Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,071)

Search Parameters:
Keywords = medium conditioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 22971 KiB  
Article
Sedimentary Facies and Geochemical Signatures of the Khewra Sandstone: Reconstructing Cambrian Paleoclimates and Paleoweathering in the Salt Range, Pakistan
by Abdul Bari Qanit, Shahid Iqbal, Azharul Haq Kamran, Muhammad Idrees, Benjamin Sames and Michael Wagreich
Minerals 2025, 15(8), 789; https://doi.org/10.3390/min15080789 - 28 Jul 2025
Abstract
Red sandstones of the Cambrian age are globally distributed and represent an important sedimentation phase during this critical time interval. Their sedimentology and geochemistry can provide key information about the sedimentation style, paleoclimatic conditions, and weathering trends during the Cambrian. In the Salt [...] Read more.
Red sandstones of the Cambrian age are globally distributed and represent an important sedimentation phase during this critical time interval. Their sedimentology and geochemistry can provide key information about the sedimentation style, paleoclimatic conditions, and weathering trends during the Cambrian. In the Salt Range of Pakistan, the Khewra Sandstone constitutes the Lower Cambrian strata and consists of red–maroon sandstones with minor siltstone and shale in the basal part. Cross-bedding, graded bedding, ripple marks, parallel laminations, load casts, ball and pillows, desiccation cracks, and bioturbation are the common sedimentary features of the formation. The sandstones are fine to medium to coarse-grained with subangular to subrounded morphology and display an overall coarsening upward trend. Petrographic analysis indicates that the sandstones are sub-arkose and sub-lithic arenites, and dolomite and calcite are common cementing materials. X-ray Diffraction (XRD) analysis indicates that the main minerals in the formation are quartz, feldspars, kaolinite, illite, mica, hematite, dolomite, and calcite. Geochemical analysis indicates that SiO2 is the major component at a range of 53.3 to 88% (averaging 70.4%), Al2O3 ranges from 3.1 to 19.2% (averaging 9.2%), CaO ranges from 0.4 to 25.3% (averaging 7.4%), K2O ranges from 1.2 to 7.4% (averaging 4.8%), MgO ranges from 0.2 to 7.4% (averaging 3.5%), and Na2O ranges from 0.1 to 0.9% (averaging 0.4%), respectively. The results of the combined proxies indicate that the sedimentation occurred in fluvial–deltaic settings under overall arid to semi-arid paleoclimatic conditions with poor to moderate chemical weathering. The Khewra Sandstone represents the red Cambrian sandstones on the NW Indian Plate margin of Gondwana and can be correlated with contemporaneous red sandstones in the USA, Europe, Africa, Iran, and Turkey (Türkiye). Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 1413 KiB  
Article
Potential of Pumpkin Pulp Carotenoid Extract in the Prevention of Doxorubicin-Induced Cardiotoxicity
by Milana Bosanac, Alena Stupar, Biljana Cvetković, Dejan Miljković, Milenko Čanković and Bojana Andrejić Višnjić
Pharmaceutics 2025, 17(8), 977; https://doi.org/10.3390/pharmaceutics17080977 - 28 Jul 2025
Abstract
Background/Objectives: Doxorubicin is a chemotherapeutic agent whose clinical use is limited by side effects (SEs). The most common SE is doxorubicin-induced cardiotoxicity (DIC), for which there is still no prevention. The hypothesis arises that active substances of natural origin could influence DIC [...] Read more.
