Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = melt-spinning method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1523 KB  
Article
The Effect of Zeolite Morphology and Loading on the Local Segmental Dynamics and Crystallisation Behaviour of PDMS–Zeolite Composites
by Tatjana Antonić Jelić, Damir Klepac, Leana Vratović, Dalibor Merunka, Jurica Jurec, Marin Tota, Kata Galić and Srećko Valić
Polymers 2025, 17(21), 2911; https://doi.org/10.3390/polym17212911 - 31 Oct 2025
Viewed by 400
Abstract
The local segmental mobility of polymer chains in polydimethylsiloxane (PDMS) plays a critical role in determining the material’s behaviour. Incorporation of zeolite particles can modify these local dynamics, which is crucial as they affect the overall performance of the resulting composite material with [...] Read more.
The local segmental mobility of polymer chains in polydimethylsiloxane (PDMS) plays a critical role in determining the material’s behaviour. Incorporation of zeolite particles can modify these local dynamics, which is crucial as they affect the overall performance of the resulting composite material with potential for various industrial applications. The aim of this study was to investigate the influence of zeolite addition on the local dynamic behaviour of PDMS chain segments in PDMS–zeolite composites. To investigate the effect of zeolite morphology and loading on the segmental dynamics and phase behaviour of PDMS, Zeolite A (with cubic and spherical morphologies) and Zeolite X were incorporated into the PDMS matrix at 20, 30, and 40 wt%. The electron spin resonance (ESR)-spin probe method was used to study molecular dynamics, while the thermal behaviour was analysed using differential scanning calorimetry (DSC). ESR results revealed that the presence of zeolites increases the isothermal crystallisation rate affecting segmental mobility in the amorphous phase below the crystallisation temperature. This effect was found to depend more strongly on zeolite morphology than on filler content. DSC measurements showed no change in glass transition temperature with the addition of zeolite; however, shifts in cold crystallisation and melting behaviour were observed, indicating changes in crystal structure and its degree of perfection. These findings suggest that zeolites act as heterogeneous nucleation agents, with their structural properties playing a critical role in the crystallisation behaviour of PDMS. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 5803 KB  
Review
Application of Textile Technology in Vascular Tissue Engineering
by Hua Ji, Hongjun Yang and Zehao Li
Textiles 2025, 5(3), 38; https://doi.org/10.3390/textiles5030038 - 3 Sep 2025
Viewed by 1774
Abstract
Cardiovascular diseases pose a significant global health burden, driving the need for artificial vascular grafts to address limitations of autologous and allogeneic vessels. This review examines the integration of fiber materials and textile technologies in vascular tissue engineering, focusing on structural mimicry and [...] Read more.
Cardiovascular diseases pose a significant global health burden, driving the need for artificial vascular grafts to address limitations of autologous and allogeneic vessels. This review examines the integration of fiber materials and textile technologies in vascular tissue engineering, focusing on structural mimicry and functional regeneration of native blood vessels. Traditional textile techniques (weaving, knitting, and braiding) and advanced methods (electrospinning, melt electrowriting, wet spinning, and gel spinning) enable the fabrication of fibrous scaffolds with hierarchical architectures resembling the extracellular matrix. The convergence of textile technology and fiber materials holds promise for next-generation grafts that integrate seamlessly with host tissue, addressing unmet clinical needs in vascular tissue regeneration. Full article
Show Figures

