Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (66,857)

Search Parameters:
Keywords = mediations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 532 KiB  
Article
A Play-Responsive Approach to Teaching Mathematics in Preschool, with a Focus on Representations
by Maria Lundvin and Hanna Palmér
Educ. Sci. 2025, 15(8), 999; https://doi.org/10.3390/educsci15080999 (registering DOI) - 5 Aug 2025
Abstract
This article reports on a Swedish study investigating how children aged 2–3 years experience mathematical concepts through representations in play-responsive teaching. Drawing on the semiotic–cultural theory of learning, this study examines how representations, such as spoken language, bodily action, and artifacts, are mediated. [...] Read more.
This article reports on a Swedish study investigating how children aged 2–3 years experience mathematical concepts through representations in play-responsive teaching. Drawing on the semiotic–cultural theory of learning, this study examines how representations, such as spoken language, bodily action, and artifacts, are mediated. Video-recorded teaching sessions are analyzed to identify semiotic means of objectification and semiotic nodes at which these representations converge. The analysis distinguishes between children encountering concepts expressed by others and expressing concepts themselves. The results indicate that play-responsive teaching creates varied opportunities for experiencing mathematical concepts, with distinct modes of sensuous cognition linked to whether a concept is encountered or expressed. This study underscores the role of teachers’ choices in shaping these experiences and highlights bodily action as a significant form of representation. These findings aim to inform the use of representations in teaching mathematics to the youngest children in preschool. Full article
Show Figures

Figure 1

20 pages, 3069 KiB  
Article
Inhibitory Impact of the Amino Benzoic Derivative DAB-2-28 on the Process of Epithelial–Mesenchymal Transition in Human Breast Cancer Cells
by Laurie Fortin, Julie Girouard, Yassine Oufqir, Alexis Paquin, Francis Cloutier, Isabelle Plante, Gervais Bérubé and Carlos Reyes-Moreno
Molecules 2025, 30(15), 3284; https://doi.org/10.3390/molecules30153284 (registering DOI) - 5 Aug 2025
Abstract
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule [...] Read more.
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule derived from para-aminobenzoic acid, in the treatment of breast cancer. The luminal MCF-7 and the triple-negative MDA-MB-231 cancer cell lines used in this study represent, respectively, breast cancers in which the differentiation states are related to the epithelial phenotype of the mammary gland and breast cancers expressing a highly aggressive mesenchymal phenotype. In MCF-7 cells, soluble factors from macrophage-conditioned media (CM-MØ) induce a characteristic morphology of mesenchymal cells with an upregulated expression of Snail1, a mesenchymal marker, as opposed to a decrease in the expression of E-cadherin, an epithelial marker. DAB-2-28 does not affect the differential expression of Snail1 and E-cadherin in response to CM-MØ, but negatively impacts other hallmarks of EMT by decreasing invasion and migration capacities, in addition to MMP9 expression and gelatinase activity, in both MCF-7 and MDA-MB-231 cells. Moreover, DAB-2-28 inhibits the phosphorylation of key pro-EMT transcriptional factors, such as NFκB, STAT3, SMAD2, CREB, and/or AKT proteins, in breast cancer cells exposed to different EMT inducers. Overall, our study provides evidence suggesting that inhibition of EMT initiation or maintenance is a key mechanism by which DAB-2-28 can exert anti-tumoral effects in breast cancer cells. Full article
Show Figures