Background/Objectives: Doxorubicin is a chemotherapeutic agent whose clinical use is limited by side effects (SEs). The most common SE is doxorubicin-induced cardiotoxicity (DIC), for which there is still no prevention. The hypothesis arises that active substances of natural origin could influence DIC prevention by affecting several pathways of DIC occurrence. Methods: Thirty Wistar rats were divided into six groups (control, NADES (C8:C10) solvent, pumpkin pulp extract, doxorubicin, NADES (C8:C10) solvent–doxorubicin, and pumpkin pulp extract–doxorubicin). During the experiment, parameters of general condition, body, and heart weight were observed. Heart function parameters were monitored by measuring the levels of serum NT-pro-BNP, CK-MB, and hsTnT. Tissue damage was evaluated by determining the doxorubicin damage score and the expression of anti-cardiac troponin I, anti-Nrf2, anti-Bcl-2, anti-caspase-3, anti-COX2, and anti-Ki67 antibodies. Results: Doxorubicin administration led to impaired general condition of animals and increased the levels of NT-proBNP, CK-MB, hsTnT, and myocardium tissue damage of medium grade. Its administration induced apoptosis (as evidenced by elevated Casp3), reduced antiapoptotic Bcl-2 and troponin I expression in cardiomyocytes. Reduced Nrf2 expression due to doxorubicin administration was restored when pumpkin pulp extract containing carotenoids was coadministered, which led to the normalization of Casp3, Bcl-2, and troponin I expression. Consequently, the general condition and body weight were better in animals treated with both doxorubicin and the other treatment compared to those treated with doxorubicin alone. Conclusions: The results of this study strongly suggest that pumpkin pulp extract containing carotenoids has a cardioprotective effect, possibly by regulating the Nrf2 pathway. Full article
(This article belongs to the Special Issue Plant Extracts and Their Biomedical Applications)
24 pages, 771 KiB  
Article
The Impact of Preferential Policy on Corporate Green Innovation: A Resource Dependence Perspective
by Chenshuo Li, Shihan Feng, Qingyu Yuan, Jiahui Wei, Shiqi Wang and Dongdong Huang
Sustainability 2025, 17(15), 6834; https://doi.org/10.3390/su17156834 - 28 Jul 2025
Abstract
Government support has long been viewed as a key driver of sustainable transformation and green technological progress. However, the underlying mechanisms (“how”) through which preferential policies influence green innovation, as well as the contextual conditions (“when”) that shape their [...] Read more.
Government support has long been viewed as a key driver of sustainable transformation and green technological progress. However, the underlying mechanisms (“how”) through which preferential policies influence green innovation, as well as the contextual conditions (“when”) that shape their effectiveness, remain insufficiently understood. Drawing on resource dependence theory, this study develops a dual-mediation framework to investigate how preferential tax policies promote both the quantity and quality of green innovation—by enhancing R&D investment as an internal mechanism and alleviating financing constraints as an external mechanism. These effects are especially salient among non-state-owned enterprises, firms in resource-constrained industries, and those situated in environmentally challenged regions—contexts that entail higher dependence on external support for sustainable development. Leveraging China’s 2017 R&D tax reduction policy as a quasi-natural experiment, this study uses a sample of high-tech small- and medium-sized enterprises (SMEs) to test the hypotheses. The findings provide robust evidence on how preferential policies contribute to corporate sustainability through green innovation and identify the conditions under which policy tools are most effective. This research offers important implications for designing targeted, sustainability-oriented innovation policies that support SMEs in transitioning toward more sustainable practices. Full article
Show Figures