Figure 1

19 pages, 5085 KB  
Article
Fabrication and Evaluation of Isomalt-Based Microfibers as Drug Carrier Systems
by Andrea Kovács, Bálint Attila Kecskés, Gábor Filipszki, Dóra Farkas, Bence Tóth, István Antal and Nikolett Kállai-Szabó
Pharmaceutics 2025, 17(8), 1063; https://doi.org/10.3390/pharmaceutics17081063 - 15 Aug 2025
Cited by 1 | Viewed by 1426
Abstract
Background/Objectives: The melt-spinning process has seen limited application in the pharmaceutical industry. However, nano- and microfibrous structures show significant potential for novel drug delivery systems, due to their high specific surface area. To facilitate broader adoption in pharmaceutical technology, critical parameters influencing [...] Read more.
Background/Objectives: The melt-spinning process has seen limited application in the pharmaceutical industry. However, nano- and microfibrous structures show significant potential for novel drug delivery systems, due to their high specific surface area. To facilitate broader adoption in pharmaceutical technology, critical parameters influencing fiber quality and yield must be investigated. In this study, we aimed to develop an isomalt-based microfibrous carrier system for active pharmaceutical ingredients. Methods: The effects of different isomalt compositions—specifically, varying ratios of GPS (6-O-α-d-glucopyranosyl-d-sorbitol) and GPM (1-O-α-d-glucopyranosyl-d-mannitol)—as well as key process parameters, were systematically investigated to optimize fiber formation. The prepared fibers underwent different treatments. Morphological changes were monitored with a microscope, and microstructural changes were studied using a differential scanning calorimeter and X-ray diffractometer. The macroscopic behavior of the fibers was evaluated by image analysis under monitored conditions. Results: Statistical analysis was used to determine the optimal setting to produce isomalt-based fibers. We found that storage over ethanol vapor has a positive effect on the stability of the fibers. We successfully prepared ibuprofen sodium-containing fibers that remained stable after alcohol treatment and enabled drug release within 15 s. Conclusions: It was found that the applied GPS:GPM isomalt ratio significantly influenced fiber formation and that storage over ethanol positively influenced the processability and stability of the fibrous structure. An isomalt-based microfibrous system with advantageous physicochemical and structural properties was successfully developed as a potential drug carrier. The system is also resistant to the destructive effects of ambient humidity, enabling preparation of suitable dosage forms. Full article
Show Figures

Graphical abstract

33 pages, 4132 KB  
Review
Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review
by Ehsan Niknejad, Reza Jafari and Naser Valipour Motlagh
Molecules 2025, 30(15), 3276; https://doi.org/10.3390/molecules30153276 - 5 Aug 2025
Cited by 6 | Viewed by 3122
Abstract
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer [...] Read more.
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer fibers across diverse applications. This covers synthetic polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polycaprolactone (PCL), polyglycolic acid (PGA), and polyvinyl alcohol (PVA), as well as natural polymers including chitosan, collagen, cellulose, alginate, silk fibroin, and starch-based polymers. A range of fiber production methods is discussed, including electrospinning, centrifugal spinning, spunbonding, melt blowing, melt spinning, and wet spinning, with attention to how each technique influences tensile strength, elongation, and modulus. The review also addresses advances in composite fibers, nanoparticle incorporation, crosslinking methods, and post-processing strategies that improve mechanical behavior. In addition, mechanical testing techniques such as tensile test machine, atomic force microscopy, and dynamic mechanical analysis are examined to show how fabrication parameters influence fiber performance. This review examines the mechanical performance of biodegradable polymer fibers and fibrous mats, emphasizing their potential as sustainable alternatives to conventional materials in applications such as tissue engineering, drug delivery, medical implants, wound dressings, packaging, and filtration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

13 pages, 2740 KB  
Article
PVTF Nanoparticles Coatings with Tunable Microdomain Potential for Enhanced Osteogenic Differentiation
by Yang Yi, Chengwei Wu, Xuzhao He, Wenjian Weng, Weiming Lin and Kui Cheng
Coatings 2025, 15(6), 703; https://doi.org/10.3390/coatings15060703 - 11 Jun 2025
Viewed by 637
Abstract
Poly(vinylidene fluoride-trifluoroethylene) (PVTF) nanoparticles coatings with electrically heterogeneous microdomains were engineered to mimic the natural electromechanical microenvironment of bone tissue, offering a novel strategy to enhance osteogenesis. Through a biphasic solvent phase separation method, PVTF nanoparticles (NPs) were synthesized and spin-coated onto substrates, [...] Read more.
Poly(vinylidene fluoride-trifluoroethylene) (PVTF) nanoparticles coatings with electrically heterogeneous microdomains were engineered to mimic the natural electromechanical microenvironment of bone tissue, offering a novel strategy to enhance osteogenesis. Through a biphasic solvent phase separation method, PVTF nanoparticles (NPs) were synthesized and spin-coated onto substrates, followed by melt-recrystallization to achieve high β-phase crystallinity. The substrates were then subjected to corona poling, a process involving high-voltage corona discharge to electrically polarize and align the molecular dipoles. Structural and electrical characterization revealed tunable microdomain surface potentials and piezoelectric coefficients, correlating with enhanced hydrophilicity. Notably, microdomain potential—produced by controlled polarization—was shown to directly regulate cellular responses. In vitro studies demonstrated that a corona-poled PVTF NP coating significantly improved bone marrow mesenchymal stem cell (BMSC) proliferation and early osteogenic differentiation. This work establishes a surface electropatterning approach and highlights the critical role of electrical heterogeneity in bone regeneration, offering a novel strategy for bioactive biomaterial design. Full article
Show Figures

