Modeling and Optimization of MXene/PVC Membranes for Enhanced Water Treatment Performance
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Membrane Manufacturing
3.2. Membrane Performance
3.3. Optimization and Modeling
4. Discussion
4.1. Evaluation of MMMs Filtration Cross-Flow
4.2. ANOVA Results
4.3. Process Optimization
- (i)
- Lump the two criteria by defining a weighted sum of the two objectives (relation 7) and the maximization of this lumped function.
- (ii)
- The Pareto-based approach method aims to find a set of Pareto optimal solutions rather than a single optimal solution.
4.4. Response Surface Analysis
4.5. Pareto Front Building as Multi-Objective Optimization Technique
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Kumar, A.; Cabral-Pinto, M.M.S.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [PubMed]
- Förstner, U.; Wittmann, G.T. Metal Pollution in the Aquatic Environment, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Yuan, H.; He, Z. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review. Bioresour. Technol. 2015, 195, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Guria, C. Progress in the modification of polyvinyl chloride (PVC) membranes: A performance review for wastewater treatment. J. Water Proc. Eng. 2022, 45, 102466. [Google Scholar] [CrossRef]
- El Batouti, M.; Alharby, N.F.; Elewa, M.M. Review of new approaches for fouling mitigation in membrane separation processes in water treatment applications. Separations 2021, 9, 1. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Abdulkarim, A.A.; Ooi, B.S.; Ismail, S. Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem. Eng. J. 2013, 223, 246–267. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef] [PubMed]
- Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J.M. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 2010, 95, 2126–2146. [Google Scholar] [CrossRef]
- Zadehnazari, A. Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications. Polym.-Plast. Technol. Mater. 2023, 62, 655–700. [Google Scholar] [CrossRef]
- Vengatesan, M.R.; Mittal, V. Surface modification of nanomaterials for application in polymer nanocomposites: An overview. In Surface Modification of Nanoparticle and Natural Fiber Fillers; Mittal, V., Ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–28. [Google Scholar] [CrossRef]
- Hong, J.; He, Y. Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination 2012, 302, 71–79. [Google Scholar] [CrossRef]
- Jaid, G.M.; AbdulRazak, A.A.; Meskher, H.; Al-Saadi, S.; Alsalhy, Q.F. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs) in mixed matrix membranes. Mater. Today Sustain. 2024, 25, 100672. [Google Scholar] [CrossRef]