Figure 1

19 pages, 424 KiB  
Article
“Words Falter in Encapsulating the Dao 言語道斷”: The Philosophy of Language of Zen Buddhism in The Platform Sutra of the Sixth Patriarch
by Xiangqian Che
Religions 2025, 16(8), 974; https://doi.org/10.3390/rel16080974 - 27 Jul 2025
Abstract
This paper examines the philosophy of language in The Platform Sutra of the Sixth Patriarch (六祖壇經), demonstrating its centrality to Zen Buddhism and Buddhist sinicization. The sutra emphasizes the ineffability of ultimate truth (至道無言) and the principle that words falter in encapsulating the [...] Read more.
This paper examines the philosophy of language in The Platform Sutra of the Sixth Patriarch (六祖壇經), demonstrating its centrality to Zen Buddhism and Buddhist sinicization. The sutra emphasizes the ineffability of ultimate truth (至道無言) and the principle that words falter in encapsulating the Dao (言語道斷), framing language as a provisional “raft” (筏) that must be instrumentalized yet transcended through a dialectic of employing and abandoning (用離辯證). It ontologically grounds this view in Buddha-nature’s (佛性) pre-linguistic essence, advocating transcending reliance on words and letters (不假文字) while strategically deploying language to dismantle its own authority. Historically, this constituted a revolt against Tang scholasticism’s textual fetishism. The text adopts a dynamic dialectic, neither clinging to nor rejecting language, exemplified by Huineng’s awakening through the Diamond Sutra, where recitation catalyzes internal insight. Operationally, it utilizes negational discourse, the “Two Paths Mutually Condition” method (二道相因) embedded in the “Twelve Pairs of Dharmic Forms” (法相語言十二對) in particular, to systematically deconstruct dualisms, while promoting embodied unity of speech, mind, and action (口念心行) to critique empty recitation. Ultimately, the sutra orchestrates language as a self-subverting medium: balancing acknowledgment of its limitations with pragmatic instrumentality, it presents an Eastern paradigm where language actively disrupts conceptual fetters to facilitate direct insight into Buddha-nature, reframing it as a dynamic catalyst for “illuminating the mind and seeing one’s nature” (明心見性). Full article
23 pages, 2129 KiB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

23 pages, 4111 KiB  
Article
Metabolic Culture Medium Enhances Maturation of Human iPSC-Derived Cardiomyocytes via Cardiac Troponin I Isoform Induction
by Daria V. Goliusova, Agnessa P. Bogomolova, Alina V. Davidenko, Kristina A. Lavrenteva, Margarita Y. Sharikova, Elena A. Zerkalenkova, Ekaterina M. Vassina, Alexandra N. Bogomazova, Maria A. Lagarkova, Ivan A. Katrukha and Olga S. Lebedeva
Int. J. Mol. Sci. 2025, 26(15), 7248; https://doi.org/10.3390/ijms26157248 - 26 Jul 2025
Viewed by 57
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This [...] Read more.
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This study aimed to identify practical culture conditions that promote iCMs maturation, thereby generating more physiologically relevant in vitro cardiac models. We evaluated the effects of short- and long-term culture in media supplemented with various stimulatory compounds under 2D conditions, focusing on intracellular content and localization of slow skeletal troponin I (ssTnI) and cardiac troponin I (cTnI) isoforms. Our findings demonstrate that the multicomponent metabolic maturation medium (MM-1) effectively enhances the transition toward a more mature iCM phenotype, as evidenced by increased cTnI expression and formation of cross-striated myofibrils. iCMs cultured in MM-1 more closely resemble adult cardiomyocytes and are compatible with high-resolution single-cell techniques such as electron microscopy and patch-clamp electrophysiology. This work provides a practical and scalable approach for advancing the maturation of iPSC-derived cardiac models, with applications in disease modeling and drug screening. Full article
Show Figures

Figure 1

43 pages, 10454 KiB  
Article
State-of-Charge Estimation of Medium- and High-Voltage Batteries Using LSTM Neural Networks Optimized with Genetic Algorithms
by Romel Carrera, Leonidas Quiroz, Cesar Guevara and Patricia Acosta-Vargas
Sensors 2025, 25(15), 4632; https://doi.org/10.3390/s25154632 - 26 Jul 2025
Viewed by 57
Abstract
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under [...] Read more.
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

