3D Printing—Current Pharmaceutical Applications and Future Directions

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Pharmaceutical Technology, Manufacturing and Devices".

Deadline for manuscript submissions: 10 January 2026 | Viewed by 3029

Special Issue Editors


E-Mail Website
Guest Editor
1. Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina
2. Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina
Interests: pharmaceutical 3D printing; food 3D printing; pharmaceutical continuous manufacturing; solid processes; modeling; particulate systems

E-Mail Website
Guest Editor
Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
Interests: human and veterinary pharmaceuticals; advanced drug delivery; cancer; infection; 3D printing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina
2. Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca 8000, Argentina
Interests: pharmaceutical 3D printing; drug delivery; spray drying; pharmaceutical porous particles

Special Issue Information

Dear Colleagues,

Three-dimensional printing (3DP) is one of the most widespread and promising emerging technologies, representing a dynamic field of creativity and innovation with the potential to significantly impact people's lives. One exciting application is the development of personalized products in the pharmaceutical sector. This technology transforms a 3D digital model into a physical object through layer-by-layer material deposition, controlled by software. This method of constructing gives significant potential for developing pharmaceutical forms with flexible dosing, unique geometric shapes, combinations of multiple drugs in a single unit, and the formulation of modified release profiles. Factors driving the growth of the printed drug market include extensive R&D activities and the adoption of personalized medications. The implementation of 3DP in creating tailored drug therapies opens promising opportunities to improve patient care. This Special Issue welcomes both original and review articles that explore current applications and future directions in the 3D printing of pharmaceutical products.

Dr. Ivana M. Cotabarren
Prof. Dr. Sanjay Garg
Dr. Loreana C. Gallo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • 3D printing
  • pharmaceutical products
  • 3D printers
  • personalized drug delivery
  • additive manufacturing
  • new materials for 3D printing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3044 KiB  
Article
Automated 3D Printing-Based Non-Sterile Compounding Technology for Pediatric Corticosteroid Dosage Forms in a Health System Pharmacy Setting
by M. Brooke Bernhardt, Farnaz Shokraneh, Ludmila Hrizanovska, Julius Lahtinen, Cynthia A. Brasher and Niklas Sandler
Pharmaceutics 2025, 17(6), 762; https://doi.org/10.3390/pharmaceutics17060762 - 9 Jun 2025
Viewed by 420
Abstract
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage [...] Read more.
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage forms were prepared in a hospital pharmacy setting using a proprietary excipient base and standardized procedures, including automated dosing and syringe heating when required. Three dosage forms—3.2 mg gel tablets, 2.8 mg water-free troches, and 1.2 mg orodispersible films (ODFs)—were selected to demonstrate the platform’s versatility and to address pediatric needs for varying strengths and dosage types. All products were prepared using a reproducible semi-solid extrusion (SSE)-based workflow with the consistent API-excipient blending and automated deposition. Results: Analytical testing confirmed that all formulations met pharmacopeial criteria for mass and content uniformity. The ODF and troche forms achieved rapid drug release, exceeding 75% within 5 min, while the gel tablet showed a slower release profile, reaching 86% by 60 min. Additionally, in-process homogeneity testing across syringe printing cycles confirmed the consistent API distribution. Conclusions: The results support the feasibility of integrating automated compounding technologies into pharmacy workflows. Such systems can improve accuracy, minimize variability, and streamline the production of customized pediatric medications, particularly for drugs with poor palatability or narrow therapeutic windows. Overall, this study highlights the potential of automation to modernize non-sterile compounding, and to better support individualized therapy. Full article
Show Figures

Figure 1

19 pages, 5644 KiB  
Article
3D Printing of PVA Capsular Devices for Applications in Compounding Pharmacy: Stability Evaluation and In Vivo Performance
by Juan Francisco Peña, Daniel Andrés Real, Juan Pablo Real, Santiago Daniel Palma, María del Pilar Zarazaga, Nicolás Javier Litterio, Loreana Gallo and Ivana Maria Cotabarren
Pharmaceutics 2025, 17(5), 613; https://doi.org/10.3390/pharmaceutics17050613 - 5 May 2025
Cited by 1 | Viewed by 514
Abstract
Background: The personalization of medication through 3D printing enables the development of capsular devices (CDs) tailored to patient-specific needs. This study aimed to evaluate the stability and in vivo performance of 3D-printed polyvinyl alcohol (PVA) CDs with 0.4 and 0.9 mm width [...] Read more.
Background: The personalization of medication through 3D printing enables the development of capsular devices (CDs) tailored to patient-specific needs. This study aimed to evaluate the stability and in vivo performance of 3D-printed polyvinyl alcohol (PVA) CDs with 0.4 and 0.9 mm width wall thicknesses (WT) compared to traditional hard gelatin capsules (HGCs). Methods: Capsules were tested for swelling, erosion, adhesion, water sorption, and in vitro disintegration. Additionally, the release of the model drug (losartan potassium) from CDs was evaluated. In vivo capsule opening times were assessed in dogs using X-ray imaging. Stability studies were conducted under natural (25 ± 2 °C, 60 ± 5% RH) and accelerated (40 ± 2 °C, 75 ± 5% RH) storage conditions. Results: CDs with 0.4 mm WT (CD–0–0.4) exhibited higher swelling and erosion, lower adhesion, and faster disintegration, leading to a more immediate drug release, comparable to HGCs. A strong correlation was found between in vitro and in vivo disintegration behavior. Water sorption tests revealed lower moisture affinity for PVA CDs compared to HGC. Stability studies showed that CD–0–0.4 retained its physical and chemical properties. Instead, CDs with 0.9 mm WT (CD–0–0.9) were sensitive to storage, particularly under accelerated aging, which affected their integrity and release profile. Conclusions: These findings highlight the potential of PVA-CDs, especially the 0.4 mm design, as a promising and stable alternative for compounding pharmacy applications, offering an effective platform for personalized oral drug delivery. Full article
Show Figures

