The Toxicological Effects, Toxin-Producing Performance, and Molecular Mechanism of Marine Microalgae in Response to Environmental Estrogens: A Review
Abstract
1. Introduction
2. Pollution by EEs in the Ocean
3. Toxicological Effects of EEs on Marine Microalgae
3.1. Effects of EEs on the Growth of Marine Microalgae
3.2. Effects of EEs on the Photosynthesis of Marine Microalgae
Algal Species | Taxonomy | Types of EEs | Concentration of EEs | Effects | References |
---|---|---|---|---|---|
Chlorella pyrenoidosa | Chlorophyta | BPA | 10 mg/L | Chl-a levels decreased significantly. | [52] |
Dunaliella salina | Chlorophyta | EE2 | 100 ng/L; 1000 ng/L | Chl-a and Chl-b levels decreased significantly. | [35] |
Skeletonema hantzschii | Diatom | BPA | 0.01–1.00 mg/L; >1.00 mg/L | Chl-a levels decreased significantly. | [63] |
Alexandrium pacificum | Dinoflagellate | BPA | 2 μg/L; 20 μg/L | Chl-a levels decreased significantly. | [39] |
Chlorella vulgaris | Chlorophyta | Glyphosate | 0, 1, 10, 20, and 40 mmol/L | Inhibited photosynthetic activity and reduced pigment content. | [57] |
3.3. Effect of EEs on the Respiration of Marine Microalgae
3.4. Effect of EEs on the Content of Macromolecular Compounds in Marine Microalgae
3.5. Effect of EEs on the Cell Morphology of Marine Microalgae
3.6. Effect of EEs on Antioxidant Responses in Marine Microalgae
3.7. Effects of EEs on the Toxin-Producing Performance of Marine Microalgae
4. Molecular Response of Marine Microalgae to EEs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, N.; Lin, X.; Huang, P.; Liu, Y.; Bartlam, M.; Wang, Y. Tea Polyphenols Inhibit Blooms Caused by Eukaryotic and Prokaryotic Algae. Ecotoxicol. Environ. Saf. 2023, 265, 115531. [Google Scholar] [CrossRef] [PubMed]
- Almeida, Â.; Silva, M.G.; Soares, A.M.V.M.; Freitas, R. Concentrations Levels and Effects of 17alpha-Ethinylestradiol in Freshwater and Marine Waters and Bivalves: A Review. Environ. Res. 2020, 185, 109316. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Wang, L.; Zhou, Q.; Huang, X. Hazards of Bisphenol A (BPA) Exposure: A Systematic Review of Plant Toxicology Studies. J. Hazard. Mater. 2020, 384, 121488. [Google Scholar] [CrossRef]
- Ben Fredj, S.; Nobbs, J.; Tizaoui, C.; Monser, L. Removal of Estrone (E1), 17β-Estradiol (E2), and 17α-Ethinylestradiol (EE2) from Wastewater by Liquid–Liquid Extraction. Chem. Eng. J. 2015, 262, 417–426. [Google Scholar] [CrossRef]
- Bilal, M.; Rizwan, K.; Adeel, M.; Barceló, D.; Awad, Y.A.; Iqbal, H.M.N. Robust Strategies to Eliminate Endocrine Disruptive Estrogens in Water Resources. Environ. Pollut. 2022, 306, 119373. [Google Scholar] [CrossRef]
- Bhandari, R.K.; Taylor, J.A.; Sommerfeld-Sager, J.; Tillitt, D.E.; Ricke, W.A.; Vom Saal, F.S. Estrogen Receptor 1 Expression and Methylation of Esr1 Promoter in Mouse Fetal Prostate Mesenchymal Cells Induced by Gestational Exposure to Bisphenol A or Ethinylestradiol. Environ. Epigenet. 2019, 5, dvz012. [Google Scholar] [CrossRef]
- Bilal, M.; Barceló, D.; Iqbal, H.M.N. Occurrence, Environmental Fate, Ecological Issues, and Redefining of Endocrine Disruptive Estrogens in Water Resources. Sci. Total Environ. 2021, 800, 149635. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Wong, C.K.C.; Zheng, J.S.; Bouwman, H.; Barra, R.; Wahlström, B.; Neretin, L.; Wong, M.H. Bisphenol A (BPA) in China: A Review of Sources, Environmental Levels, and Potential Human Health Impacts. Environ. Int. 2012, 42, 91–99. [Google Scholar] [CrossRef]
- Basak, S.; Das, M.K.; Duttaroy, A.K. Plastics Derived Endocrine-Disrupting Compounds and Their Effects on Early Development. Birth Defects Res. 2020, 112, 1308–1325. [Google Scholar] [CrossRef]
- Chiang, Y.-R.; Wei, S.T.-S.; Wang, P.-H.; Wu, P.-H.; Yu, C.-P. Microbial Degradation of Steroid Sex Hormones: Implications for Environmental and Ecological Studies. Microb. Biotechnol. 2020, 13, 926–949. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, W.; Tang, T.; Li, Z.; Dai, R. Environmental Estrogens in Surface Water and Their Interaction with Microalgae: A Review. Sci. Total Environ. 2022, 807, 150637. [Google Scholar] [CrossRef]