Figure 1

14 pages, 685 KiB  
Article
Social Challenges on University Campuses: How Does Physical Activity Affect Social Anxiety? The Dual Roles of Loneliness and Gender
by Yuyang Nie, Wenlei Wang, Cong Liu, Tianci Wang, Fangbing Zhou and Jinchao Gao
Behav. Sci. 2025, 15(8), 1063; https://doi.org/10.3390/bs15081063 (registering DOI) - 5 Aug 2025
Abstract
Social anxiety is a prevalent mental health concern among college students, often intensified by academic and interpersonal pressures on campus. This study investigated the relationship between physical activity, loneliness, and social anxiety among college students, aiming to examine the mediating role of loneliness [...] Read more.
Social anxiety is a prevalent mental health concern among college students, often intensified by academic and interpersonal pressures on campus. This study investigated the relationship between physical activity, loneliness, and social anxiety among college students, aiming to examine the mediating role of loneliness in the process of physical activity affecting social anxiety, as well as the moderating role of gender in this mediating effect. A cross-sectional research design was adopted, and data on physical activity levels, loneliness, and social anxiety were collected through questionnaires completed by 638 students at a university in China. This study conducted a single-factor Harman test, descriptive statistical analysis, reliability analysis, correlation analysis, and independent-samples t-tests, and it modeled the moderated mediation effect. The results showed that physical activity was significantly and negatively correlated with both loneliness and social anxiety. Loneliness played a mediating role in the influence of physical activity on social anxiety, and this mediating effect was moderated by gender, being more pronounced in the female group. This study concluded that physical activity can help alleviate social anxiety, but the mechanism involving the reduction of loneliness is more apparent in women, indicating the need to consider gender differences when developing interventions, as there may be other, more significant reasons for men. Full article
Show Figures

Figure 1

25 pages, 482 KiB  
Article
The Influence of Managers’ Safety Perceptions and Practices on Construction Workers’ Safety Behaviors in Saudi Arabian Projects: The Mediating Roles of Workers’ Safety Awareness, Competency, and Safety Actions
by Talal Mousa Alshammari, Musab Rabi, Mazen J. Al-Kheetan and Abdulrazzaq Jawish Alkherret
Safety 2025, 11(3), 77; https://doi.org/10.3390/safety11030077 (registering DOI) - 5 Aug 2025
Abstract
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors [...] Read more.
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors (WSB) in the Saudi construction industry, emphasizing the mediating roles of Workers’ Safety Awareness (WSA), Safety Competency (WSC), and Safety Actions (SA). The conceptual framework integrates these three mediators to explain how managerial attitudes and practices translate into frontline safety outcomes. A quantitative, cross-sectional design was adopted using a structured questionnaire distributed among construction workers, supervisors, and project managers. A total of 352 from 384 valid responses were collected, and the data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) via SmartPLS 4. The findings revealed that MSP does not directly influence WSB but has significant indirect effects through WSA, WSC, and SA. Among these, WSC emerged as the most powerful mediator, followed by WSA and SA, indicating that competency is the most critical driver of safe worker behavior. These results provide robust empirical support for a multidimensional mediation model, highlighting the need for managers to enhance safety behaviors not merely through supervision but through fostering awareness and competency, providing technical training, and implementing proactive safety measures. Theoretically, this study contributes a novel and integrative framework to the occupational safety literature, particularly within underexplored Middle Eastern construction contexts. Practically, it offers actionable insights for safety managers, industry practitioners, and policymakers seeking to improve construction safety performance in alignment with Saudi Vision 2030. Full article
(This article belongs to the Special Issue Safety Performance Assessment and Management in Construction)
Show Figures

Figure 1

26 pages, 769 KiB  
Review
Immunomodulatory and Regenerative Functions of MSC-Derived Exosomes in Bone Repair
by Manorathna Arun, Sheeja Rajasingh, Parani Madasamy and Johnson Rajasingh
Bioengineering 2025, 12(8), 844; https://doi.org/10.3390/bioengineering12080844 (registering DOI) - 5 Aug 2025
Abstract
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders [...] Read more.
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders such as osteoporosis. Mesenchymal stromal cells (MSCs), multipotent stem cells capable of differentiating into osteoblasts, have emerged as promising agents for bone regeneration, primarily through the paracrine effects of their secreted exosomes. MSC-derived exosomes are nanoscale vesicles enriched with proteins, lipids, and nucleic acids that promote intercellular communication, osteoblast proliferation and differentiation, and angiogenesis. Notably, they deliver osteoinductive microRNAs (miRNAs) that influence osteogenic markers and support bone tissue repair. In vivo investigations validate their capacity to enhance bone regeneration, increase bone volume, and improve biomechanical strength. Additionally, MSC-derived exosomes regulate the immune response, creating pro-osteogenic and pro-angiogenic factors, boosting their therapeutic efficacy. Due to their cell-free characteristics, MSC-derived exosomes offer benefits such as diminished immunogenicity and minimal risk of off-target effects. These properties position them as promising and innovative approaches for bone regeneration, integrating immunomodulatory effects with tissue-specific regenerative capabilities. Full article
Show Figures

