Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (605)

Search Parameters:
Keywords = medicated film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2868 KiB  
Article
The Biocorrosion of a Rare Earth Magnesium Alloy in Artificial Seawater Containing Chlorella vulgaris
by Xinran Yao, Qi Fu, Guang-Ling Song and Kai Wang
Materials 2025, 18(15), 3698; https://doi.org/10.3390/ma18153698 - 6 Aug 2025
Abstract
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the [...] Read more.
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the surface of Mg alloys, resulting in biocorrosion damage, which is really troublesome in the maritime industry and can even be disastrous to the navy. Currently, there is a lack of research on the biocorrosion of Mg alloys that may find important applications in marine engineering. In this paper, the biocorrosion mechanism of the Mg alloy Mg-3Nd-2Gd-Zn-Zr caused by Chlorella vulgaris (C. vulgaris), a typical marine microalga, was studied. The results showed that the biomineralization process in the artificial seawater containing a low concentration of C. vulgaris cells was accelerated compared with that in the abiotic artificial seawater, leading to the deposition of CaCO3 on the surface to inhibit the localized corrosion of the Mg alloy, whereas a high concentration of C. vulgaris cells produced a high content of organic acids at some sites through photosynthesis to significantly accelerate the surface film rupture at some sites and severe localized corrosion there, but meanwhile, it resulted in the formation of a more protective biomineralized film in the other areas to greatly alleviate the corrosion. The contradictory biocorrosion behaviors on the Mg-3Nd-2Gd-Zn-Zr alloy induced by C. vulgaris were finally explained by a mechanism proposed in the paper. Full article
(This article belongs to the Section Corrosion)
19 pages, 4756 KiB  
Article
Quasi-3D Mechanistic Model for Predicting Eye Drop Distribution in the Human Tear Film
by Harsha T. Garimella, Carly Norris, Carrie German, Andrzej Przekwas, Ross Walenga, Andrew Babiskin and Ming-Liang Tan
Bioengineering 2025, 12(8), 825; https://doi.org/10.3390/bioengineering12080825 - 30 Jul 2025
Viewed by 232
Abstract
Topical drug administration is a common method of delivering medications to the eye to treat various ocular conditions, including glaucoma, dry eye, and inflammation. Drug efficacy following topical administration, including the drug’s distribution within the eye, absorption and elimination rates, and physiological responses [...] Read more.
Topical drug administration is a common method of delivering medications to the eye to treat various ocular conditions, including glaucoma, dry eye, and inflammation. Drug efficacy following topical administration, including the drug’s distribution within the eye, absorption and elimination rates, and physiological responses can be predicted using physiologically based pharmacokinetic (PBPK) modeling. High-resolution computational models of the eye are desirable to improve simulations of drug delivery; however, these approaches can have long run times. In this study, a fast-running computational quasi-3D (Q3D) model of the human tear film was developed to account for absorption, blinking, drainage, and evaporation. Visualization of blinking mechanics and flow distributions throughout the tear film were enabled using this Q3D approach. Average drug absorption throughout the tear film subregions was quantified using a high-resolution compartment model based on a system of ordinary differential equations (ODEs). Simulations were validated by comparing them with experimental data from topical administration of 0.1% dexamethasone suspension in the tear film (R2 = 0.76, RMSE = 8.7, AARD = 28.8%). Overall, the Q3D tear film model accounts for critical mechanistic factors (e.g., blinking and drainage) not previously included in fast-running models. Further, this work demonstrated methods toward improved computational efficiency, where central processing unit (CPU) time was decreased while maintaining accuracy. Building upon this work, this Q3D approach applied to the tear film will allow for more seamless integration into full-body models, which will be an extremely valuable tool in the development of treatments for ocular conditions. Full article
Show Figures