- Naselli-Flores, L.; Padisák, J. Ecosystem Services Provided by Marine and Freshwater Phytoplankton. Hydrobiologia 2023, 850, 2691–2706. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.L.; Lepère, C.; Scanlan, D.J.; Vaulot, D. Plastid 16S rRNA Gene Diversity among Eukaryotic Picophytoplankton Sorted by Flow Cytometry from the South Pacific Ocean. PLoS ONE 2011, 6, e18979. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Pan, H.-Y.; Zhu, Y.; Chen, W.; Lin, C.-Y. Pollution Characteristics and Mixture Risk Prediction of Phenolic Environmental Estrogens in Rivers of the Beijing–Tianjin–Hebei Urban Agglomeration, China. Sci. Total Environ. 2021, 787, 147646. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Jiang, L.-Y.; Kuo, Y.-L.; Chen, C.-Y.; Hsieh, C.-Y.; Hung, C.-F.; Tien, C.-J. Characteristics of Nonylphenol and Bisphenol A Accumulation by Fish and Implications for Ecological and Human Health. Sci. Total Environ. 2015, 502, 417–425. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czerucka, D.; et al. Human Health and Ocean Pollution. Ann. Glob. Health 2020, 86, 151. [Google Scholar] [CrossRef]
- Gomes, F.B.R.; Fernandes, P.A.A.; Bottrel, S.E.C.; Brandt, E.M.F.; Pereira, R.D.O. Fate, Occurrence, and Removal of Estrogens in Livestock Wastewaters. Water Sci. Technol. 2022, 86, 814–833. [Google Scholar] [CrossRef]
- Duan, S.; Iwanowicz, L.R.; Noguera-Oviedo, K.; Kaushal, S.S.; Rosenfeldt, E.J.; Aga, D.S.; Murthy, S. Evidence That Watershed Nutrient Management Practices Effectively Reduce Estrogens in Environmental Waters. Sci. Total Environ. 2021, 758, 143904. [Google Scholar] [CrossRef]
- Atkinson, S.; Atkinson, M.J.; Tarrant, A.M. Estrogens from Sewage in Coastal Marine Environments. Environ. Health Perspect. 2003, 111, 531–535. [Google Scholar] [CrossRef]
- Xu, W.; Yan, W.; Huang, W.; Miao, L.; Zhong, L. Endocrine-Disrupting Chemicals in the Pearl River Delta and Coastal Environment: Sources, Transfer, and Implications. Environ. Geochem. Health 2014, 36, 1095–1104. [Google Scholar] [CrossRef]
- Jang, M.; Shim, W.J.; Han, G.M.; Rani, M.; Song, Y.K.; Hong, S.H. Widespread Detection of a Brominated Flame Retardant, Hexabromocyclododecane, in Expanded Polystyrene Marine Debris and Microplastics from South Korea and the Asia-Pacific Coastal Region. Environ. Pollut. 2017, 231, 785–794. [Google Scholar] [CrossRef]
- Song, J.; Nagae, M.; Takao, Y.; Soyano, K. Field Survey of Environmental Estrogen Pollution in the Coastal Area of Tokyo Bay and Nagasaki City Using the Japanese Common Goby Acanthogobius flavimanus. Environ. Pollut. 2020, 258, 113673. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Yang, K.-X.; Lin, C.-Y.; Li, Q.; Han, C.; Tao, W.; Huang, Y.; Lin, W.-Q.; Wu, C.-Q.; Zhang, S.-H.; et al. Prevalence, Distribution, Accumulation, and Risk of Environmental Corticosteroids and Estrogens in Biofilms from the Pearl River Delta. Environ. Pollut. 2023, 334, 122192. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Wang, B.; Xin, M.; Lin, C.; Gu, X.; Lian, M.; Li, Y. Spatiotemporal Variations and Risk Assessment of Estrogens in the Water of the Southern Bohai Sea: A Comprehensive Investigation Spanning Three Years. J. Hazard. Mater. 2024, 474, 134754. [Google Scholar] [CrossRef]
- Huysman, S.; Van Meulebroek, L.; Vanryckeghem, F.; Van Langenhove, H.; Demeestere, K.; Vanhaecke, L. Development and Validation of an Ultra-High Performance Liquid Chromatographic High Resolution Q-Orbitrap Mass Spectrometric Method for the Simultaneous Determination of Steroidal Endocrine Disrupting Compounds in Aquatic Matrices. Anal. Chim. Acta 2017, 984, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liu, X.; Chen, Q.; Zhang, H. Spatial and Seasonal Distributions of Estrogens and Bisphenol A in the Yangtze River Estuary and the Adjacent East China Sea. Chemosphere 2014, 111, 336–343. [Google Scholar] [CrossRef]
- Koyama, J.; Imai, S.; Fujii, K.; Kawai, S.; Yap, C.K.; Ismail, A. Pollution by Estrogens in River and Estuarine Waters around Kuala Lumpur, Malaysia, and Their Effects on the Estuarine Java-Medaka, Oryzias Javanicus. 2006. J. Jpn. Environ. Toxicol. 2006, 9, 141–147. [Google Scholar] [CrossRef]