Figure 1

24 pages, 472 KiB  
Article
The Effect of Workplace Mobbing on Positive and Negative Emotions: The Mediating Role of Psychological Resilience Among Nurses
by Aristotelis Koinis, Ioanna V. Papathanasiou, Ioannis Kouroutzis, Iokasti Papathanasiou, Dimitra Anagnostopoulou, Ioannis Androutsakos, Maria Papandreou, Ioulia Katsaiti, Nikolaos Tsioumas, Melpomeni Mourtziapi, Pavlos Sarafis and Maria Malliarou
Healthcare 2025, 13(15), 1915; https://doi.org/10.3390/healthcare13151915 - 5 Aug 2025
Abstract
Background: Workplace mobbing is a widespread phenomenon with serious psychological and emotional consequences on employees’ emotional well-being. Psychological resilience has been identified as a potential protective factor against such adverse outcomes. Aim: This study investigates the relationship between workplace mobbing and emotional well-being, [...] Read more.
Background: Workplace mobbing is a widespread phenomenon with serious psychological and emotional consequences on employees’ emotional well-being. Psychological resilience has been identified as a potential protective factor against such adverse outcomes. Aim: This study investigates the relationship between workplace mobbing and emotional well-being, as expressed through positive and negative affect, and examines the mediating role of psychological resilience in this association. Methods: Ninety nurses participated in this cross-sectional study. Data were collected using the Connor–Davidson Resilience Scale (CD-RISC), the Workplace Psychologically Violent Behaviors (WPVB) scale, and the Positive and Negative Affect Schedule (PANAS). Statistical analyses included correlation, multiple regression, and mediation using bootstrapped confidence intervals. Results: Resilience was strongly associated with positive affect (r = 0.74, p < 0.001) and inversely with negative affect (r = −0.46, p < 0.001). Mobbing was significantly related to increased negative affect (β = 0.12, p < 0.001) but not to positive affect. Resilience emerged as the strongest predictor of emotional outcomes and partially mediated the relationship between “Attack on professional role” and negative affect. Conclusions: Psychological resilience plays a key protective role in moderating the emotional impact of workplace mobbing. Enhancing resilience in healthcare professionals may mitigate the negative emotional effects of mobbing, although it does not fully buffer against all its consequences. Full article
(This article belongs to the Special Issue Well-Being of Healthcare Professionals: New Insights After COVID-19)
Show Figures