Figure 1

15 pages, 4855 KiB  
Article
An Investigation of the Surface-Regulating Mechanism of Tungsten Alloys Using the Electrochemical Polishing Process
by Yachun Mao, Yanqiu Xu, Shiru Le, Maozhong An, Zhijiang Wang and Yuhan Zhang
Solids 2025, 6(3), 39; https://doi.org/10.3390/solids6030039 - 24 Jul 2025
Viewed by 265
Abstract
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic [...] Read more.
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic polishing offers high efficiency, low workpiece wear, and simple processing. In this study, an electrolytic polishing method is adopted and a novel trisodium phosphate–sodium hydroxide electrolytic polishing electrolyte is developed to study the effects of temperature, voltage, polishing time, and solution composition on the surface roughness of a tungsten–nickel–iron alloy. The optimal voltage, temperature, and polishing time are determined to be 15 V, 55 °C, and 35 s, respectively, when the concentrations of trisodium phosphate and sodium hydroxide are 100 g·L−1 and 6 g·L−1. In addition, glycerol is introduced into the electrolyte as an additive. The calculated LUMO value of glycerol is −5.90 eV and the HOMO value is 0.40 eV. Moreover, electron enrichment in the hydroxyl region of glycerol can form an adsorption layer on the surface of the tungsten alloy, inhibit the formation of micro-pits, balance ion diffusion, and thus promote the formation of a smooth surface. At 100 mL·L−1 of glycerol, the roughness of the tungsten–nickel–iron alloy decreases significantly from 1.134 μm to 0.582 μm. The electrochemical polishing mechanism of the tungsten alloy in a trisodium phosphate electrolyte is further investigated and explained according to viscous film theory. This study demonstrates that the trisodium phosphate–sodium hydroxide–glycerol electrolyte is suitable for electropolishing tungsten–nickel–iron alloys. Overall, the results support the application of tungsten–nickel–iron alloy in the electronics, medical, and atomic energy industries. Full article
Show Figures

Graphical abstract

20 pages, 9221 KiB  
Article
Establishing Linearity of the MOSkin Detector for Ultra-High Dose-per-Pulse, Very-High-Energy Electron Radiotherapy Using Dose-Rate-Corrected EBT-XD Film
by James Cayley, Elette Engels, Tessa Charles, Paul Bennetto, Matthew Cameron, Joel Poder, Daniel Hausermann, Jason Paino, Duncan Butler, Dean Cutajar, Marco Petasecca, Anatoly Rosenfeld, Yaw-Ren Eugene Tan and Michael Lerch
Appl. Sci. 2025, 15(14), 8101; https://doi.org/10.3390/app15148101 - 21 Jul 2025
Viewed by 268
Abstract
Very-high-energy electrons, coupled with ultra-high dose rates, are being explored for their potential use in radiotherapy to treat deep-seated tumours. The dose per pulse needed to achieve ultra-high dose rates far exceeds the limit of current medical linear accelerator capabilities. A high dose [...] Read more.
Very-high-energy electrons, coupled with ultra-high dose rates, are being explored for their potential use in radiotherapy to treat deep-seated tumours. The dose per pulse needed to achieve ultra-high dose rates far exceeds the limit of current medical linear accelerator capabilities. A high dose per pulse has been observed as the limiting factor for many existing dosimeters, resulting in saturation at doses far below what is required. The MOSkin, an existing clinical quality assurance dosimeter, has previously been demonstrated as dose rate independent but has not been subjected to a high dose per pulse. Within this study, the MOSkins dose-per-pulse response was tested for linearity, with a dose per pulse as high as 23 Gy within 200 ns at the ANSTO Australian Synchrotron’s Pulsed Energetic Electrons for Research facility. While using EBT-XD film as a reference dosimeter, a dose rate dependence of the EBT-XD was discovered. Once confirmed and a correction factor established, EBT-XD was used as an independent reference measurement. This work presents confirmation of the MOSkin suitability for ultra-high dose-rate environments with an electron energy of 100 MeV, and a theoretical discussion of its dose-rate and dose-per-pulse independence; the MOSkin is the only detector suitable for both clinical quality assurance, and ultra-high dose-rate measurements in its standard, unmodified form. Full article
Show Figures

Figure 1

16 pages, 6023 KiB  
Article
Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging
by Justyna Jakubska, Andrzej Hudecki, Dominika Kluska, Paweł Grzybek, Klaudiusz Gołombek, Wojciech Pakieła, Hanna Spałek, Patryk Włodarczyk, Aleksandra Kolano-Burian and Gabriela Dudek
Foods 2025, 14(14), 2470; https://doi.org/10.3390/foods14142470 - 14 Jul 2025
Viewed by 416
Abstract
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer [...] Read more.
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer film production method, combining electrospun polycaprolactone (PCL) fibers with a chitosan matrix. Two configurations were investigated: (1) nonwoven PCL layers placed between chitosan sheets and (2) a chitosan sheet sandwiched between two nonwoven PCL layers. Both systems were evaluated using PCL fibers derived from medical-grade and technical-grade polymers. The chitosan/polycaprolactone/chitosan (CH/PCL/CH) configuration demonstrated superior performance, achieving enhanced interlayer cohesion and significantly improved mechanical strength, durability, and barrier properties. Notably, this configuration achieved tensile strength and elongation at break values of 57.1 MPa and 36.3%, respectively—more than double those of pure chitosan films. This breakthrough underscores the potential of multilayered biopolymer films as eco-friendly packaging solutions, offering exceptional promise for sustainable applications in the food packaging industry. Full article
Show Figures