- Beck, I.-C.; Bruhn, R.; Gandrass, J.; Ruck, W. Liquid Chromatography–Tandem Mass Spectrometry Analysis of Estrogenic Compounds in Coastal Surface Water of the Baltic Sea. J. Chromatogr. A 2005, 1090, 98–106. [Google Scholar] [CrossRef]
- Huber, S.; Remberger, M.; Kaj, L.; Schlabach, M.; Jörundsdóttir, H.Ó.; Vester, J.; Arnórsson, M.; Mortensen, I.; Schwartson, R.; Dam, M. A First Screening and Risk Assessment of Pharmaceuticals and Additives in Personal Care Products in Waste Water, Sludge, Recipient Water and Sediment from Faroe Islands, Iceland and Greenland. Sci. Total Environ. 2016, 562, 13–25. [Google Scholar] [CrossRef]
- Chen, C.; Wen, T.; Wang, G.; Cheng, H.; Lin, Y.; Lien, G. Determining Estrogenic Steroids in Taipei Waters and Removal in Drinking Water Treatment Using High-Flow Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry. Sci. Total Environ. 2007, 378, 352–365. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, F.; Pal, A.; Gin, K.Y.-H.; Reinhard, M. Occurrence of Emerging Organic Contaminants in a Tropical Urban Catchment in Singapore. Chemosphere 2011, 83, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.; Fox, D.R.; Negri, A.P.; van Dam, J.; Flores, F.; Koppel, D. Methods for Estimating No-Effect Toxicity Concentrations in Ecotoxicology. Integr. Environ. Assess. 2024, 20, 279–293. [Google Scholar] [CrossRef]
- Moreno-Andrés, J.; Romero-Martínez, L.; Seoane, S.; Acevedo-Merino, A.; Moreno-Garrido, I.; Nebot, E. Evaluation of Algaecide Effectiveness of Five Different Oxidants Applied on Harmful Phytoplankton. J. Hazard. Mater. 2023, 452, 131279. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Ma, R.; Barrett, H.; Wang, B.; Han, J.; Wang, F.; Chen, P.; Wang, W.; Peng, G.; Yu, G. How Microplastics Affect Chiral Illicit Drug Methamphetamine in Aquatic Food Chain? From Green Alga (Chlorella pyrenoidosa) to Freshwater Snail (Cipangopaludian cathayensis). Environ. Int. 2020, 136, 105480. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, G.-Z.; Tam, N.F.Y.; Luan, T.-G.; Shin, P.K.S.; Cheung, S.G.; Liu, Y. Toxicity of Bisphenol A and Its Bioaccumulation and Removal by a Marine Microalga Stephanodiscus hantzschii. Ecotoxicol. Environ. Saf. 2009, 72, 321–328. [Google Scholar] [CrossRef]
- Ebenezer, V.; Ki, J.-S. Toxic Effects of Aroclor 1016 and Bisphenol A on Marine Green Algae Tetraselmis suecica, Diatom Ditylum brightwellii and Dinoflagellate prorocentrum Minimum. J. Microbiol. 2016, 52, 306–312. [Google Scholar] [CrossRef]
- Belhaj, D.; Athmouni, K.; Frikha, D.; Kallel, M.; El Feki, A.; Maalej, S.; Zhou, J.L.; Ayadi, H. Biochemical and Physiological Responses of Halophilic Nanophytoplankton (Dunaliella salina) from Exposure to Xeno-Estrogen 17α-Ethinylestradiol. Environ. Sci. Pollut. Res. 2017, 24, 7392–7402. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Chen, G.; Tam, N.F.Y.; Shin, P.K.S.; Cheung, S.G.; Luan, T. Physiological Responses of the Alga Cyclotella caspia to Bisphenol A Exposure. Bot. Mar. 2008, 51, 360–369. [Google Scholar] [CrossRef]
- M’Rabet, C.; Pringault, O.; Zmerli-Triki, H.; Ben Gharbia, H.; Couet, D.; Kéfi-Daly Yahia, O. Impact of Two Plastic-Derived Chemicals, the Bisphenol A and the Di-2-Ethylhexyl Phthalate, Exposure on the Marine Toxic Dinoflagellate Alexandrium pacificum. Mar. Pollut. 2018, 126, 241–249. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Zhang, J.; Gao, B. Proteomic Mechanisms for the Combined Stimulatory Effects of Glyphosate and Antibiotic Contaminants on Microcystis aeruginosa. Chemosphere 2021, 267, 129244. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, Y.; Gao, Q.; Tam, N.F.Y.; Zhu, W. Cellular Responses, Biodegradation and Bioaccumulation of Endocrine Disrupting Chemicals in Marine Diatom Navicula incerta. Chemosphere 2010, 80, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Lürling, M. Effect Of Grazing-Associated Infochemicals on Growth and Morphological Development in Scenedesmus acutus (Chlorophyceae). J. Phycol. 1998, 34, 578–586. [Google Scholar] [CrossRef]