21 pages, 487 KiB  
Article
A Set of Sustainability Indicators for Brazilian Small and Medium-Sized Non-Alcoholic Beverage Industries
by Alexandre André Feil, Angie Lorena Garcia Zapata, Mayra Alejandra Parada Lazo, Maria Clair da Rosa, Jordana de Oliveira and Dusan Schreiber
Sustainability 2025, 17(15), 6794; https://doi.org/10.3390/su17156794 - 25 Jul 2025
Viewed by 210
Abstract
Sustainability in the non-alcoholic beverage industry requires effective metrics to assess environmental, social, and economic performance. However, the lack of standardised indicators for small and medium-sized enterprises (SMEs) hinders the implementation of sustainable strategies. This study aims to select a set of sustainability [...] Read more.
Sustainability in the non-alcoholic beverage industry requires effective metrics to assess environmental, social, and economic performance. However, the lack of standardised indicators for small and medium-sized enterprises (SMEs) hinders the implementation of sustainable strategies. This study aims to select a set of sustainability indicators for small and medium-sized non-alcoholic beverage industries in Brazil. Seventy-four indicators were identified based on the Global Reporting Initiative (GRI) guidelines, which were subsequently evaluated and refined by industry experts for prioritisation. Statistical analysis led to the selection of 31 final indicators, distributed across environmental (10), social (12), and economic (9) dimensions. In the environmental dimension, priority indicators include water management, energy efficiency, carbon emissions, and waste recycling. The social dimension highlights working conditions, occupational safety, gender equity, and impacts on local communities. In the economic dimension, key indicators relate to supply chain efficiency, technological innovation, financial transparency, and anti-corruption practices. The results provide a robust framework to guide managers in adopting sustainable practices and support policymakers in improving the environmental, social, and economic performance of small and medium-sized non-alcoholic beverage industries. Full article
Show Figures

Figure 1

17 pages, 8482 KiB  
Article
The Optimization of Culture Conditions for the Cellulase Production of a Thermostable Cellulose-Degrading Bacterial Strain and Its Application in Environmental Sewage Treatment
by Jiong Shen, Konglu Zhang, Yue Ren and Juan Zhang
Water 2025, 17(15), 2225; https://doi.org/10.3390/w17152225 - 25 Jul 2025
Viewed by 150
Abstract
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, [...] Read more.
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, incubation period, substrate concentration, nitrogen and carbon sources, and response surface methods. The results indicated that the optimal conditions for maximum cellulase activity were an incubation time of 91.7 h, a temperature of 41.8 °C, and a pH of 4.9, which resulted in a maximum cellulase activity of 16.67 U/mL, representing a 165% increase compared to pre-optimization levels. The above experiment showed that, when maize straw flour was utilized as a natural carbon source, strain D3-1 exhibited relatively high cellulase production. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis of products in the degradation liquid revealed the presence of primary sugars. The results indicated that, in the denitrification of simulated sewage, supplying maize straw flour degradation liquid (MSFDL) as the carbon source resulted in a carbon/nitrogen (C/N) ratio of 6:1 after a 24 h reaction with the denitrifying strain WH-01. The total nitrogen (TN) reduction was approximately 70 mg/L, which is equivalent to the removal efficiency observed in the glucose-fed denitrification process. Meanwhile, during a 4 h denitrification reaction in urban sewage without any denitrifying bacteria, but with MSFDL supplied as the carbon source, the TN removal efficiency reached 11 mg/L, which is approximately 70% of the efficiency of the glucose-fed denitrification process. Furthermore, experimental results revealed that strain D3-1 exhibits some capacity for nitrogen removal; when the cellulose-degrading strain D3-1 is combined with the denitrifying strain WH-01, the resulting TN removal rate surpasses that of a single denitrifying bacterium. In conclusion, as a carbon source in municipal sewage treatment, the degraded maize straw flour produced by strain D3-1 holds potential as a substitute for the glucose carbon source, and strain D3-1 has a synergistic effect with the denitrifying strain WH-01 on TN elimination. Thus, this research offers new insights and directions for advancement in environmental sewage treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 633 KiB  
Article
Effects of Genetic Diversity on Health Status and Parasitological Traits in a Wild Fish Population Inhabiting a Coastal Lagoon
by Alejandra Cruz, Esther Lantero, Carla Llinares, Laura Ortega-Díaz, Gema Castillo-García, Mar Torralva, Francisco J. Oliva-Paterna, David H. Fletcher and David Almeida
Animals 2025, 15(15), 2195; https://doi.org/10.3390/ani15152195 - 25 Jul 2025
Viewed by 61
Abstract
Host genetic variability is relevant to understanding how parasites modulate natural selection in wild fish populations. Coastal lagoons are transitional ecosystems where knowledge lacks on relationships between genotypic diversity with parasitism. The aim of this study was to assess the effect of genetic [...] Read more.
Host genetic variability is relevant to understanding how parasites modulate natural selection in wild fish populations. Coastal lagoons are transitional ecosystems where knowledge lacks on relationships between genotypic diversity with parasitism. The aim of this study was to assess the effect of genetic diversity on host health and parasitological traits in fish inhabiting a Mediterranean lagoon. Black-striped pipefish Syngnathus abaster were collected in August 2023 and 2024 from the Mar Menor (Iberian lagoon, SE Spain). Genetic diversity was measured as Internal Relatedness (IR: a homozygosity index from microsatellite markers). Population frequency was lower for the medium IR level. For this same category, both health indices (external body condition and internal organs) indicated a worse status. Parasite prevalence, abundance and an index of life-cycle complexity (heteroxenous species) were greater for the medium level of genetic diversity. Such results are explained under a scenario of parasite-mediated disruptive selection: a higher disease pressure against the phenotypically intermediate individuals. Two contrasting strategies were detected to better control parasitism at the host genotypic level: (1) high homozygosity, and (2) high heterozygosity, which probably reflects better immuno-competence as a phenotypic trait. From an evolutionary perspective, parasites play a crucial role in shaping genetic diversity within host populations. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