Graphical abstract

12 pages, 3535 KiB  
Article
TiN-Ag Multilayer Protective Coatings for Surface Modification of AISI 316 Stainless Steel Medical Implants
by Božana Petrović, Dijana Mitić, Minja Miličić Lazić, Miloš Lazarević, Anka Trajkovska Petkoska, Ilija Nasov, Slavoljub Živković and Vukoman Jokanović
Coatings 2025, 15(7), 820; https://doi.org/10.3390/coatings15070820 - 14 Jul 2025
Viewed by 328
Abstract
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film [...] Read more.
Stainless steel (SS) is one of the materials most commonly utilized for fabrication of medical implants and its properties are often improved by deposition of protective coatings. This study investigates certain physico-chemical and biological properties of SS substrate coated with multilayer thin film consisting of titanium nitride and silver layers (TiN-Ag film). TiN-Ag films were deposited on the surface of AISI 316 SS substrate by a combination of cathodic arc evaporation and DC magnetron sputtering. SS substrate was analyzed by TEM, while deposited coatings were analyzed by SEM, EDS and wettability measurements. Also, mitochondrial activity assay, and osteogenic and chondrogenic differentiation were performed on dental pulp stem cells (DPSCs). SEM and EDS revealed excellent adhesion between coatings’ layers, with the top layer predominantly composed of Ag, which is responsible for antibacterial properties. TiN-Ag film exhibited moderately hydrophilic behaviour which is desirable for orthopedic implant applications. Biological assays revealed significantly higher mitochondrial activity and enhanced osteogenic and chondrogenic differentiation of DPSC on TiN-Ag films compared to TiN films. The newly designed TiN-Ag coatings showed a great potential for the surface modification of SS implants, and further detailed investigations will explore their suitability for application in clinical practice. Full article
Show Figures

Figure 1

14 pages, 1800 KiB  
Article
Design of a Photonic Crystal Fiber Optic Magnetic Field Sensor Based on Surface Plasmon Resonance
by Yuxuan Yi, Hua Yang, Tangyou Sun, Zao Yi, Zigang Zhou, Chao Liu and Yougen Yi
Sensors 2025, 25(13), 3931; https://doi.org/10.3390/s25133931 - 24 Jun 2025
Viewed by 500
Abstract
To enhance the sensing performance of fiber-optic magnetic field sensors, we explored the design, optimization, and application prospects of a D-type fiber-optic magnetic field sensor. This D-type PCF-SPR sensor is metal coated on one side (the metal used in this study is gold), [...] Read more.
To enhance the sensing performance of fiber-optic magnetic field sensors, we explored the design, optimization, and application prospects of a D-type fiber-optic magnetic field sensor. This D-type PCF-SPR sensor is metal coated on one side (the metal used in this study is gold), which serves as the active metal for SPR and enhances structural stability. Magnetic fluid is applied on the outer side of the gold film for SPR magnetic field sensing. Six internal air holes arranged in a hexagonal shape form a central light transmission channel that facilitates the connection between the two modes, which are the sensor’s core mode and SPP mode, respectively. The outer six large air holes and two small air holes are arranged in a circular pattern to form the cladding, which allows for better energy transmission and reduces energy loss in the fiber. In this paper, the finite element method is employed to analyze the transmission performance of the sensor, focusing on the transmission mode. Guidelines for optimizing the PCF-SPR sensor are derived from analyzing the fiber optic sensor’s dispersion curve, the impact of surface plasmon excitation mode, and the core mode energy on sensing performance. After analyzing and optimizing the transmission mode and structural parameters, the optimized sensor achieves a magnetic field sensitivity of 18,500 pm/mT and a resolution of 54 nT. This performance is several orders of magnitude higher than most other sensors in terms of sensitivity and resolution. The SPR-PCF magnetic field sensor offers highly sensitive and accurate magnetic field measurements and shows promising applications in medical and industrial fields. Full article
(This article belongs to the Special Issue Advances and Applications of Magnetic Sensors: 2nd Edition)
Show Figures