- Shi, W.; Wang, L.; Rousseau, D.P.L.; Lens, P.N.L. Removal of Estrone, 17α-Ethinylestradiol, and 17ß-Estradiol in Algae and Duckweed-Based Wastewater Treatment Systems. Environ. Sci. Pollut. R. 2010, 17, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Salomão, A.L.D.S.; Soroldoni, S.; Marques, M.; Hogland, W.; Bila, D.M. Effects of Single and Mixed Estrogens on Single and Combined Cultures of D. subspicatus and P. subcapitata. Bull. Environ. Contam. Toxicol. 2014, 93, 215–221. [Google Scholar] [CrossRef]
- Huang, B.; Tang, J.; He, H.; Gu, L.; Pan, X. Ecotoxicological Effects and Removal of 17β-Estradiol in Chlorella Algae. Ecotoxicol. Environ. Saf. 2019, 174, 377–383. [Google Scholar] [CrossRef]
- Ji, M.-K.; Kabra, A.N.; Choi, J.; Hwang, J.-H.; Kim, J.R.; Abou-Shanab, R.A.I.; Oh, Y.-K.; Jeon, B.-H. Biodegradation of Bisphenol A by the Freshwater Microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol. Eng. 2014, 73, 260–269. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, B.; Sun, W.-F.; An, S.; Lin, K.-F.; Guo, M.-J.; Cui, X.-H. Acute and Chronic Toxic Effects of Bisphenol a on Chlorella pyrenoidosa and Scenedesmus obliquus: Acute and Chronic Toxic Effects of Bisphenol a on Two Algae. Environ. Toxicol. 2014, 29, 714–722. [Google Scholar] [CrossRef]
- Simkin, A.J.; Kapoor, L.; Doss, C.G.P.; Hofmann, T.A.; Lawson, T.; Ramamoorthy, S. The Role of Photosynthesis Related Pigments in Light Harvesting, Photoprotection and Enhancement of Photosynthetic Yield in Planta. Photosynth. Res. 2022, 152, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Croce, R.; van Amerongen, H. Light Harvesting in Oxygenic Photosynthesis: Structural Biology Meets Spectroscopy. Science 2020, 369, eaay2058. [Google Scholar] [CrossRef]
- Azizullah, A.; Khan, S.; Gao, G.; Gao, K. The Interplay between Bisphenol A and Algae—A Review. J. King Saud. Univ. Sci. 2022, 34, 102050. [Google Scholar] [CrossRef]
- Azizullah, A.; Richter, P.; Häder, D.-P. Photosynthesis and Photosynthetic Pigments in the Flagellate euglena Gracilis—As Sensitive Endpoints for Toxicity Evaluation of Liquid Detergents. J. Photochem. Photobiol. B 2014, 133, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Tahira, S.; Khan, S.; Samrana, S.; Shahi, L.; Ali, I.; Murad, W.; Rehman, Z.U.; Azizullah, A. Bio-Assessment and Remediation of Arsenic (Arsenite As-III) in Water by Euglena gracilis. J. Appl. Phycol. 2019, 31, 423–433. [Google Scholar] [CrossRef]
- Ali, I.; Liu, B.; Farooq, M.A.; Islam, F.; Azizullah, A.; Yu, C.; Su, W.; Gan, Y. Toxicological Effects of Bisphenol A on Growth and Antioxidant Defense System in Oryza sativa as Revealed by Ultrastructure Analysis. Ecotoxicol. Environ. Saf. 2016, 124, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Chen, Q.; Duan, S. Transcriptional Analysis of Chlorella pyrenoidosa Exposed to Bisphenol A. Int. J. Environ. Res. Public Health 2019, 16, 1374. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Li, X.; Wu, X.; Chen, L.; Wang, G. Photosynthesis Responses of Tibetan Freshwater Algae Chlorella vulgaris to Herbicide glyphosate. Int. J. Environ. Res. Public Health 2022, 20, 386. [Google Scholar] [CrossRef]
- Cruz De Carvalho, R.; Feijão, E.; Matos, A.R.; Cabrita, M.T.; Utkin, A.B.; Novais, S.C.; Lemos, M.F.L.; Caçador, I.; Marques, J.C.; Reis-Santos, P.; et al. Effects of Glyphosate-Based Herbicide on Primary Production and Physiological Fitness of the Macroalgae Ulva lactuca. Toxics 2022, 10, 430. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Chlorophyll a Fluorescence; Papageorgiou, G.C., Govindjee, Eds.; Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 321–362. ISBN 978-1-4020-3217-2. [Google Scholar]
- Deng, C.; Shao, H.; Pan, X.; Wang, S.; Zhang, D. Herbicidal Effects of Harmaline from Peganum harmala on Photosynthesis of Chlorella pyrenoidosa: Probed by Chlorophyll Fluorescence and Thermoluminescence. Pestic. Biochem. Phys. 2014, 115, 23–31. [Google Scholar] [CrossRef]
- Ben Ouada, S.; Ben Ali, R.; Leboulanger, C.; Zaghden, H.; Choura, S.; Ben Ouada, H.; Sayadi, S. Effect and Removal of Bisphenol A by Two Extremophilic Microalgal Strains (Chlorophyta). J. Appl. Phycol. 2018, 30, 1765–1776. [Google Scholar] [CrossRef]
