Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (425)

Search Parameters:
Keywords = membrane elasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7103 KB  
Article
Fluid Pressure Sensing Strategy Suitable for Swallowing Soft Gripper
by Mingge Li, Wenxi Zhang, Quan Liu and Zhongjun Yin
Sensors 2026, 26(3), 960; https://doi.org/10.3390/s26030960 - 2 Feb 2026
Viewed by 31
Abstract
Soft grippers exhibit excellent adaptability in handling objects of various shapes. However, due to the large deformation and high compliance of their constituent materials, the integration of sensing capabilities has long been a major research challenge. Based on the swallowing-type soft gripper proposed [...] Read more.
Soft grippers exhibit excellent adaptability in handling objects of various shapes. However, due to the large deformation and high compliance of their constituent materials, the integration of sensing capabilities has long been a major research challenge. Based on the swallowing-type soft gripper proposed in previous work, this study explores the gripper’s capability to perceive object information by leveraging the characteristic that the sealed cavity undergoes volume change due to compression by the object during swallowing, thereby altering the pressure of the internal fluid medium. By establishing the geometric configuration of the sealed cavity composed of elastic membranes, the volume-pressure variation sensing model during the object swallowing process was derived. The performance of this sensing method was tested, and the application of the fluid pressure sensing strategy in closed-loop control was demonstrated, including the classification of objects by shape and sorting by size. This work provides a solution for the object shape-adaptive swallowing-type soft gripper to achieve sensory grasping functionality. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

18 pages, 3942 KB  
Article
Preparation of Uniform PEG-PLLA Microspheres via Membrane Emulsification for Soft Tissue Filling Applications
by Siqi Zhang, Yuan Gao, Danyang Wang, Yongjie Chi, Fang Wu, Lianyan Wang and Hailan Jin
J. Funct. Biomater. 2026, 17(2), 71; https://doi.org/10.3390/jfb17020071 - 30 Jan 2026
Viewed by 207
Abstract
Skin aging could lead to dermal collagen loss and elastic fiber degradation, ultimately manifesting as skin laxity. We aimed to counteract this by using poly-L-lactic acid (PLLA) microsphere (MS)-based fillers to facilitate long-term volume restoration through collagen regeneration. However, conventional MSs exhibit limitations [...] Read more.
Skin aging could lead to dermal collagen loss and elastic fiber degradation, ultimately manifesting as skin laxity. We aimed to counteract this by using poly-L-lactic acid (PLLA) microsphere (MS)-based fillers to facilitate long-term volume restoration through collagen regeneration. However, conventional MSs exhibit limitations such as broad size distribution and surface irregularities, which are frequently associated with significant adverse reactions. This study employed shirasu porous glass (SPG) membrane emulsification to fabricate uniform and well-shaped polyethylene glycol-block-poly (L-lactic acid) (PEG-PLLA) MSs. A single-factor experiment was employed to optimize the parameters. The optimal preparation conditions for PEG-PLLA MSs were as follows: PEG-PLLA concentration of 40 mg/mL, polyvinyl alcohol (PVA) concentration of 0.5%, and magnetic stirring speed of 200 rpm. Under the optimal conditions, the average particle size of PEG-PLLA MSs was 58.982 μm, and the span value (SPAN) was 1.367. In addition, a cytotoxicity assay was performed, and the results revealed no significant toxicity of the MSs toward L929 mouse fibroblasts at concentrations below 500 μg/mL. Furthermore, PEG-PLLA MSs significantly enhanced the production of key extracellular matrix (ECM) components—type I collagen (Col-I), type III collagen (Col-III), and hyaluronic acid (HA)—while simultaneously alleviating cellular oxidative stress responses. This work offers a reliable and reproducible fabrication strategy for developing biocompatible MS fillers with controllable particle sizes. Full article
Show Figures

Figure 1

21 pages, 15015 KB  
Article
Irf5 Knockdown in Bone Marrow-Derived Macrophages Favors M1-to-M2 Transition
by Elizaveta Petrova, Ekaterina Sherstyukova, Snezhanna Kandrashina, Vladimir Inozemtsev, Alexandra Tsitrina, Viktoriya Fedorova, Mikhail Shvedov, Artem Kuzovlev, Maxim Dokukin, Yuri Kotelevtsev, Arsen Mikaelyan and Viktoria Sergunova
Cells 2026, 15(3), 238; https://doi.org/10.3390/cells15030238 - 26 Jan 2026
Viewed by 241
Abstract
The transcription factor IRF5 maintains macrophages in the pro-inflammatory M1 state. We assessed the effects of siRNA-mediated knockdown of Irf5 on murine bone marrow-derived macrophages (BMDM) in M0, M1 and M2 states. Knockdown of Irf5 in M1 macrophages made them phenotypically similar to [...] Read more.
The transcription factor IRF5 maintains macrophages in the pro-inflammatory M1 state. We assessed the effects of siRNA-mediated knockdown of Irf5 on murine bone marrow-derived macrophages (BMDM) in M0, M1 and M2 states. Knockdown of Irf5 in M1 macrophages made them phenotypically similar to M2 macrophages, which was reflected in the decreased expression of the M1 marker iNOS, increased expression of the M2 marker CD206, increased mitochondrial content and respective morphological changes. Interestingly, the M2 phenotype was also affected by the reduction in Irf5. Using atomic force microscopy (AFM), we showed that Irf5 knockdown increases plasma membrane roughness, particularly in M2 macrophages. AFM-based stiffness measurements indicated that Irf5 knockdown altered macrophage elasticity, potentially influencing their functional behavior. Our data suggest a complex role of IRF5 in macrophage polarization, supporting its dual role as a transcriptional activator and repressor both in M1 and M2 states, and highlight the importance of IRF5 in the maintenance of metabolic and functional properties of macrophages. Full article
(This article belongs to the Special Issue Advances in Scanning Probe Microscopy in Cell Biology)
Show Figures

Figure 1

16 pages, 3370 KB  
Article
Numerical Investigation of Dynamic Wrinkling Behaviors in Stiff-Film/PDMS-Substrate Structure
by Haohao Bi, Wenjie Li, Liuyun Wang and Bo Wang
Polymers 2026, 18(2), 292; https://doi.org/10.3390/polym18020292 - 21 Jan 2026
Viewed by 143
Abstract
Thin film/substrate structures based on the principle of buckling mechanics exhibit both excellent stretchability and mechanical stability, and they have been recognized as a critical configuration in the design of flexible electronic devices. During application, flexible electronic devices are usually subjected to complex [...] Read more.
Thin film/substrate structures based on the principle of buckling mechanics exhibit both excellent stretchability and mechanical stability, and they have been recognized as a critical configuration in the design of flexible electronic devices. During application, flexible electronic devices are usually subjected to complex dynamic environments. Therefore, it is of great significance to investigate the dynamic behavior of thin film/substrate structures for the design of flexible electronic devices. The bending energy, membrane energy, and kinetic energy of the thin film and the elastic energy of the substrate were calculated. On this basis, the dynamic equation of the thin film/substrate structure with a checkerboard wrinkled pattern was derived by applying the principle of minimum energy combined with the Lagrangian function. Numerical simulations were conducted on the system to analyze the effect of pre-strain and the Young’s modulus of substrate on the system’s potential energy function, simulate the temporal response of the system’s dynamic behavior, and investigate the influences of pre-strain and the Young’s modulus of substrate on system stability and the chaos critical value. Theoretical support is expected to be provided for the design of two-dimensional (2D) thin film/substrate structures through this research. Full article
Show Figures

Graphical abstract

15 pages, 2558 KB  
Article
Influence of Silver Nanoparticles on Liposomal Membrane Properties Relevant in Photothermal Therapy
by Maria Lyudmilova, Lyubomir Stoychev, Denitsa Yancheva, Stoyanka Nikolova, Mina Todorova, Charilaos Xenodochidis, Kamelia Hristova-Panusheva, Natalia Krasteva and Julia Genova
Appl. Sci. 2026, 16(1), 220; https://doi.org/10.3390/app16010220 - 24 Dec 2025
Viewed by 374
Abstract
Silver nanoparticles (AgNPs) are promising agents for nanomedicine but their interactions with lipid membranes, which are a key interfaces for drug delivery, require a deeper understanding. This study investigates the influence of fructose-capped AgNPs on the physicochemical properties of SOPC-based liposomal bilayers, with [...] Read more.
Silver nanoparticles (AgNPs) are promising agents for nanomedicine but their interactions with lipid membranes, which are a key interfaces for drug delivery, require a deeper understanding. This study investigates the influence of fructose-capped AgNPs on the physicochemical properties of SOPC-based liposomal bilayers, with potential implications for drug delivery and photothermal therapy. We employed a multitechnique approach, including infrared (IR) spectroscopy, differential scanning calorimetry (DSC), thermally induced shape fluctuation analysis, and laser irradiation at 343, 515, and 1030 nm. Our results show that AgNPs incorporated into the bilayer cause measurable perturbations: DSC reveals a decrease in the main phase transition enthalpy (from 0.280 to 0.234 J/g) and temperature (from 2.80 to 3.41 °C), while shape fluctuation analysis indicates a reduction in bending modulus (from 1.18 × 10−19 J to 0.93 × 10−19 J), confirming increased membrane fluidity. FTIR confirms interactions of fructose-capped nanoparticles and the lipid’s carbonyl and phosphate groups. Furthermore, the AgNPs-liposomes exhibit a strong, wavelength-dependent photothermal response with a temperature increase of ≈22 °C under 515 nm laser irradiation, compared to only 3–5 °C at 1030 nm. We conclude that fructose-capped AgNPs moderately fluidify lipid bilayers while enabling efficient, controllable photothermal capability, making them excellent candidates for the eventual design of advanced liposomal systems for combined therapy and diagnostics. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

18 pages, 4539 KB  
Article
A Combined FEM-CFD Method for Investigating Transport Properties of Compressed Porous Electrodes in PEMFC: A Microstructure Perspective
by Zhuo Zhang, Ruiyuan Zhang, Xiuli Zhang, Zhiyi Tang, Zixing Wang, Yang Wang, Yanjun Dai, Li Chen and Wenquan Tao
Energies 2026, 19(1), 99; https://doi.org/10.3390/en19010099 - 24 Dec 2025
Viewed by 251
Abstract
Hydrogen energy is vital for a clean, low-carbon society, and proton exchange membrane fuel cells (PEMFCs) represent a core technology for the conversion of hydrogen chemical energy into electrical energy. When PEMFC single cells are stacked under assembly force for high power output, [...] Read more.
Hydrogen energy is vital for a clean, low-carbon society, and proton exchange membrane fuel cells (PEMFCs) represent a core technology for the conversion of hydrogen chemical energy into electrical energy. When PEMFC single cells are stacked under assembly force for high power output, their porous electrodes (gas diffusion layers, GDLs; catalyst layers, CLs) undergo compressive deformation, altering internal transport processes and affecting cell performance. However, existing microscale studies on PEMFC porous electrodes insufficiently consider compression (especially in CLs) and have limitations in obtaining compressed microstructures. This study proposes a combined framework from a microstructure perspective. It integrates the finite element method (FEM) with computational fluid dynamics (CFD). It reconstructs microstructures of GDL, CL, and GDL-bipolar plate (BP) interface. FEM simulates elastic compressive deformation, and CFD calculates transport properties (solid zone: heat/charge conduction via Laplace equation; fluid zone: gas diffusion/liquid permeation via Fick’s/Darcy’s law). Validation shows simulated stress–strain curves and transport coefficients match experimental data. Under 2.5 MPa, GDL’s gas diffusivity drops 16.5%, permeability 58.8%, while conductivity rises 2.9-fold; CL compaction increases gas resistance but facilitates electron/proton conduction. This framework effectively investigates compression-induced transport property changes in PEMFC porous electrodes. Full article
Show Figures

Figure 1

26 pages, 2532 KB  
Review
Engineering Polyampholytes for Energy Storage Devices: Conductivity, Selectivity, and Durability
by Madina Mussalimova, Nargiz Gizatullina, Gaukhargul Yelemessova, Anel Taubatyrova, Zhanserik Shynykul and Gaukhar Toleutay
Polymers 2026, 18(1), 18; https://doi.org/10.3390/polym18010018 - 21 Dec 2025
Viewed by 460
Abstract
Polyampholytes combine cationic and anionic groups in one macromolecular platform and are emerging as versatile components for energy storage and conversion. This review synthesizes how their charge balance, hydration, and architecture can be engineered to address ionic transport, interfacial stability, and safety across [...] Read more.
Polyampholytes combine cationic and anionic groups in one macromolecular platform and are emerging as versatile components for energy storage and conversion. This review synthesizes how their charge balance, hydration, and architecture can be engineered to address ionic transport, interfacial stability, and safety across batteries, supercapacitors, solar cells, and fuel cells. We classify annealed, quenched, and zwitterionic systems, outline molecular design strategies that tune charge ratio, distribution, and crosslinking, and compare device roles as gel or solid electrolytes, eutectogels, ionogels, binders, separator coatings, and interlayers. Comparative tables summarize ionic conductivity, cation transference number, electrochemical window, mechanical robustness, and temperature tolerance. Across Li and Zn batteries, polyampholytes promote ion dissociation, homogenize interfacial fields, suppress dendrites, and stabilize interphases. In supercapacitors, antifreeze hydrogels and poly(ionic liquid) networks maintain conductivity and elasticity under strain and at subzero temperature. In solar cells, zwitterionic interlayers improve work function alignment and charge extraction, while ordered networks in fuel cell membranes enable selective ion transport with reduced crossover. Design rules emerge that couple charge neutrality with controlled hydration and dynamic crosslinking to balance conductivity and mechanics. Key gaps include brittleness, ion pairing with multivalent salts, and scale-up. Opportunities include soft segment copolymerization, ionic liquid and DES plasticization, side-chain engineering, and operando studies to guide translation. Full article
(This article belongs to the Special Issue Functional Gel and Their Multipurpose Applications)
Show Figures

Figure 1

25 pages, 4446 KB  
Article
Experimental Analysis of Pressure Sensor Membranes Intended for Vacuum Arc-Extinguishing Chambers in Medium-Voltage Switching Devices
by Paweł Węgierek, Damian Kostyła, Paweł Okal and Czesław Kozak
Materials 2025, 18(24), 5682; https://doi.org/10.3390/ma18245682 - 18 Dec 2025
Viewed by 390
Abstract
This article presents a comparison of empirical and simulation studies and the parameters declared by the membrane manufacturer. The analysis concludes that these values differ at each stage. Therefore, a numerical and simulation analysis of an optimal flat membrane was undertaken, which will [...] Read more.
This article presents a comparison of empirical and simulation studies and the parameters declared by the membrane manufacturer. The analysis concludes that these values differ at each stage. Therefore, a numerical and simulation analysis of an optimal flat membrane was undertaken, which will successfully perform measurement functions across the full pressure range without causing inelastic deformations based on a membrane made of 316 L stainless steel with the following mechanical parameters: Young’s modulus E=2×1011 Pa, Poisson’s ratio ν=0.28, density ρ=7980 kg/m3, and yield strength 2.8 × 108 Pa. A diaphragm with an outer diameter of 25.4 mm, an inner diameter of 2.22×104 m, and a thickness of t = 5.08×105 m was designed for a pressure sensor in vacuum extinguishing chambers of medium-voltage devices, with a pressure difference Δp from 7 × 10−4 Pa to 1.013 × 105 Pa. Finite element method (FEM) simulations in the COMSOL Multiphysics environment showed maximum von Mises reduced stresses 1.96 × 108 Pa below the yield strength, confirming operation in the linear-elastic range. The central deflection, described analytically by the equation y=3(1ν2)Pr416Et3, increased fivefold with an increase in diameter to 3.81×102 m (active area A = 1.14 × 10−3 m2 compared to 5.07 × 10−4 m2), achieving a metrological sensitivity of 9.1 × 10−10 m/Pa. Experimental studies integrated with Bragg FBG and epoxy adhesive (E = 5 × 109 Pa, tensile strength 4.2×107 Pa) revealed a significant deviation from the manufacturer’s catalog data (e.g., deflection of 2.0×105 m at 6.89×102 Pa), resulting from uneven bonding and a lack of coaxiality. Corrugated membranes with t = 2.0×105 m exceeded plasticity, while the optimized configuration of a smooth membrane with rounded adhesive edges (R=1×104 m) enabled precise pressure monitoring below 101 Pa, despite technological restrictions on assembly and miniaturization. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

29 pages, 7577 KB  
Article
Mechanical Response and Parameter Sensitivity of Flexible Membrane Sealed Caverns for Compressed Air Energy Storage
by Lihua Hu, Jihan Liu, Zhixu Guo, Xin Liang, Liyuan Yu, Wei Li, Chengguo Hu, Yun Wu, Shihao Guo, Xuanyuan Liu and Qiming Zhou
Materials 2025, 18(24), 5657; https://doi.org/10.3390/ma18245657 - 17 Dec 2025
Viewed by 344
Abstract
Implementing compressed air energy storage (CAES) in lined caverns provides a promising technical solution for large-scale energy storage, and the reasonable selection of sealing materials is essential for its success. Flexible membrane materials including sprayable polymers, rubber sheets, and airbags have recently been [...] Read more.
Implementing compressed air energy storage (CAES) in lined caverns provides a promising technical solution for large-scale energy storage, and the reasonable selection of sealing materials is essential for its success. Flexible membrane materials including sprayable polymers, rubber sheets, and airbags have recently been considered economical and practical sealing options. However, research on flexible membrane sealed CAES caverns remains limited, particularly regarding their mechanical response and parameter sensitivities. To address this gap, an elastic multilayer thick-walled cylinder model verified by physical model tests is proposed. Analytical solutions for the stress and displacement fields of the surrounding rock and concrete lining are derived, and a calculation scheme is designed to evaluate the influence and sensitivity of key parameters. Results indicate that under high internal pressure, both the lining and surrounding rock undergo radial compression without yielding, whereas the lining experiences adverse tensile stresses in the hoop direction. The maximum hoop tensile stress reached the order of 1~3 MPa under typical CAES operating pressures, and tensile-compressive stress transformation may occur in the lining under certain parameter combinations. Sensitivity analysis further shows that internal pressure, in situ stress, surrounding rock elastic modulus, and cavern radius are the dominant factors influencing the mechanical behavior of the system, while geometric and lining parameters have secondary but non-negligible effects. The findings provide theoretical support for the stability analysis and material design of flexible membrane sealed CAES caverns and offer useful guidance for determining allowable operating pressures and selecting lining configurations. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

30 pages, 3069 KB  
Article
Anti-Aging Evaluation of Cosmetics on a Tri-Layered Chitosan Membrane: An Alternative to Animal Testing
by Rocío Guerle-Cavero and Albert Balfagón-Costa
Cosmetics 2025, 12(6), 277; https://doi.org/10.3390/cosmetics12060277 - 10 Dec 2025
Viewed by 711
Abstract
The search for alternatives to animal testing in cosmetics has encouraged the development of in vitro systems capable of evaluating formulation-driven biophysical parameters assessed on human skin. This study presents a cell-free tri-layered chitosan membrane as a material-based model for characterizing the physicochemical [...] Read more.
The search for alternatives to animal testing in cosmetics has encouraged the development of in vitro systems capable of evaluating formulation-driven biophysical parameters assessed on human skin. This study presents a cell-free tri-layered chitosan membrane as a material-based model for characterizing the physicochemical anti-aging performance of topical formulations. Three cosmetic products were incorporated either in the top layer (1L(t)) or across all layers (3L), and key parameters—including pore area, water permeation, firmness, elasticity, swelling and moisture retention—were quantified. VitCOil produced consistent effects across configurations, reducing pore area by 52–56% and decreasing water permeation by 54–61%, while increasing moisture retention by 36–38%. OilSerum showed a marked layer-dependent response, enhancing swelling by +70% in 3L and +35% in 1L(t), and increasing water permeation by 16% (3L) and 4% (1L(t)). EyeCr improved firmness and elasticity at low concentration, with stronger elastic response in the top layer (+27% in 3L; +34% in 1L(t)). Overall, this novel platform strengthens early-stage physicochemical screening by linking formulation-dependent mechanisms with directional biophysical trends observed clinically. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

20 pages, 8312 KB  
Article
Pre-Tensioned Flexible Skins for Large-Folding-Ratio UAV Wings: Theory and Tests
by Guang Yang, Lunjiang Zhao, Yuqi Li, Hong Xiao and Hongwei Guo
Aerospace 2025, 12(12), 1083; https://doi.org/10.3390/aerospace12121083 - 4 Dec 2025
Viewed by 310
Abstract
This paper proposes a hybrid rigid–flexible wing design that enables large-area folding and reconfiguration. Based on elasticity theory and fabric constitutive equations, a surface-outward mechanical model incorporating mesoscale weave structures was developed for plain-woven wing membranes. To address the degradation of the model [...] Read more.
This paper proposes a hybrid rigid–flexible wing design that enables large-area folding and reconfiguration. Based on elasticity theory and fabric constitutive equations, a surface-outward mechanical model incorporating mesoscale weave structures was developed for plain-woven wing membranes. To address the degradation of the model under low-prestress conditions, a more accurate second-order nonlinear model for the out-of-plane mechanics of wing membranes was further developed. This paper developed a dual-axis tensile fixture and, through conducting load-bearing performance experiments on wing membrane elements, verified that the improved theoretical model possesses a certain degree of predictive accuracy. A dual-axis tensile fixture was designed, and load-bearing tests on membrane elements were conducted to verify that the improved theoretical model provides reasonable predictive accuracy. To investigate how pre-tensioning regulates membrane stiffness, the variation in out-of-plane stiffness under symmetric and asymmetric prestress conditions was analysed. A prestressing strategy prioritising the principal-modulus direction is proposed, providing theoretical guidance for prestress application in wing membranes. Based on these findings, a prototype rigid–flexible composite wing with a “membrane-scaffold” structure was fabricated and tested. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 3341 KB  
Article
Facile Synthesis of Cellulose Whisker from Cotton Linter as Filler for the Polymer Electrolyte Membrane (PEM) of Fuel Cells
by Ronaldo P. Parreño, Reynaldo A. Badua, Jowin L. Rama and Apollo Victor O. Bawagan
J. Compos. Sci. 2025, 9(12), 670; https://doi.org/10.3390/jcs9120670 - 3 Dec 2025
Viewed by 532
Abstract
Hybrid membranes are promising alternatives for various applications, combining a continuous polymer phase with a dispersed filler phase to achieve synergistic functional benefits. The ideal fillers should possess well-defined structures and unique properties for multi-functionality, as well as being sourced from renewable, biodegradable [...] Read more.
Hybrid membranes are promising alternatives for various applications, combining a continuous polymer phase with a dispersed filler phase to achieve synergistic functional benefits. The ideal fillers should possess well-defined structures and unique properties for multi-functionality, as well as being sourced from renewable, biodegradable materials for sustainability purposes. This study explored the potential of using cellulose-based renewable materials as fillers for hybrid polymer electrolyte membranes (PEMs) in fuel cells. Cellulose whiskers (CWs), known for their high crystallinity and elastic modulus, were effectively synthesized via optimized sequential alkali treatment and acid hydrolysis. Subsequent functionalization with citric acid was performed to enhance their reinforcing properties and overall performance. Initial characterization using ATR-FTIR and XRD confirmed the CWs’ structural composition, high crystallinity, and the presence of reactive groups (sulfate and hydroxyl). The functionalization process introduced new carbonyl groups (C=O), which was verified by ATR-FTIR, while maintaining high hydrophilicity. Morphological analysis revealed that the crosslinked CWs created a denser and more compact microstructure within the membrane, leading to a significant enhancement in mechanical strength. The modifications to the cellulose whiskers not only improved structural integrity but also boosted the membrane’s ion exchange capacity (IEC) and proton conductivity compared to membranes with unmodified CWs. Initial experiments demonstrated CWs’ compatibility as a filler in a polysulfone (PSU) matrix, forming hybrid membranes suitable for fuel cell applications. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Graphical abstract

13 pages, 2101 KB  
Article
Quantifying the Activation Barrier for Phospholipid Monolayer Fusion Governing Lipid Droplet Coalescence
by Rodion J. Molotkovsky, Zaret G. Denieva, Ivan N. Senchikhin, Ekaterina K. Urodkova, Petr V. Konarev, Georgy S. Peters, Timur R. Galimzyanov, Rais V. Pavlov and Pavel V. Bashkirov
Int. J. Mol. Sci. 2025, 26(23), 11664; https://doi.org/10.3390/ijms262311664 - 2 Dec 2025
Viewed by 475
Abstract
Lipid droplet (LD) coalescence is a critical cellular process that reshapes lipid storage, drives metabolic disease progression, and dictates the stability of LD-mimetic drug carriers. However, the rate-limiting step—fusion of the phospholipid monolayers surrounding neutral-lipid cores—remains poorly quantified compared to bilayer fusion. Here, [...] Read more.
Lipid droplet (LD) coalescence is a critical cellular process that reshapes lipid storage, drives metabolic disease progression, and dictates the stability of LD-mimetic drug carriers. However, the rate-limiting step—fusion of the phospholipid monolayers surrounding neutral-lipid cores—remains poorly quantified compared to bilayer fusion. Here, we quantitatively determine the activation barrier for LD coalescence by tracking the kinetics in protein-free adiposome models. Using a multi-technique approach combining time-resolved dynamic light scattering and small-angle X-ray scattering, we reveal that monolayer fusion is the kinetic bottleneck. We demonstrate that lipid composition is a powerful regulator of this barrier: cone-shaped lipids (e.g., dioleoylphosphatidylethanolamine) lower the barrier and promote fusion, while phosphatidylcholine-rich monolayers enhance stability. A continuum fusion model, adapted for curved monolayers, explains these results through changes in spontaneous curvature, hydration repulsion, and stalk energetics. Our findings establish composition-dependent design rules for controlling LD dynamics in metabolic health and for engineering stable or triggerable lipid-based delivery vehicles. Full article
(This article belongs to the Special Issue The Role of Lipids in Health and Diseases)
Show Figures

Figure 1

23 pages, 3668 KB  
Article
The Heterogeneous Interplay Between Metabolism and Mitochondrial Activity in Colorectal Cancer
by Christophe Desterke, Yuanji Fu, Jorge Mata-Garrido, Ahmed Hamaï and Yunhua Chang
J. Pers. Med. 2025, 15(12), 571; https://doi.org/10.3390/jpm15120571 - 28 Nov 2025
Viewed by 641
Abstract
Background: Colorectal cancer is a multifactorial malignancy implicating a wide variety of risk factors, such as genetic, environmental, nutritional, and lifestyle factors, leading to a certain heterogeneity in the development of the disease. Colorectal cancer is generally classified in terms of a [...] Read more.
Background: Colorectal cancer is a multifactorial malignancy implicating a wide variety of risk factors, such as genetic, environmental, nutritional, and lifestyle factors, leading to a certain heterogeneity in the development of the disease. Colorectal cancer is generally classified in terms of a Warburg metabolic phenotype, characterized by an excess of glycolytic axes as compared to oxidative phosphorylation. It is therefore important to better characterize the metabolic heterogeneity of these tumors in relation to their mitochondrial activity. Materials and Methods: Two R-packages (keggmetascore and mitoscore) were developed to explore metabolism, based on KEGG metabolism pathways, and mitochondrial activities, based on mitocarta V3 annotations, for the investigation of diverse transcriptomics data such as bulk or single cell experiments at the single-sample level. Results: Using the two R-packages, we functionally confirmed both regulation of metabolism and mitochondrial activities in LOVO cells after stimulation with metformin. At the single-cell level, in single-cell RNA-sequencing of colorectal tumors, we conjointly observed an activation of metabolism and mitochondrial activities in tumor cells from MSI-high tumors, in contrast to a conjoint repression of metabolism and mitochondrial activity in tumor cells from POLE-mutated tumors. These two types of tumors have distinct responses to immune checkpoint blockade therapy. At the bulk transcriptome level, colorectal tumors present less metabolism/mitochondria activities as compared to normal tissues. Multi-modal integration by co-expression network analysis showed that metabolism/mitochondrial activities are associated with a consensus molecular subtype (CMS) classification of colorectal cancer. Regarding KRAS, BRAF, and TP53 driver gene mutation status, strong repression of metabolism pathways was observed, mainly associated with fewer intra-mitochondrial membrane interactions in tumors harboring a BRAF-V600E mutation. Machine learning using Elastic-net allowed us to build a mixed metabolism/mitochondrial activity score, which was found to be increased in the CMS1-MSI subtype and metastatic samples and to be an independent parameter predictive of BRAF-V600E mutation status in colorectal cancer. Conclusions: These findings underscore the pivotal role of mitochondrial metabolism in colorectal cancer subtyping and highlight its value as a predictive biomarker for personalized therapeutic strategies. Full article
(This article belongs to the Special Issue Personalized Medicine for Gastrointestinal Diseases)
Show Figures

Figure 1

7 pages, 1929 KB  
Proceeding Paper
Functionalization of Multi-Walled Carbon Nanotubes (MWNTs) for Sulfonated Polyether Ether Ketone (SPEEK)/MWNT Composite Elaboration
by Moulay Rachid Babaa
Mater. Proc. 2025, 25(1), 3; https://doi.org/10.3390/materproc2025025003 - 12 Nov 2025
Viewed by 540
Abstract
In this study, we present the covalent functionalization of pristine multi-walled carbon nanotubes (P-MWNTs) with sulphonate poly(ether ether ketone) (SPEEK) chains, employing hexane diamine as an interlinking molecule. SPEEK-functionalized MWNTs were then used to create SPEEK-MWNT/SPEEK composites. We used FTIR spectroscopy to confirm [...] Read more.
In this study, we present the covalent functionalization of pristine multi-walled carbon nanotubes (P-MWNTs) with sulphonate poly(ether ether ketone) (SPEEK) chains, employing hexane diamine as an interlinking molecule. SPEEK-functionalized MWNTs were then used to create SPEEK-MWNT/SPEEK composites. We used FTIR spectroscopy to confirm the covalent attachment of the SPEEK chains to the MWNTs. XRD and TEM were used to characterize the morphology of the functionalized tubes and composites. We then evaluated the composite membranes for their structure and elastic modulus. Our results show that SPEEK-grafted MWNT composites with 2% and 5 wt% SPEEK-MWNTs exhibited a 7.1% and 16.1% improvement in Young’s modulus, respectively, compared to SPEEK. However, oxidized MWNT/SPEEK membranes exhibited slightly better improvement. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

Back to TopTop