Figure 1

12 pages, 638 KiB  
Article
YouTube as a Source of Patient Information for Cerebral Palsy
by Julia Stelmach, Jakub Rychlik, Marta Zawadzka and Maria Mazurkiewicz-Bełdzińska
Healthcare 2025, 13(13), 1492; https://doi.org/10.3390/healthcare13131492 - 23 Jun 2025
Viewed by 427
Abstract
Background/objectives: Social media has significantly enhanced access to medical knowledge by enabling rapid information sharing. With YouTube being the second-most popular website, we intended to evaluate the quality of its content as a source of information for patients and relatives for information about [...] Read more.
Background/objectives: Social media has significantly enhanced access to medical knowledge by enabling rapid information sharing. With YouTube being the second-most popular website, we intended to evaluate the quality of its content as a source of information for patients and relatives for information about cerebral palsy. Methods: The first 30 videos for search terms “Cerebral palsy”, “Spastic cerebral palsy”, “Dyskinetic cerebral palsy”, “Worster-Drought syndrome”, and “Ataxic cerebral palsy” were selected for inquiry. Out of 150 films, a total of 83 were assessed with a mixed method approach by two independent raters utilizing evidence-based quality scales such as Quality Criteria for Consumer Health Information (DISCERN), the Journal of the American Medical Association instrument (JAMA), and the Global Quality Score (GQS). Furthermore, audience engagement was analyzed, and the Video Power Index (VPI) was calculated for each video. Results: The mean total DISCERN score excluding the final question (subjective assessment of the video) was 30.5 ± 8.7 (out of 75 points), implying that the quality of the videos was poor. The global JAMA score was 2.36 ± 0.57 between the raters. The mean GQS score reached 2.57 ± 0.78. The videos had statistically higher DISCERN scores when they included treatment options, risk factors, anatomy, definition, information for doctors, epidemiology, doctor as a speaker, and patient experience. Conclusions: YouTube seems to be a poor source of information for patients and relatives on cerebral palsy. The analysis can contribute to creating more engaging, holistic, and informative videos regarding this topic. Full article
(This article belongs to the Section TeleHealth and Digital Healthcare)
Show Figures

Figure 1

15 pages, 6874 KiB  
Article
Automated Image-Based Wound Area Assessment in Outpatient Clinics Using Computer-Aided Methods: A Development and Validation Study
by Kuan-Chen Li, Ying-Han Lee and Yu-Hsien Lin
Medicina 2025, 61(6), 1099; https://doi.org/10.3390/medicina61061099 - 17 Jun 2025
Viewed by 600
Abstract
Background and Objectives: Traditionally, we evaluate the size of a wound by using Opsite Flexigrid transparent film dressing, placing it over the wound, tracing the edges of the wound, and then calculating the area. However, this method is both time-consuming and subjective, often [...] Read more.
Background and Objectives: Traditionally, we evaluate the size of a wound by using Opsite Flexigrid transparent film dressing, placing it over the wound, tracing the edges of the wound, and then calculating the area. However, this method is both time-consuming and subjective, often leading to varying results depending on the individual performing the assessment. In this study, our goal is to provide an objective method to calculate the wound size and solve variations in photo-taking distance caused by different medical practitioners or at different times, as these can lead to inaccurate wound size assessments. To evaluate this, we employed K-means clustering and used a QR code as a reference to analyze images of the same wound captured at varying distances, objectively quantifying the areas of 40 wounds. This study aims to develop an objective method for calculating the wound size, addressing variations in photo-taking distance that occur across different medical personnel or time points—factors that can compromise measurement accuracy. By improving consistency and reducing the manual workload, this approach also seeks to enhance the efficiency of healthcare providers. We applied K-means clustering for wound segmentation and used a QR code as a spatial reference. Images of the same wounds taken at varying distances were analyzed, and the wound areas of 40 cases were objectively quantified. Materials and Methods: We employed K-means clustering and used a QR code as a reference to analyze wound photos taken by different medical practitioners in the outpatient consulting room. K-means clustering is a machine learning algorithm that segments the wound region by grouping pixels in an image according to their color similarity. It organizes data points into clusters based on shared features. Based on this algorithm, we can use it to identify the wound region and determine its pixel area. We also used a QR code as a reference because of its unique graphical pattern. We used the printed QR code on the patient’s identification sticker as a reference for length. By calculating the ratio of the number of pixels within the square area of the QR code to its actual area, we applied this ratio to the detected wound pixel area, enabling us to calculate the wound’s actual size. The printed patient identification stickers were all uniform in size and format, allowing us to apply this method consistently to every patient. Results: The results support the accuracy of our algorithm when tested on a standard one-cent coin. The paired t-test comparing the first and second photos shot yielded a p-value of 0.370, indicating no significant difference between the two. Similarly, the t-test comparing the first and third photos shot produced a p-value of 0.179, also showing no significant difference. The comparison between the second and third photos shot resulted in a p-value of 0.547, again indicating no significant difference. Since all p-values are greater than 0.05, none of the test pairs show statistically significant differences. These findings suggest that the three randomly taken photo shots produce consistent results and can be considered equivalent. Conclusions: Our algorithm for wound area assessment is highly reliable, interchangeable, and consistently produces accurate results. This objective and practical method can aid clinical decision-making by tracking wound progression over time. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