- Xiang, R.; Shi, J.; Yu, Y.; Zhang, H.; Dong, C.; Yang, Y.; Wu, Z. The Effect of Bisphenol A on Growth, Morphology, Lipid Peroxidation, Antioxidant Enzyme Activity, and PS II in Cylindrospermopsis raciborskii and Scenedesmus quadricauda. Arch. Environ. Contam. Toxicol. 2018, 74, 515–526. [Google Scholar] [CrossRef]
- He, J.; Chee, C.W.; Goh, C.J. ‘Photoinhibition’ of Heliconia under Natural Tropical Conditions: The Importance of Leaf Orientation for Light Interception and Leaf Temperature. Plant Cell Environ. 1996, 19, 1238–1248. [Google Scholar] [CrossRef]
- Gattullo, C.E.; Bährs, H.; Steinberg, C.E.W.; Loffredo, E. Removal of Bisphenol A by the Freshwater Green Alga Monoraphidium braunii and the Role of Natural Organic Matter. Sci. Total Environ. 2012, 416, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Ruban, A.V. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. Plant Physiol. 2016, 170, 1903–1916. [Google Scholar] [CrossRef]
- Le, X.H.; Millar, A.H. The Diversity of Substrates for Plant Respiration and How to Optimize Their Use. Plant Physiol. 2023, 191, 2133–2149. [Google Scholar] [CrossRef]
- Mori, M.P.; Penjweini, R.; Ma, J.; Alspaugh, G.; Andreoni, A.; Kim, Y.-C.; Wang, P.; Knutson, J.R.; Hwang, P.M. Mitochondrial Respiration Reduces Exposure of the Nucleus to Oxygen. JBC 2023, 299, 103018. [Google Scholar] [CrossRef]
- Tiwari, A.; Melchor-Martínez, E.M.; Saxena, A.; Kapoor, N.; Singh, K.J.; Saldarriaga-Hernández, S.; Parra-Saldívar, R.; Iqbal, H.M.N. Therapeutic Attributes and Applied Aspects of Biological Macromolecules (Polypeptides, Fucoxanthin, Sterols, Fatty Acids, Polysaccharides, and Polyphenols) from Diatoms—A Review. Int. J. Biol. Macromol. 2021, 171, 398–413. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wu, R.S.S.; Kong, R.Y.C. Biodegradation and Enzymatic Responses in the Marine Diatom Skeletonema costatum upon Exposure to 2,4-Dichlorophenol. Aquat. Toxicol. 2002, 59, 191–200. [Google Scholar] [CrossRef]
- Krüger, G.H.J.; Eloff, J.N. The Effect of Physico-Chemical Factors on Growth Relevant to the Mass Culture of Axenic Microcystis. In The Water Environment; Springer: Boston, MA, USA, 1981; pp. 193–222. [Google Scholar] [CrossRef]
- Nowicka, B. Heavy Metal–Induced Stress in Eukaryotic Algae—Mechanisms of Heavy Metal Toxicity and Tolerance with Particular Emphasis on Oxidative Stress in Exposed Cells and the Role of Antioxidant Response. Environ. Sci. Pollut. Res. 2022, 29, 16860–16911. [Google Scholar] [CrossRef] [PubMed]
- Gassman, N.R. Induction of Oxidative Stress by Bisphenol A and Its Pleiotropic Effects. Environ. Mol. Mutagen. 2017, 58, 60–71. [Google Scholar] [CrossRef]
- Tao, S.; Zhang, Y.; Yuan, C.; Gao, J.; Wu, F.; Wang, Z. Oxidative Stress and Immunotoxic Effects of Bisphenol A on the Larvae of Rare Minnow Gobiocypris rarus. Ecotoxicol. Environ. Saf. 2016, 124, 377–385. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Han, R.; Yang, L.; Zhou, Q.; Huang, X. Effects of Bisphenol A on Antioxidant System in Soybean Seedling Roots. Environ. Toxicol. Chem. 2015, 34, 1127–1133. [Google Scholar] [CrossRef]
- Dinakar, C.; Djilianov, D.; Bartels, D. Photosynthesis in Desiccation Tolerant Plants: Energy Metabolism and Antioxidative Stress Defense. Plant Sci. 2012, 182, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Shakir, S.K.; Irfan, S.; Akhtar, B.; Rehman, S.U.; Daud, M.K.; Taimur, N.; Azizullah, A. Pesticide-Induced Oxidative Stress and Antioxidant Responses in Tomato (Solanum lycopersicum) Seedlings. Ecotoxicology 2018, 27, 919–935. [Google Scholar] [CrossRef]
- Morelli, E.; Scarano, G. Copper-Induced Changes of Non-Protein Thiols and Antioxidant Enzymes in the Marine Microalga Phaeodactylum tricornutum. Plant Sci. 2004, 167, 289–296. [Google Scholar] [CrossRef]
- Wan, X.; Cheng, C.; Gu, Y.; Shu, X.; Xie, L.; Zhao, Y. Acute and Chronic Toxicity of Microcystin-LR and Phenanthrene Alone or in Combination to the Cladoceran (Daphnia magna). Ecotoxicol. Environ. Saf. 2021, 220, 112405. [Google Scholar] [CrossRef]