30 pages, 1682 KiB  
Article
Polish Farmers′ Perceptions of the Benefits and Risks of Investing in Biogas Plants and the Role of GISs in Site Selection
by Anna Kochanek, Józef Ciuła, Mariusz Cembruch-Nowakowski and Tomasz Zacłona
Energies 2025, 18(15), 3981; https://doi.org/10.3390/en18153981 - 25 Jul 2025
Viewed by 105
Abstract
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological [...] Read more.
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological or regulatory issues. This study aims to examine how Polish farmers perceive the risks and expected benefits associated with investing in biogas plants and which of these perceptions influence their willingness to invest. The research was conducted in the second quarter of 2025 among farmers planning to build micro biogas plants as well as owners of existing biogas facilities. Geographic Information System (GIS) tools were also used in selecting respondents and identifying potential investment sites, helping to pinpoint areas with favorable spatial and environmental conditions. The findings show that both current and prospective biogas plant operators view complex legal requirements, social risk, and financial uncertainty as the main obstacles. However, both groups are primarily motivated by the desire for on-farm energy self-sufficiency and the environmental benefits of improved agricultural waste management. Owners of operational installations—particularly small and medium-sized ones—tend to rate all categories of risk significantly lower than prospective investors, suggesting that practical experience and knowledge-sharing can effectively alleviate perceived risks related to renewable energy investments. Full article
(This article belongs to the Special Issue Green Additive for Biofuel Energy Production)
Show Figures