19 pages, 3044 KiB  
Article
Automated 3D Printing-Based Non-Sterile Compounding Technology for Pediatric Corticosteroid Dosage Forms in a Health System Pharmacy Setting
by M. Brooke Bernhardt, Farnaz Shokraneh, Ludmila Hrizanovska, Julius Lahtinen, Cynthia A. Brasher and Niklas Sandler
Pharmaceutics 2025, 17(6), 762; https://doi.org/10.3390/pharmaceutics17060762 - 9 Jun 2025
Cited by 1 | Viewed by 886
Abstract
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage [...] Read more.
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage forms were prepared in a hospital pharmacy setting using a proprietary excipient base and standardized procedures, including automated dosing and syringe heating when required. Three dosage forms—3.2 mg gel tablets, 2.8 mg water-free troches, and 1.2 mg orodispersible films (ODFs)—were selected to demonstrate the platform’s versatility and to address pediatric needs for varying strengths and dosage types. All products were prepared using a reproducible semi-solid extrusion (SSE)-based workflow with the consistent API-excipient blending and automated deposition. Results: Analytical testing confirmed that all formulations met pharmacopeial criteria for mass and content uniformity. The ODF and troche forms achieved rapid drug release, exceeding 75% within 5 min, while the gel tablet showed a slower release profile, reaching 86% by 60 min. Additionally, in-process homogeneity testing across syringe printing cycles confirmed the consistent API distribution. Conclusions: The results support the feasibility of integrating automated compounding technologies into pharmacy workflows. Such systems can improve accuracy, minimize variability, and streamline the production of customized pediatric medications, particularly for drugs with poor palatability or narrow therapeutic windows. Overall, this study highlights the potential of automation to modernize non-sterile compounding, and to better support individualized therapy. Full article
Show Figures

Figure 1

10 pages, 1863 KiB  
Case Report
Corneal Perforation as a Possible Ocular Adverse Event Caused by Cabozantinib: A Clinical Case and Brief Review
by Carmelo Laface, Luca Scartozzi, Chiara Pisano, Paola Vanella, Antonio Greco, Agostino Salvatore Vaiano and Gianmauro Numico
J. Clin. Med. 2025, 14(12), 4052; https://doi.org/10.3390/jcm14124052 - 8 Jun 2025
Viewed by 730
Abstract
Background: Cabozantinib is a Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor (VEGFR-TKI). These drugs are employed as therapy for several malignancies. In detail, Cabozantinib has demonstrated its efficacy against several malignancies. On the other hand, Cabozantinib and other VEGFR-TKIs can be responsible [...] Read more.
Background: Cabozantinib is a Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor (VEGFR-TKI). These drugs are employed as therapy for several malignancies. In detail, Cabozantinib has demonstrated its efficacy against several malignancies. On the other hand, Cabozantinib and other VEGFR-TKIs can be responsible for various adverse events (AEs), in particular hepatic and dermatological AEs. Methods: To date, limited data are available in the literature regarding ocular AEs due to therapy with these drugs. In this regard, one case of corneal perforation during treatment with a VEGFR-TKI, Regorafenib, has been reported, while there are no data about Cabozantinib. In this paper, we present another clinical case of corneal perforation in a patient affected by advanced RCC and treated with Cabozantinib as a second-line therapy. The patient started Cabozantinib at the dosage of 60 mg/die although it was necessary to apply some dose reductions because of grade 2 AEs (according to CTCAE v6.0), such as asthenia, diarrhea, dysgeusia, and loss of appetite. Results: After approximately 15 months of treatment, the patient began to experience pain and vision loss in the right eye. A diagnosis of corneal perforation was made, followed by medical and surgical treatment. As regards the etiology of this pathology, all other possible causes were excluded, including a history of ocular disease, contact trauma, exposure to damaging agents (e.g., chemical agents and prolonged use of drugs such as topical NSAIDs), infections, or dry eye. Therefore, we hypothesized a correlation with Cabozantinib’s mechanisms of action and paused its administration. Conclusions: Cabozantinib may alter the ocular environment due to a lack of or imbalance in growth factors in the tear film, with a reduction in corneal epithelium proliferation. This condition might cause dry eye and a delay in corneal healing. Therefore, particular importance should be placed on ophthalmologic surveillance during treatment with these drugs in patients who develop ocular symptoms. Further in vitro and in vivo studies are necessary to deepen the knowledge about VEGFR-TKI-mediated ocular AEs. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