- Jullok, N.; Van Hooghten, R.; Luis, P.; Volodin, A.; Van Haesendonck, C.; Vermant, J.; Van der Bruggen, B. Effect of silica nanoparticles in mixed matrix membranes for pervaporation dehydration of acetic acid aqueous solution: Plant-inspired dewatering systems. J. Clean. Prod. 2016, 112, 4879–4889. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, Z.; Dai, Y.; Mu, P.; Li, J. Two-dimensional nanomaterial Mxenes for efficient gas separation: A review. Nanoscale 2023, 15, 4170–4194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Guo, X.; Solomon, B.; Sharifpur, M.; Zhang, L.Z. A hydrophobic-hydrophilic Mxene/PVDF composite hollow fiber membrane with enhanced antifouling properties for seawater desalination. J. Membr. Sci. 2022, 644, 120146. [Google Scholar] [CrossRef]
- Satishkumar, P.; Isloor, A.M.; Farnood, R. High performance 2D molybdenum Mxene polyphenylsulfone membranes for boosting water flux and efficient removal of humic acid, antibiotic and dyes from wastewater. Chem. Eng. J. 2025, 512, 161920. [Google Scholar] [CrossRef]
- AlHadithy, Z.E.; AbdulRazak, A.A.; Al-Ghaban, A.M.H.A.; Alsalhy, Q.F.; Meskher, H.; Al-Juboori, R.A.; Katibi, K.K.; Lawal, D.U. Advancements in Water Treatment with Mxene-Enhanced Membranes: A Review of Current Progress and Future Directions. Water Air Soil Pollut. 2024, 235, 809. [Google Scholar] [CrossRef]
- Abood, T.; Shabeeb, K.; Alzubaydi, A.; Goh, P.; Ismail, A.; Zrelli, A.; Alsalhy, Q. Effect of Mxene Ti3C2 on the PVDF ultrafiltration membrane properties and performance. Eng. Technol. J. 2024, 42, 456. [Google Scholar] [CrossRef]
- Abbas, H.A.; Abbas, K.K.; Al-Ghaban, A.M. Mxene (Ti C Tx) based nanosheet photocatalysts for water remediation: Challenges and recent developments. Eng. Technol. J. 2024, 42, 708–721. [Google Scholar] [CrossRef]
- Vinh-Thang, H.; Kaliaguine, S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 2013, 113, 4980–5028. [Google Scholar] [CrossRef] [PubMed]
- Ghadhban, M.Y.; Rashid, K.T.; Abdulrazak, A.A.; Meskher, H.; Benguerba, Y.; Al-Sarraj, E.A.Y.; Alsalhya, Q.F. Optimal operational conditions of PLA/PBAT mixed matrix membrane for the treatment of oily wastewater. Eng. Technol. J. 2024, 42, 1179–1192. [Google Scholar] [CrossRef]
- Rajewski, J.; Dobrzyńska-Inger, A. Application of response surface methodology (RSM) for the optimization of chromium (III) synergistic extraction by supported liquid membrane. Membranes 2021, 11, 854. [Google Scholar] [CrossRef] [PubMed]
- Inger, M.; Dobrzyńska-Inger, A.; Rajewski, J.; Wilk, M. The use of response surface methodology in ammonia oxidation reaction study. J. Chem. 2019, 2019, 2641315. [Google Scholar] [CrossRef]
- Shakor, Z.M.; AbdulRazak, A.A.; Shuhaib, A.A. Optimization of process variables for hydrogenation of cinnamaldehyde to cinnamyl alcohol over a Pt/SiO2 catalyst using response surface methodology. Chem. Eng. Comm. 2022, 209, 827–843. [Google Scholar] [CrossRef]
- Gupta, A.; Balomajumder, C. Statistical optimization of process parameters for the simultaneous adsorption of Cr(VI) and phenol onto Fe-treated tea waste biomass. Appl. Water Sci. 2017, 7, 4361–4364. [Google Scholar] [CrossRef]
- AlHadithy, Z.E.; AbdulRazak, A.A.; Al-Ghaban, A.M.A.; Alsalhy, Q.F.; Meskher, H.; Al-Juboori, R.A. Synthesis, characterization, and performance of MXene-modified PVC membranes for organic and inorganic separation. Chem. Eng. Res. Des. 2024, 212, 25–42. [Google Scholar] [CrossRef]
- Kelidari, H.R.; Saeedi, M.; Akbari, J.; Morteza-Semnani, K.; Valizadeh, H.; Maniruzzaman, M.; Farmoudech, A.; Nokhodchi, A. Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability. AAPS PharmSciTech. 2017, 18, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Ihsanullah, I. Potential of MXenes in water desalination: Current status and perspectives. Nano-Micro Lett. 2020, 12, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Khatami, M.; Iravani, S. MXenes and MXene-based materials for the removal of water pollutants: Challenges and opportunities. Comments Inorg. Chem. 2021, 41, 213–248. [Google Scholar] [CrossRef]
- Homem, N.C.; Beluci, N.D.C.L.; Amorim, S.; Reis, R.; Vieira, A.M.S.; Vieira, M.F.; Bergamasco, R.; Amorim, M.T.P. Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Appl. Surf. Sci. 2019, 486, 499–507. [Google Scholar] [CrossRef]
- Chu, Z.; Chen, K.; Xiao, C.; Ling, H.; Hu, Z. Performance improvement of polyethersulfone ultrafiltration membrane containing variform inorganic nano-additives. Polymer 2020, 188, 122160. [Google Scholar] [CrossRef]
- Muhmood, T.; Xia, M.; Lei, W.; Wang, F. Erection of duct-like graphitic carbon nitride with enhanced photocatalytic activity for ACB photodegradation. J. Phys. D Appl. Phys. 2018, 51, 065501. [Google Scholar] [CrossRef]
- Veza, I.; Spraggon, M.; Fattah, I.M.R.; Idris, M. Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition. Results Eng. 2023, 18, 101213. [Google Scholar] [CrossRef]
- Guo, Y.; Xue, Q.; Zhang, H.; Wang, N.; Chang, S.; Wang, H.; Pang, H.; Chen, H. Treatment of real benzene dye intermediates wastewater by the Fenton method: Characteristics and multi-response optimization. RSC Adv. 2018, 8, 80–90. [Google Scholar] [CrossRef]
- Hassan, S.; Archin, S.; Asadpour, G. Optimization of Process Parameters by Response Surface Methodology for Methylene Blue Removal utilizing Cellulose Dusts. Civ. Eng. J. 2018, 4, 620–634. [Google Scholar] [CrossRef]
- Long, Q.; Zhao, S.; Chen, J.; Zhang, Z.; Qi, G.; Liu, Z.Q. Self-assembly enabled nano-intercalation for stable high-performance MXene membranes. J. Membr.Sci. 2021, 635, 119464. [Google Scholar] [CrossRef]
- Mahmood, A.; Muhmood, T.; Ahmad, F. Carbon nanotubes heterojunction with graphene like carbon nitride for the enhancement of electrochemical and photocatalytic activity. Mater. Chem. Phys. 2022, 278, 125640. [Google Scholar] [CrossRef]
- Alpatova, A.; Verbych, S.; Bryk, M.; Nigmatullin, R.; Hilal, N. Ultrafiltration of water containing natural organic matter: Heavy metal removing in the hybrid complexation–ultrafiltration process. Sep. Purif. Technol. 2004, 40, 155–162. [Google Scholar] [CrossRef]
- Arthanareeswaran, G.; Thanikaivelan, P.; Jaya, N.; Mohan, D.; Raajenthiren, M. Removal of chromium from aqueous solution using cellulose acetate and sulfonated poly (ether ether ketone) blend ultrafiltration membranes. J. Hazard. Mat. 2007, 139, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Petrov, S.; Nenov, V. Removal and recovery of copper from wastewater by a complexation-ultrafiltration process. Desalination 2004, 162, 201–209. [Google Scholar] [CrossRef]
Membrane Code Weight | N0 | N1 | N2 | N3 |
---|---|---|---|---|
PVC % | 14 | 14 | 14 | 14 |
DMAc | 86 | 86 | 86 | 86 |
MXene (g) | 0 | 0.1 | 0.4 | 0.5 |
Parameters | Code | Unit | Low Level | High Level |
---|---|---|---|---|
Pb concentration | A | ppm | 2 | 10 |
Pressure | B | bar | 1 | 3 |
pH | C | − | 4 | 10 |
MXene content | D | g | 0 | 0.4 |
Run Number | A: Pb Concentration (ppm) | B: Pressure (bar) | C: pH (−) | D: MXene Content (g) | Flux (L·m–2·h–1) | Rejection (%) |
---|---|---|---|---|---|---|
1 | 6 | 2 | 10 | 0.2 | 94.02 | 82.3 |
2 | 10 | 1 | 4 | 0 | 47.25 | 61.6 |
3 | 2 | 3 | 10 | 0 | 103.67 | 65.4 |
4 | 10 | 3 | 10 | 0.4 | 282 | 62.9 |
5 | 10 | 1 | 4 | 0.4 | 161.72 | 72.8 |
6 | 2 | 1 | 10 | 0 | 53.05 | 69.2 |
7 | 6 | 2 | 7 | 0.2 | 94.54 | 89.4 |
8 | 2 | 3 | 4 | 0.4 | 260.05 | 93.76 |
9 | 6 | 2 | 7 | 0.2 | 94.54 | 89.4 |
10 | 6 | 2 | 7 | 0.2 | 94.54 | 89.4 |
11 | 10 | 2 | 7 | 0.2 | 92.33 | 82.2 |
12 | 6 | 2 | 4 | 0.2 | 91 | 87.4 |
13 | 6 | 2 | 7 | 0.2 | 94.54 | 89.4 |
14 | 6 | 2 | 7 | 0.2 | 94.54 | 89.4 |
15 | 2 | 1 | 4 | 0.4 | 163.33 | 95.2 |
16 | 10 | 3 | 4 | 0 | 87.407 | 60 |
17 | 2 | 3 | 10 | 0.4 | 282.83 | 90.4 |
18 | 10 | 1 | 10 | 0 | 52.55 | 58.8 |
19 | 6 | 3 | 7 | 0.2 | 120.47 | 87.4 |
20 | 6 | 2 | 7 | 0 | 78.67 | 72 |
21 | 6 | 2 | 7 | 0.2 | 94.54 | 89.4 |
22 | 10 | 3 | 4 | 0.4 | 260 | 68.8 |
23 | 2 | 2 | 7 | 0.2 | 97.72 | 92 |
24 | 6 | 2 | 7 | 0.4 | 232.62 | 96.1 |
25 | 2 | 1 | 10 | 0.4 | 171.47 | 92.8 |
26 | 2 | 3 | 4 | 0 | 88.38 | 70.4 |
27 | 10 | 1 | 10 | 0.4 | 170.42 | 66.4 |
28 | 6 | 1 | 7 | 0.2 | 73.85 | 92.8 |
29 | 10 | 3 | 10 | 0 | 100.66 | 55.7 |
30 | 2 | 1 | 4 | 0 | 47.55 | 72.8 |
Source | Sum of Squares | DF | Mean Square | p-Value | F-Value |
---|---|---|---|---|---|
Model | 1.44 × 105 | 14 | 10,335.3 | <0.0001 | 331.3 |
A-Con. | 10.4 | 1 | 10.4 | 0.571 | 0.3 |
B-Press | 23,060.7 | 1 | 23,060.7 | <0.0001 | 739.4 |
C-pH | 600.6 | 1 | 600.6 | 0.0005 | 19.2 |
D-Additives | 97,571.9 | 1 | 97,571.9 | <0.0001 | 3128.4 |
AB | 0.1 | 1 | 0.1 | 0.9508 | 3.94 × 10−3 |
AC | 0.3 | 1 | 0.3 | 0.9139 | 0.01 |
AD | 0.09 | 1 | 0.09 | 0.9564 | 3.09 × 10−3 |
BC | 130.4 | 1 | 130.4 | 0.0588 | 4.1 |
BD | 3546.8 | 1 | 3546.8 | <0.0001 | 113.7 |
CD | 31.0 | 1 | 31.0 | 0.334 | 0.9 |
A2 | 17.3 | 1 | 17.36 | 0.467 | 0.56 |
B2 | 0.5 | 1 | 0.53 | 0.897 | 0.01 |