Figure 1

12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

19 pages, 357 KiB  
Article
Resilience and Mobbing Among Nurses in Emergency Departments: A Cross-Sectional Study
by Aristotelis Koinis, Ioanna V. Papathanasiou, Ioannis Moisoglou, Ioannis Kouroutzis, Vasileios Tzenetidis, Dimitra Anagnostopoulou, Pavlos Sarafis and Maria Malliarou
Healthcare 2025, 13(15), 1908; https://doi.org/10.3390/healthcare13151908 - 5 Aug 2025
Abstract
Background: Moral harassment (mobbing) in healthcare, particularly among nurses, remains a persistent issue with detrimental effects on mental health, resilience, and quality of life. Aim: We examine the relationship between the resilience of nurses working in Emergency Departments (EDs) and how these factors [...] Read more.
Background: Moral harassment (mobbing) in healthcare, particularly among nurses, remains a persistent issue with detrimental effects on mental health, resilience, and quality of life. Aim: We examine the relationship between the resilience of nurses working in Emergency Departments (EDs) and how these factors influence experiences of workplace mobbing. Methods: This cross-sectional study included 90 nurses from four public hospitals in Greece’s 5th Health District. Data were collected between October 2023 and March 2024 using the WHOQOL-BREF, Workplace Psychologically Violent Behaviors (WPVB) scale and the Connor–Davidson Resilience Scale (CD-RISC). The sample consisted primarily of full-time nurses (84.3% female; mean age = 43.1 years), with 21.1% reporting chronic conditions. Most participants were married (80.0%) and had children (74.4%), typically two (56.1%). Statistical analyses—conducted using SPSS version 27.0—included descriptive statistics, Pearson and Spearman correlations, multiple linear regression, and mediation analysis, with significance set at p < 0.05. Results: Resilience was moderate (mean = 66.38%; Cronbach’s α = 0.93) and positively correlated with all WHOQOL-BREF domains—physical, psychological, social, and environmental (r = 0.30–0.40)—but not with the overall WHOQOL-BREF. The mean overall WHOQOL-BREF score was 68.4%, with the lowest scores observed in the environmental domain (mean = 53.76%). Workplace mobbing levels were low to moderate (mean WPVB score = 17.87), with subscale reliabilities ranging from α = 0.78 to 0.95. Mobbing was negatively associated with social relationships and the environmental WHOQOL-BREF (ρ = –0.23 to –0.33). Regression analysis showed that cohabitation and higher resilience significantly predicted better WHOQOL-BREF outcomes, whereas mobbing was not a significant predictor. Mediation analysis (bootstrap N = 5000) indicated no significant indirect effect of resilience in the relationship between mobbing and WHOQOL-BREF. Conclusions: Resilience was identified as a key protective factor for nurses’ quality of life in emergency care settings. Although workplace mobbing was present at low-to-moderate levels, it was negatively associated with specific WHOQOL-BREF domains. Enhancing mental resilience among nurses may serve as a valuable strategy to mitigate the psychological effects of moral harassment in healthcare environments. Full article
(This article belongs to the Special Issue Health and Social Care Policy—2nd Edition)
Show Figures

Figure 1

18 pages, 756 KiB  
Article
How Visual and Mental Human-Likeness of Virtual Influencers Affects Customer–Brand Relationship on E-Commerce Platform
by Liangbo Zhang, Linlin Mo, Xiaohui Sun, Zhimin Zhou and Jifan Ren
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 200; https://doi.org/10.3390/jtaer20030200 - 5 Aug 2025
Abstract
Virtual influencers (VIs) on e-commerce platforms are becoming increasingly popular, enhancing the consumer experience. This study examines the consumer–brand relationship (CBR) with VIs through the perspective of social presence. Data from 1041 e-commerce platform users (e.g., Douyin, RED, Weibo) were collected and analyzed [...] Read more.
Virtual influencers (VIs) on e-commerce platforms are becoming increasingly popular, enhancing the consumer experience. This study examines the consumer–brand relationship (CBR) with VIs through the perspective of social presence. Data from 1041 e-commerce platform users (e.g., Douyin, RED, Weibo) were collected and analyzed using Structural Equation Modeling (SEM). The findings reveal that both the visual and mental human-likeness of VIs significantly strengthen CBR, with social presence acting as a mediator. Additionally, the interaction between visual and mental human-likeness positively impacts social presence, which in turn enhances CBR. Moreover, consumers’ need for uniqueness moderates the relationship between social presence and CBR, providing valuable insights for virtual influencer strategies in e-commerce. This research suggests the feasibility of leveraging VI design both visually and mentally to capture new trends in developing effective virtual campaigns with digitization and metaverse technologies. This study extends the stream of research VIs use for interactive marketing, highlighting the role of parasocial relationships in interactive marketing. These findings can provide managers with a better understanding of VI design from both visual and mental aspects. Full article
Show Figures