29 pages, 3201 KiB  
Review
Screen Printing for Energy Storage and Functional Electronics: A Review
by Juan C. Rubio and Martin Bolduc
Electron. Mater. 2025, 6(2), 7; https://doi.org/10.3390/electronicmat6020007 - 30 May 2025
Cited by 1 | Viewed by 1845
Abstract
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, [...] Read more.
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, mesh selection and squeegee dynamics govern film uniformity, pattern resolution and ultimately device performance. Recent progress in advanced ink systems is surveyed, highlighting carbon allotropes (graphene, carbon nano-onions, carbon nanotubes, graphite), silver and copper nanostructures, MXene and functional oxides that collectively enhance mechanical robustness, electrical conductivity and radio-frequency behavior. Parallel improvements in substrate engineering such as polyimide, PET, TPU, cellulose and elastomers demonstrate the technique’s capacity to accommodate complex geometries for wearable, medical and industrial applications while supporting environmentally responsible material choices such as water-borne binders and bio-based solvents. By mapping two decades of developments across energy-storage layers and functional electronics, the article identifies the key process elements, recurring challenges and emerging sustainable practices that will guide future optimization of screen-printing materials and protocols for high-performance, customizable and eco-friendly flexible devices. Full article
Show Figures

Figure 1

21 pages, 4466 KiB  
Article
Quality and Lifetime of Thin Parylene F-VT4 Coatings for Hermetic Encapsulation of Implantable Medical Devices
by Esmaeil Afshari, Rik Verplancke, Maarten Cauwe and Maaike Op de Beeck
Coatings 2025, 15(6), 648; https://doi.org/10.3390/coatings15060648 - 28 May 2025
Cited by 1 | Viewed by 2749
Abstract
This study comprehensively examines the barrier properties, aging behavior, and failure mechanisms of Parylene F-VT4 films, applied at four distinct thicknesses (0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm), as encapsulation layers for implantable medical devices. Parylene F-VT4, a fluorinated polymer known [...] Read more.
This study comprehensively examines the barrier properties, aging behavior, and failure mechanisms of Parylene F-VT4 films, applied at four distinct thicknesses (0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm), as encapsulation layers for implantable medical devices. Parylene F-VT4, a fluorinated polymer known for its mechanical flexibility, thermal stability, and chemical inertness, is a promising candidate for long-term hermetic encapsulation. Parylene F-VT4 was uniformly deposited via a dedicated chemical vapor deposition (CVD) process typically used for Parylene depositions. The investigation of the Parylene F-VT4 films included pinhole density characterization, electrochemical impedance spectroscopy (EIS), and testing of coating lifetime based on the resistance of Cu meanders protected by Parylene F-VT4 when immersed in phosphate-buffered saline (PBS) under accelerated aging conditions (PBS at 60 °C) over 550 days. The EIS results demonstrated that thicker coatings (1.2 µm) exhibited excellent barrier properties and resistance to electrolyte penetration, whereas thinner coatings (0.3 µm and 0.6 µm) showed more rapid degradation due to microvoids and pinholes. The temporal evaluation of EIS spectra highlighted the gradual decrease in impedance magnitude, indicating the ingress of ions and water into the coating. The lifetime in PBS at 60 °C was determined by resistance-based lifetime measurements on Cu meander structures coated with Parylene F-VT4 coatings. The lifetime at 37 °C was calculated, assuming an acceleration factor of 2 per 10 °C increase in temperature, yielding lifetimes of approximately 25 days, 6.4 months, 2.3 years, and 4.5 years for 0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm coatings, respectively. These findings highlight the critical relationship between thickness and durability, providing valuable insights into the long-term performance of thin Parylene F-VT4 films for implantable devices. Full article
(This article belongs to the Special Issue Thin Film Coatings for Medical Biosensing Applications)
Show Figures