Figure 1

22 pages, 7102 KiB  
Article
Electrolytic Plasma Hardening of 20GL Steel: Thermal Modeling and Experimental Characterization of Surface Modification
by Bauyrzhan Rakhadilov, Rinat Kurmangaliyev, Yerzhan Shayakhmetov, Rinat Kussainov, Almasbek Maulit and Nurlat Kadyrbolat
Appl. Sci. 2025, 15(15), 8288; https://doi.org/10.3390/app15158288 - 25 Jul 2025
Viewed by 59
Abstract
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an [...] Read more.
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an electrolyte medium. To achieve this, a transient two-dimensional heat conduction model was developed to simulate temperature evolution in the steel sample under three voltage regimes. The model accounted for dynamic thermal properties and non-linear boundary conditions, focusing on temperature gradients across the thickness. Experimental temperature measurements were obtained using a K-type thermocouple embedded at a depth of 2 mm, with corrections for sensor inertia based on exponential response behavior. A comparison between simulation and experiment was conducted, focusing on peak temperatures, heating and cooling rates, and the effective thermal penetration depth. Microhardness profiling and metallographic examination confirmed surface strengthening and structural refinement, which intensified with increasing voltage. Importantly, the study identified a critical cooling rate threshold of approximately 50 °C/s required to initiate martensitic transformation in 20GL steel. These findings provide a foundation for future optimization of quenching strategies for low-carbon steels by offering insight into the interplay between thermal fluxes, surface kinetics, and process parameters. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

33 pages, 4531 KiB  
Article
Development of the Theory of Additional Impact on the Deformation Zone from the Side of Rolling Rolls
by Valeriy Chigirinsky, Irina Volokitina, Abdrakhman Naizabekov, Sergey Lezhnev and Sergey Kuzmin
Symmetry 2025, 17(8), 1188; https://doi.org/10.3390/sym17081188 - 25 Jul 2025
Viewed by 86
Abstract
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of [...] Read more.
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of the compression, which have certain quantitative and qualitative characteristics. These include additional loading, which is less than the main load, which implements the process of plastic deformation, and the ratio of control loads from the entrance and exit of the deformation site. According to this criterion, it follows from experimental data that the controlling effect on the plastic deformation site occurs with a ratio of additional and main loading in the range of 0.2–0.8. The next criterion is the coefficient of support, which determines the area of asymmetry of the force load and is in the range of 2.00–4.155. Furthermore, the criterion of the regulating force ratio at the boundaries of the deformation center forming a longitudinal plastic shear is within the limits of 2.2–2.5 forces and 1.3–1.4 moments of these forces. In this state, stresses and deformations of the plastic medium are able to realize the effects of plastic shaping. The force effect reduces with an increase in the unevenness of the deformation. This is due to a change in height of the longitudinal interaction of the disparate sections of the strip. There is an appearance of a new quality of loading—longitudinal plastic shear along the deformation site. The unbalanced additional force action at the entrance of the deformation source is balanced by the force source of deformation, determined by the appearance of a functional shift in the model of the stress state of the metal. The developed theory, using the generalized method of an argument of functions of a complex variable, allows us to characterize the functional shift in the deformation site using invariant Cauchy–Riemann relations and Laplace differential equations. Furthermore, the model allows for the investigation of material properties such as the yield strength and strain hardening, influencing the size and characteristics of the identified limit state zone. Future research will focus on extending the model to incorporate more complex material behaviors, including viscoelastic effects, and to account for dynamic loading conditions, more accurately reflecting real-world milling processes. The detailed understanding gained from this model offers significant potential for optimizing mill roll designs and processes for enhanced efficiency and reduced energy consumption. Full article
(This article belongs to the Special Issue Symmetry in Finite Element Modeling and Mechanics)
Show Figures