Figure 1

12 pages, 2338 KiB  
Article
Singlet Oxygen-Mediated Micropollutant Degradation Using an FePc-Modified CNT Filter via Peroxymonosulfate Activation
by Chenxin Xie, Yifan Ren and Yanbiao Liu
Catalysts 2025, 15(8), 747; https://doi.org/10.3390/catal15080747 (registering DOI) - 5 Aug 2025
Abstract
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic [...] Read more.
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic properties. The resulting CNT-FePc filter achieved a 98.4% removal efficiency for bisphenol A (10 ppm) in a single-pass operation system, significantly outperforming the CNT/PMS system without FePc (41.6%). Additionally, the CNT-FePc/PMS system demonstrated remarkable resistance to performance inhibition by common water matrix components. Unlike typical radical-dominated PMS activation processes, mechanistic investigations confirmed that the CNT-FePc/PMS system selectively promoted singlet oxygen (1O2) generation as the primary oxidative pathway. Density functional theory (DFT) calculations revealed that PMS exhibited stronger adsorption on FePc (−3.05 eV) compared to CNT (−2.86 eV), and that FePc effectively facilitated O–O bond elongation in PMS, thereby facilitating 1O2 generation. Additionally, seed germination assays indicated a significant reduction in the biotoxicity of the treated effluents. Overall, this work presents a catalyst design strategy that merges molecular-level coordination chemistry with practical flow-through configuration, enabling rapid, selective, and environmentally benign micropollutant removal. Full article
(This article belongs to the Collection Advanced Catalysts for Wastewater Remediation Technologies)
Show Figures

Graphical abstract

24 pages, 3176 KiB  
Article
Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River
by Kenia Barrantes-Jiménez, Bradd Mendoza-Guido, Eric Morales-Mora, Luis Rivera-Montero, José Montiel-Mora, Luz Chacón-Jiménez, Keilor Rojas-Jiménez and María Arias-Andrés
Antibiotics 2025, 14(8), 798; https://doi.org/10.3390/antibiotics14080798 (registering DOI) - 5 Aug 2025
Abstract
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in [...] Read more.
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in a tropical urban river. Methods: Samples were collected from three sites along a pollution gradient in the Virilla River, Costa Rica, during three seasonal campaigns (wet 2021, dry 2022, and wet 2022). ARGs in water and sediment were quantified by qPCR, and metagenomic sequencing was applied to analyze chromosomal and plasmid-associated resistance profiles in sediments. Tobit and linear regression models, along with multivariate ordination, were used to assess spatial and seasonal trends. Results: During the wet season of 2021, the abundance of antibiotic resistance genes (ARGs) such as sul-1, intI-1, and tetA in water samples decreased significantly, likely due to dilution, while intI-1 and tetQ increased in sediments, suggesting particle-bound accumulation. In the wet season 2022, intI-1 remained low in water, qnrS increased, and sediments showed significant increases in tetQ, tetA, and qnrS, along with decreases in sul-1 and sul-2. Metagenomic analysis revealed spatial differences in plasmid-associated ARGs, with the highest abundance at the most polluted site (Site 3). Bacterial taxa also showed spatial differences, with greater plasmidome diversity and a higher representation of potential pathogens in the most contaminated site. Conclusions: Seasonality and pollution gradients jointly shape ARG dynamics in this tropical river. Plasmid-mediated resistance responds rapidly to environmental change and is enriched at polluted sites, while sediments serve as long-term reservoirs. These findings support the use of plasmid-based monitoring for antimicrobial resistance surveillance in aquatic systems. Full article
(This article belongs to the Special Issue Origins and Evolution of Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