Graphical abstract

20 pages, 1490 KiB  
Review
Liposome-Based Drug Delivery Systems: From Laboratory Research to Industrial Production—Instruments and Challenges
by Suman Basak and Tushar Kanti Das
ChemEngineering 2025, 9(3), 56; https://doi.org/10.3390/chemengineering9030056 - 27 May 2025
Cited by 3 | Viewed by 2779
Abstract
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid [...] Read more.
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid clearance. This review provides a comprehensive exploration of the evolution of liposomes from laboratory models to clinically approved therapeutics, highlighting their structural adaptability, functional tunability, and transformative impact on modern medicine. We discuss pivotal laboratory-scale preparation techniques, including thin-film hydration, ethanol injection, and reverse-phase evaporation, along with their inherent advantages and limitations. The challenges of transitioning to industrial-scale production are examined, with emphasis on achieving batch-to-batch consistency, scalability, regulatory compliance, and cost-effectiveness. Innovative strategies, such as the incorporation of microfluidic systems and advanced process optimization, are explored to address these hurdles. The clinical success of Food and Drug Administration (FDA)-approved liposomal formulations such as Doxil® and AmBisome® underscores their efficacy in treating conditions ranging from cancer to fungal infections. Furthermore, this review delves into emerging trends, including stimuli-responsive and hybrid liposomes, as well as their integration with nanotechnology for enhanced therapeutic precision. As liposomes continue to expand their role in gene therapy, theranostics, and personalized medicine, this review highlights their potential to redefine pharmaceutical applications. Despite existing challenges, ongoing advancements in formulation techniques and scalability underscore the bright future of liposome-based therapeutics in addressing unmet medical needs. Full article
Show Figures

Figure 1

11 pages, 469 KiB  
Article
Medically Attended Outpatient Parainfluenza Virus Infections in Young Children from a Single Site in Machala, Ecuador
by Manika Suryadevara, Dongliang Wang, Freddy Pizarro Fajardo, Jorge Luis Carrillo Aponte, Froilan Heras, Cinthya Cueva Aponte, Irene Torres and Joseph Domachowske
Int. J. Environ. Res. Public Health 2025, 22(6), 821; https://doi.org/10.3390/ijerph22060821 - 23 May 2025
Viewed by 474
Abstract
Parainfluenza virus (PIV) infections contribute to the overall childhood morbidity from acute respiratory illness, yet virus-specific epidemiologic data are lacking across many regions globally. Here, we describe the clinical manifestations, seasonality, and meteorologic associations with PIV infections in Ecuadorian children. Between July 2018 [...] Read more.
Parainfluenza virus (PIV) infections contribute to the overall childhood morbidity from acute respiratory illness, yet virus-specific epidemiologic data are lacking across many regions globally. Here, we describe the clinical manifestations, seasonality, and meteorologic associations with PIV infections in Ecuadorian children. Between July 2018 and July 2023, we documented demographic and clinical information from children younger than 5 years seen in a single public health clinic with signs and symptoms consistent with an acute respiratory infection. Nasopharyngeal swabs collected at study enrollment underwent multiplex polymerase chain reaction-based diagnostic testing (Biofire FilmArray v. 1.7™). Regional meteorological data from the same period were provided by Ecuador’s Instituto Nacional de Meteorologia e Hidrologia. Parainfluenza viruses were detected in 9% of the 1251 enrolled subjects. PIVs were most frequently detected between March and July, with no change in seasonality following SARS-CoV-2 pandemic onset. Clinical manifestations of PIV infections included non-specific upper respiratory illness (82%), laryngotracheitis (3%), and bronchiolitis (11%). Events of PIV detection were negatively associated with ambient temperature and rainfall. Our findings highlight the contribution that PIVs play in the morbidity associated with pediatric medically attended outpatient respiratory tract infection and provide new insights into the seasonal epidemiology of PIV infections in coastal Ecuador. Full article
Show Figures

Figure 1

Back to TopTop