Figure 1

34 pages, 8692 KB  
Review
Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries
by Lianlu Wan, Haitao Zhou, Haiyun Zhou, Jie Gu, Chen Wang, Quan Liao, Hongquan Gao, Jianchun Wu and Xiangdong Huo
Polymers 2025, 17(9), 1237; https://doi.org/10.3390/polym17091237 - 30 Apr 2025
Cited by 2 | Viewed by 2320
Abstract
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct [...] Read more.
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct categories: porous separators engineered via wet-chemical methods (e.g., melt-blown spinning, electrospinning, thermally induced phase separation) and nonporous solid-state separators fabricated through solvent-free dry-film processes. Porous variants, typified by submicron pore architectures (<1 μm), enable electrolyte-mediated ion transport with ionic conductivities up to >1 mS·cm−1 at >55% porosity, while their nonporous counterparts leverage crystalline sulfur-atom alignment and trace electrolyte infiltration to establish solid–liquid biphasic conduction pathways, achieving ion transference numbers >0.8 and homogenized lithium flux. Dry-processed solid-state PPS separators demonstrate unparalleled thermal dimensional stability (<2% shrinkage at 280 °C) and mitigate dendrite propagation through uniform electric field distribution, as evidenced by COMSOL simulations showing stable Li deposition under Cu particle contamination. Despite these advancements, challenges persist in reconciling thickness constraints (<25 μm) with mechanical robustness, scaling solvent-free manufacturing, and reducing costs. Innovations in ultra-thin formats (<20 μm) with self-healing polymer networks, coupled with compatibility extensions to sodium/zinc-ion systems, are identified as critical pathways for advancing PPS separators. By addressing these challenges, PPS-based architectures hold transformative potential for enabling high-energy-density (>500 Wh·kg−1), intrinsically safe energy storage systems, particularly in applications demanding extreme operational reliability such as electric vehicles and grid-scale storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 4082 KB  
Article
Enhancing Electrochemical Properties of Vitreous Materials Based on CaO–Fe2O3–Fe–Pb and Recycled from Anodic Plate of a Spent Car Battery
by Delia Niculina Piscoiu, Simona Rada and Horatiu Vermesan
Materials 2025, 18(9), 2017; https://doi.org/10.3390/ma18092017 - 29 Apr 2025
Viewed by 670
Abstract
This paper presents a novel approach for the recycling of spent anodic plates from lead-acid batteries through the melt quenching method using iron and calcium oxides and iron powder. The resulting recycled samples, with a 3CaO·5Fe2O3·xFe·(92 − x)Pb composition, [...] Read more.
This paper presents a novel approach for the recycling of spent anodic plates from lead-acid batteries through the melt quenching method using iron and calcium oxides and iron powder. The resulting recycled samples, with a 3CaO·5Fe2O3·xFe·(92 − x)Pb composition, where x = 0, 1, 3, 5, 8, 10, 15, and 25% mol Fe, were characterized and analyzed in terms of their electrochemical performance. X-ray diffractograms show vitroceramic structures with varied crystalline phases. Analysis of the IR (infrared spectra) data shows a decrease of sulphate units due to doping with iron content. The ultraviolet–visible (UV-Vis) and electron spin resonance (ESR) data reveal the presence of Fe3+ ions with varied coordination geometries. Cyclic and linear sweep voltammograms demonstrate that the samples with 8 and 10% Fe exhibit superior electrochemical performance compared to other vitroceramics. The electrochemical impedance spectroscopy measurements indicate that the sample with 8% Fe had lower resistance compared to other analogues and had enhanced electrical conductivity. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