19 pages, 1220 KiB  
Article
The Role of Square Dancing in Psychological Capital: Evidence from a Large Cross-Sequential Study
by Ruitong Li, Yujia Qu, Zhiyuan Liu and Yan Wang
Healthcare 2025, 13(15), 1913; https://doi.org/10.3390/healthcare13151913 - 5 Aug 2025
Abstract
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and [...] Read more.
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and psychological capital (PsyCap) in middle-aged and elderly individuals using cross-validation, subgroup analysis, and a cross-sequential design. (2) Methods: A cross-sectional study with 5714 participants employed a serial mediation model. Online questionnaires assessed square-dancing exercise, cognitive reappraisal, prosocial behavior tendencies, PsyCap, and interpersonal relationships. Statistical analyses were conducted using SPSS 27.0 and Mplus 8.3, incorporating correlation analysis, structural equation modeling, and subgroup comparisons. (3) Results: (a) Cognitive reappraisal and prosocial behavior mediated the link between square-dancing and PsyCap through three pathways; (b) model stability was confirmed across two random subsamples; (c) cross-group differences emerged in age and interpersonal relationships. Compared with secondary data, this study further validated PsyCap’s stability over six months post-pandemic. (4) Conclusions: The study, based on China’s largest square-dancing sample, establishes a robust serial mediation model. The findings strengthen theoretical foundations for PA-based interventions promoting psychological resilience in aging populations, highlighting structured exercise’s role in mental and social well-being. Full article
Show Figures

Figure 1

23 pages, 1970 KiB  
Review
Resveratrol as a Therapeutic Agent in Alzheimer’s Disease: Evidence from Clinical Studies
by Nidhi Puranik, Meenakshi Kumari, Shraddha Tiwari, Thakur Dhakal and Minseok Song
Nutrients 2025, 17(15), 2557; https://doi.org/10.3390/nu17152557 - 5 Aug 2025
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in grapes, berries, and red wine that has garnered attention for its potential neuroprotective properties in combating AD. The neuroprotective effects of RSV are mediated through the activation of sirtuins (SIRT1), inhibition of Aβ aggregation, modulation of Tau protein phosphorylation, and the attenuation of oxidative stress and inflammatory responses. RSV also enhances mitochondrial function and promotes autophagy, which are important processes for maintaining neuronal health. Preclinical studies have demonstrated its efficacy in reducing Aβ burden, improving cognitive performance, and mitigating synaptic damage; however, challenges such as poor bioavailability, rapid metabolism, and limited blood–brain barrier penetration restrict its clinical applicability. Recent technological advances and selected modifications are being explored to overcome these limitations and enhance its therapeutic efficacy. This review summarizes the multifaceted neuroprotective mechanisms of RSV, the synergistic potential of natural compounds in enhancing neuroprotection, and the advancements in formulation strategies aimed at mitigating AD pathology. Leveraging the therapeutic potential of natural compounds represents a compelling paradigm shift for AD management, paving the way for future clinical applications. Full article
(This article belongs to the Special Issue The Neuroprotective Activity of Natural Dietary Compounds)
Show Figures