- Zilliges, Y.; Kehr, J.-C.; Meissner, S.; Ishida, K.; Mikkat, S.; Hagemann, M.; Kaplan, A.; Börner, T.; Dittmann, E. The Cyanobacterial Hepatotoxin Microcystin Binds to Proteins and Increases the Fitness of Microcystis under Oxidative Stress Conditions. PLoS ONE 2011, 6, e17615. [Google Scholar] [CrossRef]
- Wan, X.; Guo, Q.; Li, X.; Wang, G.; Zhao, Y. Synergistic Toxicity to the Toxigenic Microcystis and Enhanced Microcystin Release Exposed to Polycyclic Aromatic Hydrocarbon Mixtures. Toxicon 2022, 210, 49–57. [Google Scholar] [CrossRef]
- Medvedeva, N.; Zaytseva, T.; Kuzikova, I. Cellular Responses and Bioremoval of Nonylphenol by the Bloom-Forming Cyanobacterium Planktothrix agardhii 1113. J. Mar. Syst. 2017, 171, 120–128. [Google Scholar] [CrossRef]
- Wang, J.; Xie, P.; Guo, N. Effects of Nonylphenol on the Growth and Microcystin Production of Microcystis Strains. Environ. Res. 2007, 103, 70–78. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, L.; Lin, Y.; Pan, B.; Li, M. Micrometer Scale Polystyrene Plastics of Varying Concentrations and Particle Sizes Inhibit Growth and Upregulate Microcystin-Related Gene Expression in Microcystis Aeruginosa. J. Hazard. Mater. 2021, 420, 126591. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Tao, J.; Li, S.; Hao, S.; Zhu, X.; Hong, Y. PAHs Would Alter Cyanobacterial Blooms by Affecting the Microcystin Production and Physiological Characteristics of Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 2018, 157, 134–142. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Q.; Wang, C.; Zhou, C.; Lu, C.; Zhao, M. Effects of Glufosinate on the Growth of and Microcystin Production by Microcystis aeruginosa at Environmentally Relevant Concentrations. Sci. Total Environ. 2017, 575, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, Y.; Zeng, G.; Hu, X.; Wang, Y.; Zeng, X. Effects of Limonene Stress on the Growth of and Microcystin Release by the Freshwater Cyanobacterium Microcystis aeruginosa FACHB-905. Ecotoxicol. Environ. Saf. 2014, 105, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, M.B.S.; Andersen, N.R.; Hansen, P.J.; Steffensen, J.F. Effects of Harmful Algal Blooms on Fish: Insights from Prymnesium parvum. Fishes 2018, 3, 11. [Google Scholar] [CrossRef]
- Berdalet, E.; Fleming, L.E.; Gowen, R.; Davidson, K.; Hess, P.; Backer, L.C.; Moore, S.K.; Hoagland, P.; Enevoldsen, H. Marine Harmful Algal Blooms, Human Health and Wellbeing: Challenges and Opportunities in the 21st Century. J. Mar. Biol. Assoc. 2016, 96, 61–91. [Google Scholar] [CrossRef]
- Griffith, A.W.; Gobler, C.J. Harmful Algal Blooms: A Climate Change Co-Stressor in Marine and Freshwater Ecosystems. Harmful Algae 2020, 91, 101590. [Google Scholar] [CrossRef]
- Shin, H.H.; Li, Z.; Réveillon, D.; Savar, V.; Hess, P.; Mertens, K.N.; Youn, J.Y.; Shin, K.; Lee, J.; Shin, A.-Y.; et al. Toxic Dinoflagellate Centrodinium punctatum (Cleve) F.J.R. Taylor: An Examination on the Responses in Growth and Toxin Contents to Drastic Changes of Temperature and Salinity. Harmful Algae 2024, 131, 102559. [Google Scholar] [CrossRef]
- Brandenburg, K.M.; Velthuis, M.; Van De Waal, D.B. Meta-Analysis Reveals Enhanced Growth of Marine Harmful Algae from Temperate Regions with Warming and Elevated CO2 Levels. Glob. Change Biol. 2019, 25, 2607–2618. [Google Scholar] [CrossRef]
- Song, W.; Song, X.; Cheng, R.; Chi, L.; Zhu, J.; Yu, Z. Uncovering the Regulation Effect of Modified Clay on Toxin Production in Alexandrium Pacificum: From Physiological Insights. J. Hazard. Mater. 2023, 454, 131516. [Google Scholar] [CrossRef]
- Sengco, M.R.; Hagström, J.A.; Granéli, E.; Anderson, D.M. Removal of Prymnesium parvum (Haptophyceae) and Its Toxins Using Clay Minerals. Harmful Algae 2005, 4, 261–274. [Google Scholar] [CrossRef]
- Pierce, R.H.; Henry, M.S.; Higham, C.J.; Blum, P.; Sengco, M.R.; Anderson, D.M. Removal of Harmful Algal Cells (Karenia brevis) and Toxins from Seawater Culture by Clay Flocculation. Harmful Algae 2004, 3, 141–148. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, H.; Shutes, B.; Wang, X. Salt-Alkalization May Potentially Promote Microcystis Aeruginosa Blooms and the Production of Microcystin-LR. Environ. Pollut. 2022, 301, 118971. [Google Scholar] [CrossRef] [PubMed]
