framework to bridge preclinical evidence with future clinical application. We delineate the pleiotropic mechanisms by which OC modulates cancer hallmarks, including lysosomal membrane permeabilization (LMP)-mediated apoptosis, the inhibition of key oncogenic signaling pathways (c-MET/STAT3, PAR-2/TNF-α, COX-2/mPGES-1), the suppression of epithelial-to-mesenchymal transition (EMT), angiogenesis, and metabolic reprogramming. Furthermore, this review uniquely highlights the emerging role of OC in modulating drug resistance mechanisms by downregulating efflux transporters and sensitizing tumors to chemotherapy, targeted therapies, and immunotherapies. We also examine OC’s bidirectional interaction with gut microbiota, underscoring its systemic immunometabolic effects. A major unmet need addressed by this review is the lack of consolidated knowledge regarding OC’s pharmacokinetic limitations and drug–drug interaction potential in the context of polypharmacy in oncology. We provide an in-depth analysis of OC’s poor bioavailability, extensive first-pass metabolism, and pharmacogenomic interactions, and systematically compile preclinical evidence on advanced delivery platforms—including nanocarriers, microneedle systems, and peptide–drug conjugates—designed to overcome these barriers. By critically evaluating the mechanistic, pharmacological, and translational dimensions of OC, this review advances the field beyond isolated mechanistic studies and offers a strategic blueprint for its integration into precision oncology. It also identifies key research gaps and outlines the future directions necessary to transition OC from a nutraceutical of dietary interest to a viable adjunctive therapeutic agent in cancer treatment. Full article
(This article belongs to the Special Issue Bioactive Compounds in Cancers)
Show Figures

Figure 1

18 pages, 2965 KiB  
Article
Direct Effects of Clinically Relevant Antibiotics on Mitochondrial Respiration
by Judith Sailer, Sabine Schmitt, Hans Zischka and Erich Gnaiger
Int. J. Mol. Sci. 2025, 26(11), 5379; https://doi.org/10.3390/ijms26115379 - 4 Jun 2025
Viewed by 748
Abstract
Antibiotics are indispensable in medical patient care, yet they may elicit off-target effects, particularly by affecting mitochondrial function. This study investigates three commonly used antibiotics, gentamicin, ciprofloxacin, and amoxicillin, for their direct effects on mitochondrial respiration and membrane potential. Using high-resolution respirometry, we [...] Read more.
Antibiotics are indispensable in medical patient care, yet they may elicit off-target effects, particularly by affecting mitochondrial function. This study investigates three commonly used antibiotics, gentamicin, ciprofloxacin, and amoxicillin, for their direct effects on mitochondrial respiration and membrane potential. Using high-resolution respirometry, we show that gentamicin and ciprofloxacin markedly increase mitochondrial leak respiration in permeabilized human embryonic kidney cells, suggesting alterations in the mitochondrial inner membrane. This is supported by a gentamicin-induced decrease in mitochondrial membrane potential. Especially gentamicin, but also ciprofloxacin, dose- and time-dependently inhibit oxidative phosphorylation and the mitochondrial electron transfer capacity, pronouncedly in the NADH-linked but also in the succinate-linked pathway. Furthermore, gentamicin decreases Complex IV (CIV) activity in a time-dependent fashion. In contrast, amoxicillin has no significant effect on mitochondrial respiration. These findings emphasize the importance of evaluating the potential direct toxicity of antibiotics on mitochondria, as they are most critical off-target sites. High-resolution respirometry provides a powerful approach to characterize such effects early in the drug development process. Full article
(This article belongs to the Special Issue Mitochondrial Respiration and Energy Metabolism in Cancer Cells)
Show Figures

Figure 1

18 pages, 9688 KiB  
Article
The Role of a Conserved Arg-Asp Pair in the Structure and Function of Tetanus Neurotoxin
by Elizabeth A. Wilson, Ashtyn N. Bevans and Michael R. Baldwin
Toxins 2025, 17(6), 273; https://doi.org/10.3390/toxins17060273 - 30 May 2025
Viewed by 1256
Abstract
Tetanus, a severe and life-threatening illness caused by Clostridium tetani, produces symptoms such as muscle spasms, muscle stiffness and seizures caused by the production of tetanus neurotoxin (TeNT). TeNT causes spastic paralysis through the inhibition of neurotransmission in spinal inhibitory interneurons. This [...] Read more.
Tetanus, a severe and life-threatening illness caused by Clostridium tetani, produces symptoms such as muscle spasms, muscle stiffness and seizures caused by the production of tetanus neurotoxin (TeNT). TeNT causes spastic paralysis through the inhibition of neurotransmission in spinal inhibitory interneurons. This is achieved, in part, through pH-triggered membrane insertion of the translocation (HCT) domain, which delivers the catalytic light-chain (LC) domain to the cytosol. While the function of HCT is well defined, the mechanism by which it accomplishes this task is largely unknown. Based on the crystal structure of tetanus neurotoxin, we identified potential polar interactions between arginine 711, tryptophan 715 and aspartate 821 that appear to be evolutionarily conserved across the clostridial neurotoxin family. We show that the disruption of the Asp-Arg pair in a beltless HCT variant (bHCT) results in changes in thermal stability without significant alterations to the overall secondary structure. ANS (1-anilino-8-napthalene sulfonate) binding studies, in conjunction with liposome permeabilization assays, demonstrate that mutations at R711 or D821 trigger interactions with the membrane at higher pH values compared to wildtype bHCT. Interestingly, we show that the introduction of the D821N mutation into LHNT (LC-HCT only), but not the holotoxin, resulted in the increased cleavage of VAMP 2 in cortical neurons relative to the wildtype protein. This suggests that, as observed for botulinum toxin A, the receptor-binding domain is not necessary for LC translocation but rather helps determine the pH threshold of membrane insertion. The mutation of W715 did not result in detectable changes in the activity of either bHCT or the holotoxin, suggesting that it plays only a minor role in stabilizing the structure of the toxin. We conclude that the protonation of D821 at low pH disrupts interactions with R711 and W715, helping to drive the conformational refolding of HCT needed for membrane insertion and the subsequent translocation of the LC. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