Figure 1

16 pages, 12012 KiB  
Article
Complement Receptor 3 Regulates Microglial Exosome Release and Related Neurotoxicity via NADPH Oxidase in Neuroinflammation Associated with Parkinson’s Disease
by Yu Ma, Xiaomeng Zhang, Jiaqi Xu, Runnan Luo, Sheng Li, Hong Su, Qingshan Wang and Liyan Hou
Antioxidants 2025, 14(8), 963; https://doi.org/10.3390/antiox14080963 (registering DOI) - 5 Aug 2025
Abstract
Microglia-mediated chronic neuroinflammation is a common pathological feature of Parkinson’s disease (PD). Strong evidence suggests that activated microglia can lesion neurons by releasing exosomes. However, the mechanisms of exosome release from activated microglia remain unclear. We recently revealed a key role of complement [...] Read more.
Microglia-mediated chronic neuroinflammation is a common pathological feature of Parkinson’s disease (PD). Strong evidence suggests that activated microglia can lesion neurons by releasing exosomes. However, the mechanisms of exosome release from activated microglia remain unclear. We recently revealed a key role of complement receptor 3 (CR3) in regulating microglial activation in the process of progressive neurodegeneration. This study aimed to investigate whether CR3 can regulate exosome release from activated microglia, as well as the underlying mechanisms. We found that LPS, an inducer of microglial M1 activation, induced exosome release from activated microglia. Inhibition of exosome synthesis suppressed LPS-induced microglial activation, gene expression of proinflammatory factors, and related neurotoxicity. Silencing or knocking out CR3 attenuated LPS-induced exosome release in microglia. NADPH oxidase (NOX2) was further identified as a downstream signal of CR3, mediating microglial exosome release and related neurotoxicity. CR3 silencing blocked LPS-induced NOX2 activation and superoxide production through inhibition of p47phox phosphorylation and membrane translocation. Moreover, NOX2 activation elicited by PMA or supplementation of H2O2 recovered exosome release from CR3-silenced microglia. Subsequently, we demonstrated that the CR3-NOX2 axis regulates syntenin-1 to control microglial exosome release. Finally, we observed that the expression of CR3 was increased in the brain of LPS-treated mice, and genetic ablation of CR3 significantly reduced LPS-induced NOX2 activation, microglial M1 polarization, and exosome production in mice. Overall, our findings revealed a critical role of the CR3-NOX2 axis in controlling microglial exosome release and related neurotoxicity through syntenin-1, providing a novel target for the development of a therapeutic strategy for neuroinflammation-mediated neurodegeneration. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Graphical abstract

16 pages, 2609 KiB  
Article
MicroRNA210 Suppresses Mitochondrial Metabolism and Promotes Microglial Activation in Neonatal Hypoxic–Ischemic Brain Injury
by Shirley Hu, Yanelly Lopez-Robles, Guofang Shen, Elena Liu, Lubo Zhang and Qingyi Ma
Cells 2025, 14(15), 1202; https://doi.org/10.3390/cells14151202 - 5 Aug 2025
Abstract
Neuroinflammation is the major contributor to the pathology of neonatal hypoxic–ischemic (HI) brain injury. Our previous studies have demonstrated that microRNA210 (miR210) inhibition with antisense locked nucleic acid (LNA) inhibitor mitigates neuroinflammation and provides neuroprotection after neonatal HI insult. However, the underlying mechanisms [...] Read more.
Neuroinflammation is the major contributor to the pathology of neonatal hypoxic–ischemic (HI) brain injury. Our previous studies have demonstrated that microRNA210 (miR210) inhibition with antisense locked nucleic acid (LNA) inhibitor mitigates neuroinflammation and provides neuroprotection after neonatal HI insult. However, the underlying mechanisms remain elusive. In the present study, using miR210 knockout (KO) mice and microglial cultures, we tested the hypothesis that miR210 promotes microglial activation and neuroinflammation through suppressing mitochondrial function in microglia after HI. Neonatal HI brain injury was conducted on postnatal day 9 (P9) wild-type (WT) and miR210 knockout (KO) mouse pups. We found that miR210 KO significantly reduced brain infarct size at 48 h and improved long-term locomotor functions assessed by an open field test three weeks after HI. Moreover, miR210 KO mice exhibited reduced IL1β levels, microglia activation and immune cell infiltration after HI. In addition, in vitro studies of microglia exposed to oxygen–glucose deprivation (OGD) revealed that miR210 inhibition with LNA reduced OGD-induced expression of Il1β and rescued OGD-mediated downregulation of mitochondrial iron–sulfur cluster assembly enzyme (ISCU) and mitochondrial oxidative phosphorylation activity. To validate the link between miR210 and microglia activation, isolated primary murine microglia were transfected with miR210 mimic or negative control. The results showed that miR210 mimic downregulated the expression of mitochondrial ISCU protein abundance and induced the expression of proinflammatory cytokines similar to the effect observed with ISCU silencing RNA. In summary, our results suggest that miR210 is a key regulator of microglial proinflammatory activation through reprogramming mitochondrial function in neonatal HI brain injury. Full article
(This article belongs to the Special Issue Non-Coding RNAs as Regulators of Cellular Function and Disease)
Show Figures

Figure 1

Back to TopTop