Figure 1

22 pages, 31625 KiB  
Article
The Construction and Analysis of a Spatial Gene Map of Marginal Villages in Southern Sichuan
by Jiahao Wan, Xiaoyang Guo, Zehua Wen and Xujun Zhang
Buildings 2025, 15(15), 2628; https://doi.org/10.3390/buildings15152628 - 24 Jul 2025
Viewed by 237
Abstract
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study [...] Read more.
With the acceleration of modernization, villages in Southwest China are experiencing spatial fragmentation and homogenization, leading to the loss of traditional identity. Addressing how to balance scientific planning with cultural and spatial continuity has become a key challenge in rural governance. This study takes Xuyong County in Luzhou City as a case and develops a three-tier analytical framework—“genome–spatial factors–specific indicators”—based on the space gene theory to identify, classify, and map spatial patterns in marginal villages of southern Sichuan. Through cluster analysis, common and distinctive spatial genes are extracted. Common genes—such as medium surface roughness (GeneN-2-b), medium building dispersion (GeneA-3-b), and low intelligibility (GeneT-2-b)—are prevalent across multiple village types, reflecting shared adaptive strategies to complex terrains, ecological constraints, and historical development. In contrast, distinctive genes—such as high building dispersion (GeneA-3-a) and linear boundaries (GeneB-1-c)—highlight unique spatial responses that are shaped by local cultural and environmental conditions. The results contribute to a deeper understanding of spatial morphology and adaptive mechanisms in rural settlements. This research offers a theoretical and methodological basis for village classification, conservation zoning, and spatial optimization, providing practical guidance for rural revitalization efforts focusing on both development and heritage protection. Full article
Show Figures

Figure 1

18 pages, 2018 KiB  
Article
Engineered Glibenclamide-Loaded Nanovectors Hamper Inflammasome Activation in an Ex Vivo Alzheimer’s Disease Model—A Novel Potential Therapy for Neuroinflammation: A Pilot Study
by Francesca La Rosa, Simone Agostini, Elisabetta Bolognesi, Ivana Marventano, Roberta Mancuso, Franca Rosa Guerini, Ambra Hernis, Lorenzo Agostino Citterio, Federica Piancone, Pietro Davide Trimarchi, Jorge Navarro, Federica Rossetto, Arianna Amenta, Pierfausto Seneci, Silvia Sesana, Francesca Re, Mario Clerici and Marina Saresella
Biomolecules 2025, 15(8), 1074; https://doi.org/10.3390/biom15081074 - 24 Jul 2025
Viewed by 160
Abstract
Background: Inflammasomes regulate the activation of caspases resulting in inflammation; inflammasome activation is dysregulated in Alzheimer’s disease (AD) and plays a role in the pathogenesis of this condition. Glibenclamide, an anti-inflammatory drug, could be an interesting way to down-modulate neuroinflammation. Methods: In this [...] Read more.
Background: Inflammasomes regulate the activation of caspases resulting in inflammation; inflammasome activation is dysregulated in Alzheimer’s disease (AD) and plays a role in the pathogenesis of this condition. Glibenclamide, an anti-inflammatory drug, could be an interesting way to down-modulate neuroinflammation. Methods: In this pilot study we verified with ex vivo experiments whether a glibenclamide-loaded nanovector (GNV) could reduce the NLRP3-inflammasome cascade in cells of AD patients. Monocytes isolated from healthy controls (HC) and AD patients were cultured in medium, alone or stimulated with LPS + nigericin in presence/absence of GNV. ASC-speck positive cells and inflammasome-related genes, proteins, and miRNAs expressions were measured. The polymorphisms of ApoE (Apolipoprotein E), specifically rs7412 and rs429358, as well as those of NLRP3, namely rs35829419, rs10733113, and rs4925663, were also investigated. Results: Results showed that ASC-speck+ cells and Caspase-1, IL-1β, and IL-18 production was significantly reduced (p < 0.005 in all cases) by GNV in LPS + nigericin-stimulated cells of both AD and HC. Notably, the NLRP3 rs10733113 AG genotype was associated with excessive inflammasome-related gene and protein expression. GNV significantly down-regulates inflammasome activation in primary monocytes, at least at protein levels, and its efficacy seems to partially depend on the presence of the NLRP3 rs10733113 genotype. Conclusions: All together, these results showed that GNV is able to dampen inflammation and NLRP-3 inflammasome activation in an ex vivo monocyte model, suggesting a possible role for GNV in controlling AD-associated neuroinflammation. Full article
Show Figures

Figure 1

Back to TopTop