18 pages, 2968 KB  
Article
Research on the Mechanical and Photoelectric Properties Regulation of the New-Type Ceramic Material Ta2AlC
by Zhongzheng Zhang, Chunhong Zhang, Xinmao Qin and Wanjun Yan
Crystals 2025, 15(4), 309; https://doi.org/10.3390/cryst15040309 - 26 Mar 2025
Viewed by 654
Abstract
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation [...] Read more.
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation of the mechanical and photoelectric properties of Ta2AlC through doping using the first-principles pseudopotential plane-wave method. We specifically calculated the geometric structure, mechanical properties, electronic structure, Mulliken population analysis, and optical properties of Ta2AlC doped with V, Ga, or Si. The results indicate that doping induces significant changes in the structural parameters of Ta2AlC. By applying the Born’s criterion as the standard for mechanical stability, we have calculated that the structures of Ta2AlC, both before and after doping, are stable. The mechanical property calculations revealed that V and Si doping weaken the material’s resistance to deformation while enhancing its plasticity. In contrast, Ga doping increases the material’s resistance to lateral deformation and brittleness. Doping also increases the anisotropy of Ta2AlC. Electronic structure calculations confirmed that Ta2AlC is a conductor with excellent electrical conductivity, which is not diminished by doping. The symmetric distribution of spin-up and spin-down electronic state densities indicates that the Ta2AlC system remains non-magnetic after doping. The partial density of states diagrams successfully elucidated the influence of dopant atoms on the band structure and electronic state density. Mulliken population analysis revealed that V and Ga doping enhance the covalent interactions between C-Ta and Al-Ta atoms, whereas Si doping weakens these interactions. Optical property calculations showed that V and Si doping significantly enhance the electromagnetic energy storage capacity and dielectric loss of Ta2AlC, while Ga doping has minimal effect. The reflectivity of doped and undoped Ta2AlC reaches over 90% in the ultraviolet region, indicating its potential as an anti-ultraviolet coating material. In the visible light region, both doped and undoped Ta2AlC exhibit a similar metallic gray appearance, suggesting its potential as a temperature control coating material. The light loss of Ta2AlC is limited to a narrow energy range, indicating that doping does not affect its use as a light storage material. These results demonstrate that different dopants can effectively modulate the mechanical and photoelectric properties of Ta2AlC. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

19 pages, 6585 KB  
Article
Development of Co-Axial Fibres Composed of CA (Mn 50,000) and PEGs (600 and 1000): Evaluation of the Influence of the Coagulation Bath
by Nathalia Hammes, José Monteiro, Iran Rocha Segundo, Helena P. Felgueiras, M. Manuela Silva, Manuel F. M. Costa and Joaquim Carneiro
Appl. Sci. 2025, 15(6), 3028; https://doi.org/10.3390/app15063028 - 11 Mar 2025
Cited by 2 | Viewed by 1093
Abstract
Rapid urbanisation and industrialisation have intensified the Urban Heat Island (UHI) effect, significantly increasing energy demand for thermal comfort. Urban buildings consume considerable energy throughout the year, which can be reduced by incorporating Phase Change Materials (PCMs) into building materials. PCMs effectively regulate [...] Read more.
Rapid urbanisation and industrialisation have intensified the Urban Heat Island (UHI) effect, significantly increasing energy demand for thermal comfort. Urban buildings consume considerable energy throughout the year, which can be reduced by incorporating Phase Change Materials (PCMs) into building materials. PCMs effectively regulate temperature by storing and releasing heat as latent heat during phase transitions. However, to prevent leakage, PCMs can be encapsulated in co-axial polymeric Phase Change Fibres (PCFs), representing an innovative approach in scientific research. This study optimised the coagulation bath and produced PCFs using commercial cellulose acetate as the sheath and polyethylene glycol (PEG 600 and 1000) as the core via the wet-spinning method. The first part of this work investigated the coagulation bath using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) analyses of the characteristic peak areas. In contrast, the second part examined the PCFs’ morphological, chemical and thermal properties using Bright-field microscopy, ATR-FTIR, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) techniques. The results demonstrated the successful production of PCFs with an optimised coagulation bath. Bright-field microscopy and ATR-FTIR confirmed the well-defined morphology and the presence of PEG in the fibre core. TGA analysis showed high thermal stability in the PCFs, with mass loss observed at high degradation temperatures, ranging from ~264 °C to 397 °C for the PCFs with PEG 600 and from ~273 °C to 413 °C for the PCFs with PEG 1000. Meanwhile, DSC analysis revealed melting points of ~12.64 °C and 11.04 °C, with endothermic enthalpy of ~39.24 °C and 30.59 °C and exothermic enthalpy of ~50.17 °C and 40.93 °C, respectively, for PCFs with PEG 600, and melting points of ~40.32 °C and 41.13 °C, with endothermic enthalpy of ~83.47 °C and 98.88 °C and exothermic enthalpy of ~84.66 °C and 88.79 °C, respectively, for PCFs with PEG 1000. These results validate the potential of PCFs for applications in building materials for civil engineering, promoting thermal efficiency and structural stability. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