C2 | 67.4 | 1 | 67.4 | 0.162 | 2.1 |
D2 | 8725.3 | 1 | 8725.3 | <0.0001 | 279.7 |
Residual | 467.8 | 15 | |||
Lack of Fit | 467.83 | 10 | |||
Pure Error | 5 | ||||
Cor Total | 1.45 × 105 | 29 | |||
Model | Std. Dev. | R-Squared | Pred. R-Squared | Adj R-Squared | |
Summary | 5.58 | 0.9968 | 0.9862 | 0.9938 |
Source | Sum of Squares | DF | Mean Square | p-Value | F-Value |
---|---|---|---|---|---|
Model | 4797.6 | 14 | 342.6 | <0.0001 | 68 |
A-Con. | 1296.4 | 1 | 1296.4 | <0.0001 | 257.2 |
B-Press | 42.4 | 1 | 42.4 | 0.0109 | 8.4 |
C-pH | 83.8 | 1 | 83.8 | 0.0010 | 16.6 |
D-Additives | 1304.9 | 1 | 1304.9 | <0.0001 | 258.9 |
AB | 0.2 | 1 | 0.2 | 0.813 | 0.05 |
AC | 1.5 | 1 | 1.5 | 0.582 | 0.3 |
AD | 221.7 | 1 | 221.7 | <0.0001 | 44 |
BC | 0.7 | 1 | 0.7 | 0.713 | 0.1 |
BD | 0.01 | 1 | 0.01 | 0.961 | 2.40 × 10−3 |
CD | 0.3 | 1 | 0.3 | 0.796 | 0.06 |
A2 | 38.7 | 1 | 38.7 | 0.014 | 7.7 |
B2 | 1.9 | 1 | 1.9 | 0.542 | 0.3 |
C2 | 97 | 1 | 97 | 0.0005 | 19.2 |
D2 | 124 | 1 | 124 | 0.0002 | 24.6 |
Residual | 75.5 | 15 | 5 | ||
Lack of Fit | 75.5 | 10 | 7.5 | ||
Pure Error | 5 | ||||
Cor Total | 4873.2 | 29 | |||
Model | Std. Dev. | R-Squared | Pred. R-Squared | Adj R-Squared | |
Summary | 2.24 | 0.9845 | 0.9303 | 0.9700 |
A, ppm | B, bar | pH | D, g | Flux, L·m–2·h–1 | Rejection, % | Comments |
---|---|---|---|---|---|---|
2.0442 | 2.92 | 6.74 | 0.3995 | 270.7711 | 98.05 | A decrease of less than 3% in flux |
3.3719 | 2.99 | 9.10 | 0.3998 | 281.6565 | 91.38 | Gain in flux, 5% loss in rejection |
2.0174 | 2.99 | 7.89 | 0.3998 | 278.4888 | 96.61 | Optimal point for criteria equally important |
2.0152 | 2.49 | 6.61 | 0.3991 | 248.2754 | 99.29 | Very high rejection but unacceptably low flux value (in agreement with Figure 4b,c) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhadithy, Z.E.; Aljanabi, A.A.A.; AbdulRazak, A.A.; Alsalhy, Q.F.; Isopescu, R.; Dinculescu, D.; Gîjiu, C.L. Modeling and Optimization of MXene/PVC Membranes for Enhanced Water Treatment Performance. Materials 2025, 18, 3494. https://doi.org/10.3390/ma18153494
Alhadithy ZE, Aljanabi AAA, AbdulRazak AA, Alsalhy QF, Isopescu R, Dinculescu D, Gîjiu CL. Modeling and Optimization of MXene/PVC Membranes for Enhanced Water Treatment Performance. Materials. 2025; 18(15):3494. https://doi.org/10.3390/ma18153494
Chicago/Turabian StyleAlhadithy, Zainab E., Ali A. Abbas Aljanabi, Adnan A. AbdulRazak, Qusay F. Alsalhy, Raluca Isopescu, Daniel Dinculescu, and Cristiana Luminița Gîjiu. 2025. "Modeling and Optimization of MXene/PVC Membranes for Enhanced Water Treatment Performance" Materials 18, no. 15: 3494. https://doi.org/10.3390/ma18153494
APA StyleAlhadithy, Z. E., Aljanabi, A. A. A., AbdulRazak, A. A., Alsalhy, Q. F., Isopescu, R., Dinculescu, D., & Gîjiu, C. L. (2025). Modeling and Optimization of MXene/PVC Membranes for Enhanced Water Treatment Performance. Materials, 18(15), 3494. https://doi.org/10.3390/ma18153494