Figure 1

24 pages, 3117 KiB  
Article
Solidago canadensis L. Herb Extract, Its Amino Acids Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological, Molecular Docking and Pharmacological Research
by Oleh Koshovyi, Yurii Hrytsyk, Lina Perekhoda, Marharyta Suleiman, Valdas Jakštas, Vaidotas Žvikas, Lyubov Grytsyk, Oksana Yurchyshyn, Jyrki Heinämäki and Ain Raal
Pharmaceutics 2025, 17(4), 407; https://doi.org/10.3390/pharmaceutics17040407 - 24 Mar 2025
Viewed by 599
Abstract
Background/Objectives: The Canadian goldenrod (Solidago canadensis L.) is one of the most widespread species of the genus Solidago from the Asteraceae family. It has a rich composition of biologically active compounds and is traditionally used to address kidney, urinary tract, and [...] Read more.
Background/Objectives: The Canadian goldenrod (Solidago canadensis L.) is one of the most widespread species of the genus Solidago from the Asteraceae family. It has a rich composition of biologically active compounds and is traditionally used to address kidney, urinary tract, and liver diseases. Previously, it was proven that the S. canadensis extract obtained with a 40% ethanol solution had the most promising anti-inflammatory and hepatoprotective activity. Therefore, this extract was selected for the further formulation of amino acid preparations and 3D-printed dosage forms. The aims of the present study were to investigate the chemical composition, toxicity, and antimicrobial, anti-inflammatory, and hepatoprotective activity of S. canadensis dry extract, its amino acid preparations, and 3D-printed dosage forms. Results: A total of 18 phenolic compounds and 14 amino acids were determined in the extracts. The S. canadensis herb extracts were verified to be practically non-toxic preparations (toxicity class V, LD₅₀ > 5000 mg/kg). They also showed moderate antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, and β-hemolytic Streptococcus pyogenes. The most pronounced hepatoprotective activity was observed with S. canadensis herb extract and its amino acid preparations with phenylalanine, alanine, and lysine at a dose of 25 mg/kg body weight. The most pronounced anti-inflammatory activity was found with S. canadensis herb extract and its preparation with arginine. According to the calculated docking score array and the analysis of binding modes in the active sites of COX-1 and COX-2, the flavonoid fraction and caffeic acid in the S. canadensis extracts presented moderate inhibitory activity. Conclusions: The development of innovative 3D-printed oral dosage forms represents a promising strategy to formulate dietary supplements or pharmaceutical preparations for these herbal extracts. Full article
Show Figures

Figure 1

16 pages, 5778 KiB  
Article
3D-Printed Tablets of Nifurtimox: In Vitro and In Vivo Anti-Trypanosoma cruzi Studies
by Giselle R. Bedogni, Ana Luiza Lima, Idejan P. Gross, Tatiana Prata Menezes, Andre Talvani, Marcilio Cunha-Filho and Claudio J. Salomon
Pharmaceutics 2025, 17(1), 80; https://doi.org/10.3390/pharmaceutics17010080 - 9 Jan 2025
Cited by 2 | Viewed by 990
Abstract
Background/Objectives: Chagas disease is a neglected tropical disease caused by infection with the parasite Trypanosoma cruzi. Benznidazole and nifurtimox are the only approved drugs for treating this condition, but their low aqueous solubility may lead to erratic bioavailability. This work aimed [...] Read more.
Background/Objectives: Chagas disease is a neglected tropical disease caused by infection with the parasite Trypanosoma cruzi. Benznidazole and nifurtimox are the only approved drugs for treating this condition, but their low aqueous solubility may lead to erratic bioavailability. This work aimed for the first time to formulate tablets of nifurtimox by hot melt extrusion coupled with 3D printing as a strategy to increase drug dissolution and the production of tablets with dosage on demand. Methods: Different pharmaceutical-grade polymers were evaluated through film casting, and those with promising nifurtimox amorphization capacity were further used to prepare filaments by hot melt extrusion. The printability of the obtained filaments was tested, and the polyvinyl alcohol filament was further used for printing tablets containing 120 and 60 mg of nifurtimox. Results: Three-dimensional tablets showed a remarkable improvement in the drug dissolution rate compared to commercial tablets and a dissolution efficiency 2.8 times higher. In vivo studies were carried out on Swiss mice. Parasitemia curves of nifurtimox printed tablets were significantly superior to the pure drug. Moreover, NFX 3D tablets provided a similar Trypanosoma cruzi reduction in plasmatic concentration to benznidazole, the gold-standard drug for acute-phase treatment of the Chagas disease. Conclusions: The findings of this work showed that hot melt extrusion coupled with 3D printing is a promising alternative for increasing nifurtimox biopharmaceutical properties and an attractive approach for personalized medicine. Full article
Show Figures

Figure 1

Back to TopTop