13 pages, 6588 KB  
Article
Direct Synthesis of LiAlH4 from Ti-Doped Active LiAl Alloy
by Yan Chu, Shiwei Fang, Yingjue Chen, Xiaoqi Zhang, Jie Zheng, Zhenglong Li, Wubin Du, Wengang Cui, Jian Miao, Yaxiong Yang, Yongfeng Liu, Mingxia Gao and Hongge Pan
Inorganics 2025, 13(3), 74; https://doi.org/10.3390/inorganics13030074 - 1 Mar 2025
Viewed by 1438
Abstract
LiAlH4, characterized by high hydrogen capacity and metastable properties, is regarded as a promising hydrogen source under mild conditions. However, its reversible regeneration from dehydrogenated production is hindered thermodynamically and kinetically. Herein, we demonstrate an active Li–Al–Ti nanocrystalline alloy prepared by [...] Read more.
LiAlH4, characterized by high hydrogen capacity and metastable properties, is regarded as a promising hydrogen source under mild conditions. However, its reversible regeneration from dehydrogenated production is hindered thermodynamically and kinetically. Herein, we demonstrate an active Li–Al–Ti nanocrystalline alloy prepared by melt spinning and cryomilling to enable directly synthesizing nano-LiAlH4. Due to the non-equilibrium preparation methods, the grain/particle size of the alloy was reduced, stress defects were introduced, and the dispersion of the Ti catalyst was promoted. The refined Li–Al–Ti nanocrystalline alloy with abundant defects and uniform catalytic sites demonstrated a high reactivity of the particle surface, thereby enhancing hydrogen absorption and desorption kinetics. Nano-LiAlH4 was directly obtained by ball milling a 5% Ti containing Li–Al–Ti nanocrystalline alloy with a grain size of 17.4 nm and Al3Ti catalytic phase distributed under 20 bar hydrogen pressure for 16 h. The obtained LiAlH4 exhibited room temperature dehydrogenation performance and good reversibility. This finding provides a potential strategy for the non-solvent synthesis and direct hydrogenation of metastable LiAlH4 hydrogen storage materials. Full article
Show Figures