14 pages, 1004 KiB  
Article
Designing New Chimeric Proline-Rich Antimicrobial Peptides to Enhance Efficacy Toward the ESKAPE+E: Beyond Sequence Extension
by Adriana Di Stasi, Luigi de Pascale, Martino Morici, Daniel N. Wilson, Marco Scocchi and Mario Mardirossian
Biomolecules 2025, 15(6), 776; https://doi.org/10.3390/biom15060776 - 27 May 2025
Viewed by 621
Abstract
Proline-rich antimicrobial peptides (PrAMPs) primarily exert their antimicrobial effects intracellularly, inhibiting protein synthesis. B7-005, a synthetic 16-amino acid PrAMP, has a broader antimicrobial spectrum compared to native counterparts, despite shorter PrAMPs typically exhibiting reduced activity. This study aimed to enhance B7-005’s potency by [...] Read more.
Proline-rich antimicrobial peptides (PrAMPs) primarily exert their antimicrobial effects intracellularly, inhibiting protein synthesis. B7-005, a synthetic 16-amino acid PrAMP, has a broader antimicrobial spectrum compared to native counterparts, despite shorter PrAMPs typically exhibiting reduced activity. This study aimed to enhance B7-005’s potency by extending it with 6 or 11 amino acids derived from the C-terminal sequences of cetacean Tur1A and Lip1 PrAMPs, as well as bovine Bac7(1-35). Six chimeric derivatives were evaluated for antimicrobial and bactericidal potency, cytotoxicity, bacterial membrane permeabilization, and in vitro inhibition of protein synthesis. Extending B7-005 with sequences from other PrAMPs increased its activity against most ESKAPE+E pathogens, reducing minimum inhibitory concentration (MIC) values by 2- to 8-fold, with notable differences among bacterial species, without increasing cytotoxicity toward the A549 cell line. All chimeras retained the ability to inhibit protein synthesis in Escherichia coli and to modestly perturb the E. coli membranes like B7-005. These novel chimeric PrAMPs, particularly the 22-mer derivatives, hold promise for developing new antimicrobial agents. The study also highlights variability in bacterial responses to PrAMPs and underscores how minor sequence differences can significantly impact efficacy against specific microorganisms. PrAMPs thus represent a valuable scaffold to rationally design derivatives targeting high-priority pathogens. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Antimicrobial Peptides)
Show Figures

Graphical abstract

16 pages, 1694 KiB  
Article
Synergistic Effect of Essential Oils and Rhamnolipid on Xanthomonas citri Subsp. citri
by Maria Olimpia Pereira Sereia, Eduarda Araujo dos Santos, Lucas Prado Leite, Raphael Culim Neves, Vítor Rodrigues Marin, Henrique Ferreira, Jonas Contiero and Daiane Cristina Sass
Microorganisms 2025, 13(5), 1153; https://doi.org/10.3390/microorganisms13051153 - 17 May 2025
Viewed by 606
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri, is a devastating disease that affects citrus production and trade worldwide. Traditional control methods, based on copper compounds, are effective but pose environmental and health risks due to their toxicity and potential for bioaccumulation. [...] Read more.
Citrus canker, caused by Xanthomonas citri subsp. citri, is a devastating disease that affects citrus production and trade worldwide. Traditional control methods, based on copper compounds, are effective but pose environmental and health risks due to their toxicity and potential for bioaccumulation. This study evaluates the synergistic potential of essential oils (EOs) and rhamnolipids as sustainable alternatives for disease management. Four EOS (citronella, palmarosa, geranium, and clove) were tested for their antibacterial activity. Citronella EO showed a 90% inhibitory concentration (IC 90) of 0.15% (v/v) and a minimum bactericidal concentration of 0.25% (v/v), while the other EOs showed IC 90 and bactericidal activity at 0.06% (v/v). Rhamnolipids (RHLs), biosurfactants produced by Pseudomonas aeruginosa, inhibited X. citri at a concentration of 0.3% (v/v). The combination of citronella EO and RHLs showed a synergistic effect, reducing the inhibitory concentration of citronella by 50% and that of RHLs by more than 90%. In addition, the combined formulation permeabilized more than 80% of bacterial membranes and reduced biofilm formation. In contrast, other oils tested in combination with rhamnolipid showed independent effects. These results indicate that EOs and rhamnolipids represent an environmentally safe strategy for the control of X. citri subsp. citri that overcomes the limitations of conventional methods while reducing environmental and health impacts. Full article
Show Figures

Figure 1

24 pages, 16659 KiB  
Article
AMPEC4: Naja ashei Venom-Derived Peptide as a Stimulator of Fibroblast Migration with Antibacterial Activity
by Ewa Ciszkowicz, Anna Miłoś, Andrzej Łyskowski, Justyna Buczkowicz, Anna Nieczaj, Katarzyna Lecka-Szlachta, Konrad K. Hus, Karol Sikora, Damian Neubauer, Marta Bauer, Wojciech Kamysz and Aleksandra Bocian
Molecules 2025, 30(10), 2167; https://doi.org/10.3390/molecules30102167 - 15 May 2025
Cited by 2 | Viewed by 681
Abstract
The treatment of proctological conditions, including hemorrhoids, anal fissures, and perianal abscesses, is often complicated by bacterial infections, particularly those involving multidrug-resistant Escherichia coli. This study presents the synthesis, characterization, and biological evaluation of the newly designed synthetic peptide AMPEC4, inspired by [...] Read more.
The treatment of proctological conditions, including hemorrhoids, anal fissures, and perianal abscesses, is often complicated by bacterial infections, particularly those involving multidrug-resistant Escherichia coli. This study presents the synthesis, characterization, and biological evaluation of the newly designed synthetic peptide AMPEC4, inspired by cytotoxin 5 from Naja ashei snake venom. AMPEC4 demonstrated potent antimicrobial properties with MIC values of 100 and 200 µg/mL, effectively inhibiting biofilm formation (up to 84%) and eradicating the pre-formed biofilm by up to 35%. The antibacterial activity of AMPEC4 was further supported by a membrane permeabilization assay, demonstrating its capacity to disrupt bacterial membrane integrity in a dose-dependent manner. Furthermore, AMPEC4 significantly promoted fibroblast migration, a critical step in tissue regeneration, while exhibiting notable biocompatibility, as evidenced by the absence of hemolytic, cytotoxic, and genotoxic effects. By addressing both infection control and tissue regeneration, AMPEC4 represents a promising therapeutic strategy for managing chronic wounds, particularly in the challenging environment of the anorectal region. Its ability to target Escherichia coli reference and clinical strains while accelerating the wound-healing process underscores its potential for future clinical applications. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Graphical abstract

33 pages, 25820 KiB  
Article
Novel Anti-MRSA Peptide from Mangrove-Derived Virgibacillus chiguensis FN33 Supported by Genomics and Molecular Dynamics
by Namfa Sermkaew, Apichart Atipairin, Phetcharat Boonruamkaew, Sucheewin Krobthong, Chanat Aonbangkhen, Jumpei Uchiyama, Yodying Yingchutrakul and Nuttapon Songnaka
Mar. Drugs 2025, 23(5), 209; https://doi.org/10.3390/md23050209 - 14 May 2025
Viewed by 884
Abstract
Antimicrobial resistance (AMR) is a global health threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the major resistant pathogens. This study reports the isolation of a novel mangrove-derived bacterium, Virgibacillus chiguensis FN33, as identified through genome analysis and the discovery of a [...] Read more.
Antimicrobial resistance (AMR) is a global health threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the major resistant pathogens. This study reports the isolation of a novel mangrove-derived bacterium, Virgibacillus chiguensis FN33, as identified through genome analysis and the discovery of a new anionic antimicrobial peptide (AMP) exhibiting anti-MRSA activity. The AMP was composed of 23 amino acids, which were elucidated as NH3-Glu-Gly-Gly-Cys-Gly-Val-Asp-Thr-Trp-Gly-Cys-Leu-Thr-Pro-Cys-His-Cys-Asp-Leu-Phe-Cys-Thr-Thr-COOH. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for MRSA were 8 µg/mL and 16 µg/mL, respectively. FN33 AMP induced cell membrane permeabilization, suggesting a membrane-disrupting mechanism. The AMP remained stable at 30–40 °C but lost activity at higher temperatures and following exposure to proteases, surfactants, and extreme pH. All-atom molecular dynamics simulations showed that the AMP adopts a β-sheet structure upon membrane interaction. These findings suggest that Virgibacillus chiguensis FN33 is a promising source of novel antibacterial agents against MRSA, supporting alternative strategies for drug-resistant infections. Full article
(This article belongs to the Special Issue Research on Marine Antimicrobial Peptides)
Show Figures

Graphical abstract

Back to TopTop