- Ebenezer, V.; Lim, W.A.; Ki, J.-S. Effects of the Algicides CuSO4 and NaOCl on Various Physiological Parameters in the Harmful Dinoflagellate Cochlodinium polykrikoides. J. Appl. Phycol. 2014, 26, 2357–2365. [Google Scholar] [CrossRef]
- Demuez, M.; González-Fernández, C.; Ballesteros, M. Algicidal Microorganisms and Secreted Algicides: New Tools to Induce Microalgal Cell Disruption. Biotechnol. Adv. 2015, 33, 1615–1625. [Google Scholar] [CrossRef]
- Zhou, S.; Shao, Y.; Gao, N.; Deng, Y.; Qiao, J.; Ou, H.; Deng, J. Effects of Different Algaecides on the Photosynthetic Capacity, Cell Integrity and Microcystin-LR Release of Microcystis aeruginosa. Sci. Total Environ. 2013, 463–464, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, T.; Ye, C.; Huannixi, W.; Yakefu, Z.; Meng, Y.; Peng, X.; Tian, Z.; Wang, J.; Ma, Y.; et al. Algicidal Properties of Extracts from Cinnamomum Camphora Fresh Leaves and Their Main Compounds. Ecotoxicol. Environ. Saf. 2018, 163, 594–603. [Google Scholar] [CrossRef]
- Zhu, X.; Dao, G.; Tao, Y.; Zhan, X.; Hu, H. A Review on Control of Harmful Algal Blooms by Plant-Derived Allelochemicals. J. Hazard. Mater. 2021, 401, 123403. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Wei, Z.; Liu, N.; Li, Y.; Li, D.; Jin, Z.; Xu, X. Thiazole Amides, A Novel Class of Algaecides against Freshwater Harmful Algae. Sci. Rep. 2018, 8, 8555. [Google Scholar] [CrossRef]
- Zheng, R.; Zhang, Y.; Cheng, S.; Xiao, T. Environmental Estrogens Shape Disease Susceptibility. Int. J. Hyg. Environ. Health 2023, 249, 114125. [Google Scholar] [CrossRef]
- Shao, X.; Ji, F.; Wang, Y.; Zhu, L.; Zhang, Z.; Du, X.; Chung, A.C.K.; Hong, Y.; Zhao, Q.; Cai, Z. Integrative Chemical Proteomics-Metabolomics Approach Reveals Acaca/Acacb as Direct Molecular Targets of PFOA. Anal. Chem. 2018, 90, 11092–11098. [Google Scholar] [CrossRef]
- Hagymasi, A.T.; Dempsey, J.P.; Srivastava, P.K. Heat-Shock Proteins. Curr. Protoc. 2022, 2, e592. [Google Scholar] [CrossRef]
- Guo, R.; Ebenezer, V.; Ki, J.-S. Transcriptional Responses of Heat Shock Protein 70 (Hsp70) to Thermal, Bisphenol A, and Copper Stresses in the Dinoflagellate Prorocentrum minimum. Chemosphere 2012, 89, 512–520. [Google Scholar] [CrossRef]
- Kobiyama, A.; Tanaka, S.; Kaneko, Y.; Lim, P.-T.; Ogata, T. Temperature Tolerance and Expression of Heat Shock Protein 70 in the Toxic Dinoflagellate Alexandrium tamarense (Dinophyceae). Harmful Algae 2010, 9, 180–185. [Google Scholar] [CrossRef]
- Harke, M.J.; Gobler, C.J. Global Transcriptional Responses of the Toxic Cyanobacterium, Microcystis Aeruginosa, to Nitrogen Stress, Phosphorus Stress, and Growth on Organic Matter. PLoS ONE 2013, 8, e69834. [Google Scholar] [CrossRef] [PubMed]
- Jaeckisch, N.; Yang, I.; Wohlrab, S.; Glöckner, G.; Kroymann, J.; Vogel, H.; Cembella, A.; John, U. Comparative Genomic and Transcriptomic Characterization of the Toxigenic Marine Dinoflagellate Alexandrium ostenfeldii. PLoS ONE 2011, 6, e28012. [Google Scholar] [CrossRef]
- Wang, H.; Guo, R.; Ki, J.-S. 6.0 K Microarray Reveals Differential Transcriptomic Responses in the Dinoflagellate Prorocentrum minimum Exposed to Polychlorinated Biphenyl (PCB). Chemosphere 2018, 195, 398–409. [Google Scholar] [CrossRef]
- Guo, W.; Hu, Y.; Zhang, X.; Wang, Y.; Li, Y.; Wang, Y. Electrochemical Determination of Tetracycline Using the Synergy of a Molybdenum (IV) Sulfide-Thionine Nanocomposite with an Aptamer by Differential Pulse Voltammetry (DPV). Anal. Lett. 2024, 57, 2364–2375. [Google Scholar] [CrossRef]
- Guo, R.; Lim, W.-A.; Ki, J.-S. Genome-Wide Analysis of Transcription and Photosynthesis Inhibition in the Harmful Dinoflagellate Prorocentrum minimum in Response to the Biocide Copper Sulfate. Harmful Algae 2016, 57, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Wang, H.; Suh, Y.S.; Ki, J.-S. Transcriptomic Profiles Reveal the Genome-Wide Responses of the Harmful Dinoflagellate Cochlodinium polykrikoides When Exposed to the Algicide Copper Sulfate. BMC Genom. 2016, 17, 29. [Google Scholar] [CrossRef]
- Wen, R.; Sui, Z.; Bao, Z.; Zhou, W.; Wang, C. Isolation and Characterization of Calmodulin Gene of Alexandrium catenella (Dinoflagellate) and Its Performance in Cell Growth and Heat Stress. J. Ocean Univ. China 2014, 13, 290–296. [Google Scholar] [CrossRef]
EEs | Location | Concentration (Percentage of Dissolved Material in a Solution) (ng/L) | References |
---|---|---|---|
NP | Pearl River Delta waters | 374.00 | [20,23] |
BPA | Pearl River Delta waters | 429.00 | [20,23] |
Nagasaki | 7.3–2400 | ||
Tokyo | 31–270 | ||
EE2 | Pearl River Delta waters | 2.90 | [20,25,26] |
South China Sea | 0.6 | ||
East China Sea | 0.11 | ||
North Sea Belgian territorial waters | 10.4 | ||
Baltic Sea | 10.1 | ||
Faroe Islands | 208 | ||
E1 | Pearl River Delta waters Nagasaki Tokyo South China Sea East China Sea North Sea Strait of Malacca near Kuala Lumpur | 9.20 N.D.–1.4 5.9–12 0.2 0.2 <1.43 31.65 | [20,22,23,27,28,29] |
E2 | Pearl River Delta waters | 0.34 | [20,22,23] |
Nagasaki | N.D.–0.13 | ||
Tokyo | 0.54–1.2 | ||
E3 | Pearl River Delta waters | 0.28 | [20,23,30,31] |
South China Sea | 21.6 | ||
Taiwanese waters | 44.5–48.65 | ||
Singaporean waters | 62–97 | ||
Vietnam | 19.4 | ||
HBCD | Korean waters | 5980–2120 | [21] |
Hong Kong waters | 0.92–0.46 | ||
Canadian waters | 1470–2270 | ||
Japanese waters | 108–193 | ||
4–NP | Nagasaki | 37–53 | [22] |
Tokyo | 130–1100 |
Algal Species | Taxonomy | Types of EEs | IC50/EC50 (mg L−1) | References |
---|---|---|---|---|
Stephanodiscus hantzschii | Bacillariophyta | BPA | 3–12 | [33] |
Dunaliella salina | Chlorophyta | EE2 | 0.01–0.10 | [35] |
Cyclotella caspia | Bacillariophyta | BPA | 6–12 | [36] |
Alexandrium pacificum | Dinoflagellata | BPA, DEHP | - | [37] |
Navicula incerta | Bacillariophyta | NP | 0.20 | [41] |
Navicula incerta | Bacillariophyta | EE2 | 3.21 | [41] |
Tetraselmis suecica | Chlorophyta | Aroclor 1016 | 0.002–3.960 | [34] |
Tetraselmis suecica | Chlorophyta | BPA | 15.550 | [34] |
Ditylum brightwellii | Bacillariophyta | Aroclor 1016 | 0.002–3.960 | [34] |
Ditylum brightwellii | Bacillariophyta | BPA | 0.037 | [34] |
Prorocentrum minimum | Dinoflagellata | Aroclor 1016 | 1.39–1.61 | [34] |
Prorocentrum minimum | Dinoflagellata | BPA | 0.0074–0.0086 | [34] |
Algal Species | Taxonomy | Types of EEs | Concentration of EEs | Effects | References |
---|---|---|---|---|---|
Cyclotella caspia | Diatom | BPA | >6 mg/L | Enlarged microalgal cells, damaged organelles, introduced abnormal substances. | [35] |
Desmodesmus subspicatus | Chlorophyta | E2 | 50 μg/L | The formation of cellular aggregates consisting of 2–4 cells was observed. | [44] |
Pseudokirchneriella subcapitata | Chlorophyta | E2 | 50 μg/L | The formation of cellular aggregates consisting of 2–4 cells was observed. | [44] |
Algal Species | Types of EEs | Concentration of EEs | Effects | References |
---|---|---|---|---|
Microcystis aeruginosa PCC7820 | NP | 0.05–0.50 mg/L | The toxin content in algal cells increased significantly. | [74] |
M. aeruginosa 562 | NP | 0.05–0.5 mg/L | The toxin content in algal cells is only 10% higher than that of the control group. | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Chen, W.; Zhang, C.; Wang, Y.; Chen, G. The Toxicological Effects, Toxin-Producing Performance, and Molecular Mechanism of Marine Microalgae in Response to Environmental Estrogens: A Review. Water 2025, 17, 1922. https://doi.org/10.3390/w17131922
Guo L, Chen W, Zhang C, Wang Y, Chen G. The Toxicological Effects, Toxin-Producing Performance, and Molecular Mechanism of Marine Microalgae in Response to Environmental Estrogens: A Review. Water. 2025; 17(13):1922. https://doi.org/10.3390/w17131922
Chicago/Turabian StyleGuo, Long, Wenqing Chen, Chunyun Zhang, Yuanyuan Wang, and Guofu Chen. 2025. "The Toxicological Effects, Toxin-Producing Performance, and Molecular Mechanism of Marine Microalgae in Response to Environmental Estrogens: A Review" Water 17, no. 13: 1922. https://doi.org/10.3390/w17131922
APA StyleGuo, L., Chen, W., Zhang, C., Wang, Y., & Chen, G. (2025). The Toxicological Effects, Toxin-Producing Performance, and Molecular Mechanism of Marine Microalgae in Response to Environmental Estrogens: A Review. Water, 17(13), 1922. https://doi.org/10.3390/w17131922