Graphical abstract

21 pages, 7922 KB  
Article
Microstructure and Mechanical Properties of Mg-8Li-3Al-0.3Si Alloy Deformed Through a Combination of Back-Extrusion and Spinning Process
by Changzhen Jia, Kunkun Deng, Cuiju Wang, Kaibo Nie, Quanxin Shi, Yijia Li and Pengcheng Tian
Materials 2025, 18(2), 417; https://doi.org/10.3390/ma18020417 - 17 Jan 2025
Cited by 1 | Viewed by 1196
Abstract
In this work, the Mg-8Li-3Al-0.3Si (LAS830) alloy was prepared by the vacuum melting method. The as-cast alloy was subjected to backward extrusion at 250 °C and then spun at 250 °C. The microstructure and mechanical properties of the alloy during deformation were studied. [...] Read more.
In this work, the Mg-8Li-3Al-0.3Si (LAS830) alloy was prepared by the vacuum melting method. The as-cast alloy was subjected to backward extrusion at 250 °C and then spun at 250 °C. The microstructure and mechanical properties of the alloy during deformation were studied. The results showed that the LAS830 alloy primarily consisted of α-Mg and β-Li phases, and the AlLi, MgLi2Al, and Mg2Si phases were dispersed. After backward extrusion, the grains and AlLi phase were refined, the β-Li phase recrystallized, and the fine MgLi2Al phase precipitated. The spinning of the extruded alloy tubes resulted in the lamellar distribution of an α/β duplex microstructure, with even finer grains and more dispersed precipitates. The combined deformation significantly enhanced the alloy’s strength and ductility, with the ultimate tensile strength reaching 235.4 MPa and an elongation of 15.74%. In addition, the average hardness of the α/β phase increases after backward extrusion, but the average hardness of the β-Li phase increases further after spinning. The as-cast LAS830 alloy exhibited a high work hardening rate but a low softening rate. With reverse extrusion, the work hardening rate decreased and the softening degree increased. Compared with backward extrusion, the work hardening rate and softening degree of the LAS830 alloy was reduced after spinning due to the combined effect of the lamellar distributed duplex microstructure and the dispersed second phases in the alloy, while its softening rate increased. Full article
(This article belongs to the Special Issue Processing of Metals and Alloys)
Show Figures

Figure 1

11 pages, 1851 KB  
Article
The Influence of Two Spinning Processes of T800 Grade Carbon Fibers on the Mechanical Properties of Thermoplastic Composite Material
by Xu Cui, Xuefeng Sun, Weiguo Su, Shuo Wang and Han Guo
Coatings 2025, 15(1), 90; https://doi.org/10.3390/coatings15010090 - 15 Jan 2025
Viewed by 2151
Abstract
Two types of T800 grade carbon fibers, produced using distinct spinning processes, were utilized to fabricate thermoplastic prepregs via the hot melt method. These prepregs were subsequently employed to produce thermoplastic composites. A universal testing machine was used to assess the tensile, bending, [...] Read more.
Two types of T800 grade carbon fibers, produced using distinct spinning processes, were utilized to fabricate thermoplastic prepregs via the hot melt method. These prepregs were subsequently employed to produce thermoplastic composites. A universal testing machine was used to assess the tensile, bending, and interlaminar shear properties of the composites, evaluating the impact of the two different spinning processes on their mechanical characteristics. The experimental results indicate that the dry spray wet spinning carbon fiber (T800-DJWS) exhibits a smoother surface, more regular cross-section, and more uniform distribution compared to the wet spinning carbon fiber (T800-WS), enhancing the prepreg preparation via the hot melt method. The T800-DJWS/PAEK composite demonstrates a tensile strength that is 706 MPa higher than the T800-WS/PAEK composite, while the latter exhibits a bending modulus 31 GPa higher than the former. Full article
(This article belongs to the Special Issue Advances and Trends in Bio-Based Electrospun Nanofibers)
Show Figures

Figure 1

14 pages, 3172 KB  
Article
Fabrication and Performance Enhancement of Wood Liquefaction-Based Carbon Fibers Modified with Alumina Nanoparticles
by Linshuang Gan, Yijing Liu, Zaibirinisa Yimin, Jianglong Wu, Jialin Lv and Zhigao Liu
Polymers 2025, 17(2), 155; https://doi.org/10.3390/polym17020155 - 9 Jan 2025
Viewed by 1112
Abstract
In this paper, alumina-modified wood liquefaction (AL-WP) was prepared by blending nano-alumina (Al2O3) into wood liquefaction phenolic resin (WP) using a co-blending method. Alumina-modified wood liquefaction protofilament fiber (AL-WPF) was obtained by melt-spinning, curing, and thermo-curing processes, which were [...] Read more.
In this paper, alumina-modified wood liquefaction (AL-WP) was prepared by blending nano-alumina (Al2O3) into wood liquefaction phenolic resin (WP) using a co-blending method. Alumina-modified wood liquefaction protofilament fiber (AL-WPF) was obtained by melt-spinning, curing, and thermo-curing processes, which were followed by carbonization to obtain alumina-modified wood liquefaction carbon fiber (AL-WCF). This paper focuses on the enhancement effect of nano-alumina doping on the mechanical properties and heat resistance of wood liquefaction carbon fiber (WCF), explores the evolution of graphite microcrystalline structure during the high-temperature carbonization process, and optimizes the curing conditions of AL-WPF. The results showed that the introduction of Al2O3 significantly improved the mechanical properties and heat resistance of carbon fibers. When 1.5% Al2O3 was doped and carbonized at 1000 °C, the tensile strength of AL-WCF was increased from 33.78 MPa to 95.74 MPa, there was an enhancement of 183%, its residual carbon rate could reach 79.2%, which was better than that of the undoped wood liquefaction (WCF), and it exhibited a more substantial heat-resistant property. In addition, the best curing process for alumina nanoparticle wood liquefiers was obtained by optimizing the curing conditions: hydrochloric acid concentration of 16%, formaldehyde concentration of 18.5%, temperature increase rate of 15 °C/min, holding time of 3 h, and holding temperature of 100 °C. These studies provide a theoretical basis and technical support for developing and applying carbon fibers from alumina-modified wood liquefiers. Full article
(This article belongs to the Special Issue Natural Fiber-Based Green Materials)
Show Figures

Graphical abstract

16 pages, 5774 KB  
Article
Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method
by Minori Takahashi, Shota Shiraki, Sungho Lee and Akiko Obata
Int. J. Mol. Sci. 2025, 26(1), 161; https://doi.org/10.3390/ijms26010161 - 27 Dec 2024
Viewed by 1440
Abstract
Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, [...] Read more.
Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells. In the present work, a liquid-phase method was used for synthesizing Nb-containing PIGs, as this method allows us to prepare a glass precursor solution at room temperature, which can be attributed to improved glass-shape design. Nb-containing PIGs were successfully prepared, and their ion release behavior was controlled by changing the Nb content in the PIGs. The functions of Nb varied according to its content. For example, in the case of PIGs containing a larger amount of Nb, Nb acted as both the network modifier and former while also inducing the formation of chain-like structures. These glasses possessed a gradual ion release in a tris-HCl buffer solution. Cotton-wool-like structured scaffolds were fabricated using the synthesized Nb-containing glass using a wet-spinning method. Because the scaffolds possess excellent flexibility and controllable ion release, they are good candidates for new biomaterials. Full article
Show Figures

Figure 1

13 pages, 3124 KB  
Article
Near-Field Direct Write Electrospinning of PET-Carbon Quantum Dot Solutions
by Fatemeh Mohtaram, Michael Petersen, Maria Ahrenst-Mortensen, Liva Skou Boysen, Frederik Hejgaard Gram, Helene Halsen Malling, Noah Frederik Hallundbæk Bang, Yan Jurg Hess and Peter Fojan
Materials 2024, 17(24), 6242; https://doi.org/10.3390/ma17246242 - 20 Dec 2024
Cited by 3 | Viewed by 2215
Abstract
Electrospinning of polymer material has gained a lot of interest in the past decades. Various methods of electrospinning have been applied for different applications, from needle electrospinning to needleless electrospinning. A relatively new variation of electrospinning, namely near-field electrospinning, has been used to [...] Read more.
Electrospinning of polymer material has gained a lot of interest in the past decades. Various methods of electrospinning have been applied for different applications, from needle electrospinning to needleless electrospinning. A relatively new variation of electrospinning, namely near-field electrospinning, has been used to generate well-defined patterns. This variation of electrospinning, also known as near-field direct-write electrospinning, allows for precise control of the fiber deposition, sacrificing on the thickness of the resulting fibers. Typically, for this method, melt electrospinning is preferred, since it provides a higher viscosity of the polymer and thereby better control of the fiber deposition. However, when mixing additives into the spinning dope, a solution spinning approach is preferable since it provides a more homogeneous distribution of the additives in the spinning dope. A fluorescent spinning dope of dissolved PET with fluorescent carbon quantum dots has been used to generate the fluorescent patterns. These can be used to generate logos, bar codes, or QR codes to encode information about the material, such as watermarks or counterfeiting tags. Full article
(This article belongs to the Special Issue Recent Advances in Nanomaterials for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop