Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = mechanisms of stabilisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5320 KB  
Article
Mechanical and Fatigue Performance of Recycled Concrete Aggregate Blended with Waste Tyre Rubber Stabilised with Slag for Pavement Application
by Fatima Juveria, Janitha Migunthanna, Pathmanathan Rajeev and Jay Sanjayan
Buildings 2025, 15(21), 3852; https://doi.org/10.3390/buildings15213852 (registering DOI) - 24 Oct 2025
Abstract
Waste tyre rubber (TR) from end-of-life tyres poses a major environmental challenge. Therefore, recycling this waste into useful applications contributes to sustainable waste management strategies and supports a circular economy. Rubber possesses properties that can enhance the flexibility and ductility of pavements, making [...] Read more.
Waste tyre rubber (TR) from end-of-life tyres poses a major environmental challenge. Therefore, recycling this waste into useful applications contributes to sustainable waste management strategies and supports a circular economy. Rubber possesses properties that can enhance the flexibility and ductility of pavements, making it a feasible material for use in road infrastructure. This study investigates the mechanical and fatigue performance of recycled concrete aggregates (RCA) mixed with waste TR. RCA was partially replaced at three different levels: 5%, 10% and 15% by weight. To mitigate the loss in mechanical strength associated with rubber inclusion, the TR + RCA mixes were stabilised through geopolymerisation using slag as a precursor. The unconfined compressive strength (UCS) increased with higher binder content. For instance, the mix containing 15% TR and stabilised with 5% slag geopolymer achieved a UCS of only 0.7 MPa, whereas increasing the binder content to 15% raised the UCS to 2.2 MPa. Similarly, resilient modulus improved with increasing slag content. Results from the four-point bending fatigue test showed that replacing RCA with rubber particles enhanced the fatigue performance of the mixes. The initial fatigue modulus of 100% RCA mix stabilised with 15% binder was 13,690 MPa, which reduced to 9740 MPa when 10% TR was introduced. In contrast, the number of cycles to reach half the initial modulus increased by four times when the TR content was raised from 0% to 15%. Microstructural observations of the slag-stabilised TR + RCA mixes showed improved microstructure due to geopolymerisation. Only insignificant traces of arsenic (<0.0008 mg/L) and barium (<0.000208 mg/L) were present in the TR + RCA mixes, while all other concerning heavy metals, including mercury and lead, were not detected in the leaching test. This indicates that there is no potential risk of soil or groundwater contamination, confirming the environmental safety of using slag geopolymer-stabilised TR + RCA mixes in subbase applications. Full article
(This article belongs to the Special Issue Analysis of Performance in Green Concrete Structures)
Show Figures

Figure 1

36 pages, 12273 KB  
Article
Axial Load Transfer Mechanisms in Fully Grouted Fibreglass Rock Bolts: Experimental and Numerical Investigations
by Shima Entezam, Ali Mirzaghorbanali, Behshad Jodeiri Shokri, Alireza Entezam, Hadi Nourizadeh, Peter Craig, Kevin McDougall, Warna Karunasena and Naj Aziz
Appl. Sci. 2025, 15(20), 11293; https://doi.org/10.3390/app152011293 - 21 Oct 2025
Viewed by 150
Abstract
Fully grouted rock bolts play a vital role in stabilising underground excavations, particularly in corrosive environments where material properties, geometric configuration, and installation conditions influence their load transfer performance. Although the practical importance of fully grouted fibreglass rock bolts is well recognised, quantitative [...] Read more.
Fully grouted rock bolts play a vital role in stabilising underground excavations, particularly in corrosive environments where material properties, geometric configuration, and installation conditions influence their load transfer performance. Although the practical importance of fully grouted fibreglass rock bolts is well recognised, quantitative evidence on their axial load transfer mechanisms remains limited. Prior work has primarily centred on steel rock bolts, with few studies on how embedment length, grout stiffness, interface roughness and confining stress govern bond mobilisation in fully grouted fibreglass rock bolts, indicating a clear need for further scientific investigation. This study examines the axial load transfer and shear behaviour of fully grouted fibreglass rock bolts, focusing on the effects of embedment length (EL), grout properties, and boundary conditions. A comprehensive series of laboratory pull-out tests were conducted on two widely used Australian glass fibre reinforced polymer (GFRP) rock bolts, TD22 and TD25, with diameters of 22 mm and 25 mm, respectively, under varying ELs and grout curing times to evaluate their axial performance. Additionally, single shear tests and uniaxial compressive strength (UCS) tests were conducted to assess the shear behaviour of the rock bolts and the mechanical properties of the grout. The results showed that increased EL, bolt diameter, and grout curing time generally enhance axial capacity. With grout curing from day 7 to the day 28, the influence of embedment length became increasingly pronounced, as the axial peak load rose from 35 kN (TD22-50, 7 days) to 116 kN (TD22-150, 28 days) and from 39 kN (TD25-50, 7 days) to 115 kN (TD25-150, 28 days), confirming that both longer bonded lengths and extended curing significantly enhance the axial load-bearing capacity of fully grouted GFRP rock bolts. However, the TD22 rock bolts exhibited superior shear strength and ductility compared to the TD25 rock bolts. Also, a calibrated distinct element model (DEM) was developed in 3DEC to simulate axial load transfer mechanisms and validated against experimental results. Parametric studies revealed that increasing the grout stiffness from 5 e7 N/m to 5 e8 N/m increased the peak load from 45 kN to 205 kN (approximately 350%), while reducing the peak displacement, indicating a shift toward a more brittle response. Similarly, increasing the grout-bolt interface roughness boosted the peak load by 150% (from 60 kN to 150 kN) and enhanced residual stability, raising the residual load from 12 kN to 93.5 kN. In contrast, confining stress (up to 5 MPa) did not affect the 110 kN peak load but reduced the residual load by up to 60% in isotropic conditions. These quantitative findings provide critical insights into the performance of GFRP bolts and support their optimised design for underground reinforcement applications. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

17 pages, 2528 KB  
Article
Potential Modulatory Effects of β-Hydroxy-β-Methylbutyrate on Type I Collagen Fibrillogenesis: Preliminary Study
by Izabela Świetlicka, Eliza Janek, Krzysztof Gołacki, Dominika Krakowiak, Michał Świetlicki and Marta Arczewska
Int. J. Mol. Sci. 2025, 26(19), 9621; https://doi.org/10.3390/ijms26199621 - 2 Oct 2025
Viewed by 335
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix [...] Read more.
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix (ECM) components, particularly collagen, which is crucial for maintaining the mechanical integrity of connective tissues. In this investigation, bovine type I collagen was polymerised in the presence of two concentrations of HMB (0.025 M and 0.25 M) to explore its potential function as a molecular modulator of fibrillogenesis. The morphology of the resulting collagen fibres and their molecular architecture were examined using atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy. The findings demonstrated that lower levels of HMB facilitated the formation of more regular and well-organised fibrillar structures, exhibiting increased D-band periodicity and enhanced stabilisation of the native collagen triple helix, as indicated by Amide I and III band profiles. Conversely, higher concentrations of HMB led to significant disruption of fibril morphology and alterations in secondary structure, suggesting that HMB interferes with the self-assembly of collagen monomers. These structural changes are consistent with a non-covalent influence on interchain interactions and fibril organisation, to which hydrogen bonding and short-range electrostatics may contribute. Collectively, the results highlight the potential of HMB as a small-molecule regulator for soft-tissue matrix engineering, extending its consideration beyond metabolic supplementation towards controllable, materials-oriented modulation of ECM structure. Full article
(This article belongs to the Special Issue Advanced Spectroscopy Research: New Findings and Perspectives)
Show Figures

Graphical abstract

22 pages, 5797 KB  
Article
Performance Analysis of Spinifex Fibre-Reinforced Mudbrick as a Sustainable Construction Material for Remote Housing in Australia
by Jivan Subedi, Ali Rajabipour, Milad Bazli, Dhyey Vegda, Nafiseh Ostadmoradi and Sunil Thapa
J. Compos. Sci. 2025, 9(10), 520; https://doi.org/10.3390/jcs9100520 - 1 Oct 2025
Viewed by 341
Abstract
As a sustainable construction material, mudbrick can be used widely in areas where common modern construction materials are not easily accessible but high clay content soil is available. The inclusion of locally available natural fibres in mudbrick could improve its mechanical and erosion [...] Read more.
As a sustainable construction material, mudbrick can be used widely in areas where common modern construction materials are not easily accessible but high clay content soil is available. The inclusion of locally available natural fibres in mudbrick could improve its mechanical and erosion resistance performance. This study examines the performance of fibre-reinforced mudbrick from spinifex and laterite soil which are abundant in Australia. The main objective of this study is to evaluate the mechanical and durability performance of spinifex fibre-reinforced mudbricks made with Australian laterite soil, focusing on the influence of fibre content, fibre length, and cement stabilisation. Spinifex fibre length (30 mm, 40 mm, 50 mm), spinifex fibre percentage (0.3%, 0.6%, 0.9%), and cement percentage (5% and 10%) are considered as the experiment variables. Results show that compressive strength generally decreases with fibre size. In this regard, specimens with 0.3% spinifex fibre, 40 mm fibre length, and 10% cement, with an average compressive strength value of 4.1 MPa, were found to have the highest strength among all design mixes. The elastic Young’s modulus was highest for the specimens with 0.3% spinifex fibre, 30 mm fibre length, and 10% cement with a 36.1 MPa. A low amount of longer fibres was found to be more effective in reducing water absorption in samples with higher cement content. Water absorption and compressive strength results suggest that, on average, 0.3–0.5% spinifex content of size 30 mm improves both low and high cement content mudbricks properties. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

18 pages, 1597 KB  
Article
A Comparative Analysis of SegFormer, FabE-Net and VGG-UNet Models for the Segmentation of Neural Structures on Histological Sections
by Igor Makarov, Elena Koshevaya, Alina Pechenina, Galina Boyko, Anna Starshinova, Dmitry Kudlay, Taiana Makarova and Lubov Mitrofanova
Diagnostics 2025, 15(18), 2408; https://doi.org/10.3390/diagnostics15182408 - 22 Sep 2025
Viewed by 464
Abstract
Background: Segmenting nerve fibres in histological images is a tricky job because of how much the tissue looks can change. Modern neural network architectures, including U-Net and transformers, demonstrate varying degrees of effectiveness in this area. The aim of this study is to [...] Read more.
Background: Segmenting nerve fibres in histological images is a tricky job because of how much the tissue looks can change. Modern neural network architectures, including U-Net and transformers, demonstrate varying degrees of effectiveness in this area. The aim of this study is to conduct a comparative analysis of the SegFormer, VGG-UNet, and FabE-Net models in terms of segmentation quality and speed. Methods: The training sample consisted of more than 75,000 pairs of images of different tissues (original slice and corresponding mask), scaled from 1024 × 1024 to 224 × 224 pixels to optimise computations. Three neural network architectures were used: the classic VGG-UNet, FabE-Net with attention and global context perception blocks, and the SegFormer transformer model. For an objective assessment of the quality of the models, expert validation was carried out with the participation of four independent pathologists, who evaluated the quality of segmentation according to specified criteria. Quality metrics (precision, recall, F1-score, accuracy) were calculated as averages based on the assessments of all experts, which made it possible to take into account variability in interpretation and increase the reliability of the results. Results: SegFormer achieved stable stabilisation of the loss function faster than the other models—by the 20–30th epoch, compared to 45–60 epochs for VGG-UNet and FabE-Net. Despite taking longer to train per epoch, SegFormer produced the best segmentation quality, with the following metrics: precision 0.84, recall 0.99, F1-score 0.91 and accuracy 0.89. It also annotated a complete histological section in the fastest time. Visual analysis revealed that, compared to other models, which tended to produce incomplete or excessive segmentation, SegFormer more accurately and completely highlights nerve structures. Conclusions: Using attention mechanisms in SegFormer compensates for morphological variability in tissues, resulting in faster and higher-quality segmentation. Image scaling does not impair training quality while significantly accelerating computational processes. These results confirm the potential of SegFormer for practical use in digital pathology, while also highlighting the need for high-precision, immunohistochemistry-informed labelling to improve segmentation accuracy. Full article
(This article belongs to the Special Issue Pathology and Diagnosis of Neurological Disorders, 2nd Edition)
Show Figures

Figure 1

21 pages, 412 KB  
Article
Unveiling the Hemostatic Signature of Prematurity: A Prospective Rotational Thromboelastometry-Based Analysis
by Martha Theodoraki, Alexia Eleftheria Palioura, Aikaterini-Pothiti Palioura, Abraham Pouliakis, Zoi Iliodromiti, Theodora Boutsikou, Nicoletta Iacovidou and Rozeta Sokou
Medicina 2025, 61(9), 1718; https://doi.org/10.3390/medicina61091718 - 21 Sep 2025
Viewed by 647
Abstract
Background and Objectives: The evaluation of the haemostatic mechanism in premature neonates remains particularly challenging, due to their immature haemostatic system, the influence of inflammation and the variety of clinical factors. This prospective study aimed at (a) assessing the haemostatic profile of [...] Read more.
Background and Objectives: The evaluation of the haemostatic mechanism in premature neonates remains particularly challenging, due to their immature haemostatic system, the influence of inflammation and the variety of clinical factors. This prospective study aimed at (a) assessing the haemostatic profile of clinically stable preterm neonates by Rotational Thromboelastometry [ROTEM; (EXTEM, INTEM, FIBTEM assays)], (b) establishing reference ranges, and (c) investigating potential differences in comparison to healthy term neonates. We also evaluated the impact of clinical and perinatal factors on the haemostatic status of this vulnerable population. Materials and Methods: 69 premature neonates with no underlying morbidity and 226 healthy term neonates were the study subjects. In term neonates, blood was collected on the 2nd-3rd day of life, if sampling was required for any other reason (hyperbilirubinemia, ABO blood group incompatibility screening, maternal thyroid antibodies, or insufficient prenatal care), whereas in premature neonates, blood was collected between the 4nd-10th day after stabilisation. The parameters measured for each ROTEM assay included Clotting Time (CT), Clot Formation Time (CFT), Alpha angle (α, degrees), Clot Amplitude at 5 and 10 min (A5, A10), Maximal Clot Firmness (MCF), and Lysis Index at 30, 45 and 60 min (Li30, Li45, and Li60 respectively). Results: The data analysis demonstrated a prothrombotic profile in preterm neonates, characterized by increased values of A5, A10, (MCF), and α-angle, and shortened CT and CFT across all assays (EXTEM, INTEM, FIBTEM), when compared to term neonates. A statistically significant inverse correlation was observed between gestational age and clot lysis parameters (INTEM Li45, Li60). Additionally, hematocrit levels were negatively correlated with clot amplitude and kinetics of clot development, while platelet count was positively associated with clot firmness parameters (A5, A10, MCF) and α-angle. Mode of delivery and the presence of gestational diabetes did not significantly affect ROTEM assay values. Preterm neonates with a history of respiratory distress syndrome (RDS) exhibited a more pronounced hypercoagulable profile compared to those without RDS, as reflected by the enhanced clot strength and reduced CT, findings that may be attributed to postnatal pulmonary inflammation and its systemic effects on coagulation. Conclusions: This study introduces for the first time reference values for the parameters of ROTEM assays (EXTEM, INTEM, FIBTEM) in clinically stable preterm neonates—a highly vulnerable patient group with a distinct need for accurate and individualized monitoring of their haemostatic status. The combined assessment of these assays enhances diagnostic precision, and offers a more comprehensive evaluation of neonatal haemostasis. By defining reference ranges in whole blood, this work provides novel data that support the integration of ROTEM into clinical transfusion algorithms. Full article
(This article belongs to the Special Issue From Conception to Birth: Embryonic Development and Disease)
22 pages, 2097 KB  
Review
Conformational Landscape, Polymorphism, and Solid Forms Design of Bicalutamide: A Review
by Konstantin V. Belov and Ilya A. Khodov
Molecules 2025, 30(18), 3793; https://doi.org/10.3390/molecules30183793 - 18 Sep 2025
Viewed by 11885
Abstract
Bicalutamide (BCL), a clinically important non-steroidal antiandrogen, exhibits pronounced conformational polymorphism and complex solid-state behaviour that critically influence its physicochemical and biopharmaceutical properties. This review comprehensively integrates current computational and experimental findings on the structural features, polymorphic forms, and intermolecular stabilisation mechanisms of [...] Read more.
Bicalutamide (BCL), a clinically important non-steroidal antiandrogen, exhibits pronounced conformational polymorphism and complex solid-state behaviour that critically influence its physicochemical and biopharmaceutical properties. This review comprehensively integrates current computational and experimental findings on the structural features, polymorphic forms, and intermolecular stabilisation mechanisms of BCL. Key factors, including torsional flexibility, hydrogen-bond networks, π–π stacking, and fluorine–fluorine contacts, are examined with respect to polymorph stability, solubility, and dissolution kinetics. The review also synthesises recent advances in solid-state optimisation strategies—including co-crystals, solvates, amorphous forms, and solid dispersions—and explores the emerging role of supercritical fluid (SCF) technologies in particle engineering and dissolution enhancement. This work offers a framework for designing next-generation BCL solid forms with enhanced bioavailability and stability by connecting molecular insights with formulation approaches. Full article
Show Figures

Figure 1

19 pages, 16857 KB  
Article
Mechanical Response Mechanism and Acoustic Emission Evolution Characteristics of Deep Porous Sandstone
by Zihao Li, Guangming Zhao, Xin Xu, Chongyan Liu, Wensong Xu and Shunjie Huang
Infrastructures 2025, 10(9), 236; https://doi.org/10.3390/infrastructures10090236 - 9 Sep 2025
Viewed by 391
Abstract
To investigate the failure mechanisms of surrounding rock in deep mine tunnels and its spatio-temporal evolution patterns, a true triaxial disturbance unloading rock testing system, the acoustic emission (AE) system, and the miniature camera monitoring system were employed to conduct true triaxial graded [...] Read more.
To investigate the failure mechanisms of surrounding rock in deep mine tunnels and its spatio-temporal evolution patterns, a true triaxial disturbance unloading rock testing system, the acoustic emission (AE) system, and the miniature camera monitoring system were employed to conduct true triaxial graded loading tests on sandstone containing circular holes at burial depths of 800 m, 1000 m, 1200 m, 1400 m, and 1600 m. The study investigated the patterns of mechanical properties and failure characteristics of porous sandstone at different burial depths. The results showed that the peak strength of the specimens increased quadratically with increasing burial depth; the failure process of porous sandstone could be divided into four stages: the calm period, the particle ejection period, the stable failure period, and the complete collapse period; as burial depth increases, the failure mode transitions from a composite tensile–shear crack type to a shear crack-dominated type, with the ratio of shear cracks to tensile cracks exhibiting quadratic growth and reduction, respectively; the particle ejection stage is characterised by low-frequency, low-amplitude signals, corresponding to the microcrack initiation stage, while the stable failure stage exhibits a sharp increase in low-frequency, high-amplitude signals, reflecting macrocrack propagation characteristics, with the spatial evolution of their locations ultimately forming a penetrating oblique shear failure zone; and peak stress analysis indicates that as burial depth increases, peak stress during the particle ejection phase first increases and then decreases, while peak stress during the stable failure phase first decreases and then stabilises. The duration of the pre-instability calm phase shows a significant negative correlation with burial depth. The research findings provide a theoretical basis for controlling tunnel rock mass stability and disaster warning. Full article
Show Figures

Figure 1

11 pages, 10408 KB  
Communication
Leaving Glauber’s Salt Island: The Road to Stabilisation
by Poppy O’Neill, Anastasia Stamatiou and Ludger Fischer
Colloids Interfaces 2025, 9(5), 60; https://doi.org/10.3390/colloids9050060 - 9 Sep 2025
Viewed by 605
Abstract
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by [...] Read more.
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by phase separation and associated loss of performance during repeated thermal cycling. This study aimed to address this limitation through a novel stabilisation approach. The material was encapsulated within an emulsion matrix designed to physically constrain the salt and inhibit separation during melting and to form a phase change dispersion. The phase change dispersion was subjected to 100 controlled heating–cooling cycles whilst monitoring the latent heat capacity and phase transition plateaus. The phase change dispersion retained its thermal properties throughout testing, showing no measurable degradation in storage capacity nor shift in phase transition temperature. These results demonstrate that this encapsulation mechanism can effectively maintain the functional performance of Glauber’s salt under repeated thermal cycling. This approach may form the basis for more durable salt hydrate-based storage media and has potential relevance for applications in building heating, waste heat recovery and renewable energy integration. By improving stability, this method helps unlock the long-term operational viability of phase change materials. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Figure 1

16 pages, 5161 KB  
Article
Structure and Tribological Properties of TiN/DLC, CrN/DLC, TiAlCN/DLC, AlTiCN/DLC and AlCrTiN/DLC Hybrid Coatings on Tool Steel
by Marcin Staszuk, Daniel Pakuła, Magdalena Olszowska, Anna Kloc-Ptaszna, Magdalena Szindler, Andrzej N. Wieczorek, Rafał Honysz, Ewa Jonda and Marcin Basiaga
Materials 2025, 18(17), 4188; https://doi.org/10.3390/ma18174188 - 6 Sep 2025
Viewed by 914
Abstract
In view of the need to increase the durability of working tools exposed to intense friction, this study analysed hybrid coatings (TiAlCN, AlTiCN, AlCrTiN, TiN, CrN) with a DLC (Diamond-Like Carbon) layer, deposited using PVD (Physical Vapour Deposition) methods (arc evaporation and magnetron [...] Read more.
In view of the need to increase the durability of working tools exposed to intense friction, this study analysed hybrid coatings (TiAlCN, AlTiCN, AlCrTiN, TiN, CrN) with a DLC (Diamond-Like Carbon) layer, deposited using PVD (Physical Vapour Deposition) methods (arc evaporation and magnetron sputtering). The structural characteristics of the coatings were determined using SEM (Scanning Electron Microscope) and AFM (Atomic Force Microscope) microscopy, as well as Raman spectroscopy, which confirmed the compact structure and amorphous nature of the DLC layer. Tribological tests were performed using a ball-on-disc test, revealing that DLC hybrid coatings significantly reduce the coefficient of friction (stabilisation in the range of 0.10 to 0.14 due to DLC graphitisation), limiting tool wear even under increased load. The SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscopy) microscopic examination revealed that the dominant wear mechanisms are abrasive and adhesive damage, and the AlCrTiN/DLC system is characterised by low wear and high adhesion (Lc = 105 N), making it the optimal configuration for the given loads. Microhardness tests showed that high hardness does not always automatically translate into increased wear resistance (e.g., the AlTiCN coating with 4220 HV showed the highest wear), while coating systems with moderate hardness (TiAlCN/DLC, CrN/DLC) achieved very low wear values (~0.17 × 10−5 mm3/Nm), which highlights the importance of synergy between the hardness of the sublayer and the low friction of DLC in the design of protective coatings. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 11650 KB  
Article
Rockfall Analysis of Old Limestone Quarry Walls—A Case Study
by Malwina Kolano, Marek Cała and Agnieszka Stopkowicz
Appl. Sci. 2025, 15(17), 9734; https://doi.org/10.3390/app15179734 - 4 Sep 2025
Viewed by 759
Abstract
This article presents the results of a rockfall analysis conducted for the limestone walls of a former quarry that is now used as an urban park. The performed simulations (2D statistical analysis using Rigid Body Impact Mechanics—RBIM and Discrete Element Modelling—DEM) enabled the [...] Read more.
This article presents the results of a rockfall analysis conducted for the limestone walls of a former quarry that is now used as an urban park. The performed simulations (2D statistical analysis using Rigid Body Impact Mechanics—RBIM and Discrete Element Modelling—DEM) enabled the determination of the maximum displacement range during the ballistic phase and the maximum rebound height at the slope base, which facilitated the delineation of a safe land-use zone. A hazard zone was also identified, within which public access must be strictly prohibited due to the risk posed by flying debris. Based on slope stability assessments (safety factor values and rockfall trajectories), recommendations were formulated for slope reinforcement measures and appropriate management actions for designated sections to ensure safe operation of the site. Three mitigation strategies were proposed: (1) no protective measures, (2) no structural reinforcements but with installation of a rockfall barrier, and (3) full-scale stabilisation to allow unrestricted access to the quarry walls. The first option—leaving slopes unsecured with only designated safety buffers—is not recommended. Full article
Show Figures

Figure 1

15 pages, 4614 KB  
Article
Influence of Plasma Assistance on EB-PVD TBC Coating Thickness Distribution and Morphology
by Grzegorz Maciaszek, Krzysztof Cioch, Andrzej Nowotnik and Damian Nabel
Materials 2025, 18(17), 4109; https://doi.org/10.3390/ma18174109 - 1 Sep 2025
Viewed by 749
Abstract
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a [...] Read more.
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a plasma environment during the deposition of the ceramic top coat onto a metallic substrate. The objective was to assess how plasma assistance influences the microstructure and thickness distribution of 7% wt. yttria-stabilised zirconia (YSZ) thermal barrier coatings (TBCs). Coatings were deposited with and without plasma assistance to enable a direct comparison. The thickness uniformity and columnar morphology of the 7YSZ top coats were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the deposited coatings were verified by the scratch test method. The results demonstrate that, in the presence of plasma, columnar grains become more uniformly spaced and exhibit sharper, well-defined boundaries even at reduced substrate temperatures. XRD analysis confirmed that plasma-assisted EB-PVD processes allow for maintaining the desired tetragonal phase of YSZ without inducing secondary phases or unwanted texture changes. These findings indicate that plasma-assisted EB-PVD can achieve desirable coating characteristics (uniform thickness and optimised columnar structure) more efficiently, offering potential advantages for high-temperature applications in aerospace and power-generation industries. Continued development of the EB-PVD process with the assistance of plasma generation could further improve deposition rates and TBC performance, underscoring the promising future of HC-assisted EB-PVD technology. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

23 pages, 633 KB  
Review
Exogenous Pyruvate in Defense Against Human-Exposure Toxicants: A Review of In Vitro and In Vivo Evidence
by Iwona Zwolak
Int. J. Mol. Sci. 2025, 26(17), 8316; https://doi.org/10.3390/ijms26178316 - 27 Aug 2025
Viewed by 1233
Abstract
Pyruvate is an alpha-keto acid that occurs naturally in living cells. It is a key metabolite in cellular respiration and a substrate for the synthesis of glucose (in gluconeogenesis) and certain amino acids. Exogenous pyruvate, for example in the form of sodium pyruvate [...] Read more.
Pyruvate is an alpha-keto acid that occurs naturally in living cells. It is a key metabolite in cellular respiration and a substrate for the synthesis of glucose (in gluconeogenesis) and certain amino acids. Exogenous pyruvate, for example in the form of sodium pyruvate or ethyl pyruvate, has potential therapeutic applications due to its antioxidant and anti-inflammatory properties. This review summarises cell culture and animal studies that report the cytoprotective effects of exogenous pyruvate compounds during exposure to environmental pollutants, drugs, UV radiation, and burns. These reports show that the main mechanisms through which exogenous pyruvate exerts its beneficial effects are the neutralisation of reactive oxygen species, protection and stabilisation of mitochondria, maintenance of ATP levels, and inhibition of inflammatory signalling pathways, including the nuclear factor-kappa B (NF-κB) pathway. The article also outlines potential challenges associated with the therapeutic use of exogenous pyruvate. These include the instability of inorganic pyruvate (sodium pyruvate) and the fact that the metabolism of ethyl pyruvate differs between humans and animals. Full article
(This article belongs to the Special Issue Advanced Research in Antioxidant Activity)
Show Figures

Graphical abstract

19 pages, 9214 KB  
Article
Tribological Performance of Direct Metal Laser Sintered 20MnCr5 Tool Steel Countersamples Designed for Sheet Metal Forming Applications
by Krzysztof Żaba, Marcin Madej, Beata Leszczyńska-Madej, Tomasz Trzepieciński and Ryszard Sitek
Appl. Sci. 2025, 15(15), 8711; https://doi.org/10.3390/app15158711 - 6 Aug 2025
Viewed by 1945
Abstract
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block [...] Read more.
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block tribotester. The samples were sheet metals made of materials with significantly different properties: Inconel 625, titanium-stabilised stainless steel 321, EN AW-6061 T0 aluminium alloy, and pure copper. The samples and countersamples were analysed in terms of their wear resistance, coefficient of friction (COF), changes in friction force during testing, and surface morphology after tribological contact under dry friction conditions. The tests were performed on DMLSed countersamples in the as-received state. The largest gain of countersample mass was observed for the 20MnCr5/EN AW-6061 T0 friction pair. The sample mass loss in this combination was also the largest, amounting to 19.96% of the initial mass. On the other hand, in the 20MnCr5/Inconel 625 friction pair, no significant changes in the mass of materials were recorded. For the Inconel 625 sample, a mass loss of 0.04% was observed. The basic wear mechanism of the samples was identified as abrasive wear. The highest friction forces were observed in the 20MnCr5/Cu friction pair (COF = 0.913) and 20MnCr5/EN AW-6061 T0 friction pair (COF = 1.234). The other two samples (Inconel 625, 321 steel) showed a very stable value of the friction force during the roller-block test resulting in a COF between 0.194 and 0.213. Based on the changes in friction force, COFs, and mass changes in friction pair components during wear tests, it can be concluded that potential tools in the form of inserts or working layers manufactured using 3D printing technology, the DMLS method, without additional surface treatment can be successfully used for forming sheets of 321 steel and Inconel 625. Full article
Show Figures

Figure 1

22 pages, 1326 KB  
Review
Soil Organic Carbon Sequestration Mechanisms and the Chemical Nature of Soil Organic Matter—A Review
by Gonzalo Almendros and José A. González-Pérez
Sustainability 2025, 17(15), 6689; https://doi.org/10.3390/su17156689 - 22 Jul 2025
Cited by 4 | Viewed by 1704
Abstract
This article presents a review of several non-exclusive pathways for the sequestration of soil organic carbon, which can be classified into two large classical groups: the modification of plant and microbial macromolecules and the abiotic and microbial neoformation of humic substances. Classical studies [...] Read more.
This article presents a review of several non-exclusive pathways for the sequestration of soil organic carbon, which can be classified into two large classical groups: the modification of plant and microbial macromolecules and the abiotic and microbial neoformation of humic substances. Classical studies have established a causal relationship between aromatic structures and the stability of soil humus (traditional hypotheses regarding lignin and aromatic microbial metabolites as primary precursors for soil organic matter). However, further evidence has emerged that underscores the significance of humification mechanisms based solely on aliphatics. The precursors may be carbohydrates, which may be transformed by the effects of fire or catalytic dehydration reactions in soil. Furthermore, humic-type structures may be formed through the condensation of unsaturated fatty acids or the alteration of aliphatic biomacromolecules, such as cutins, suberins, and non-hydrolysable plant polyesters. In addition to the intrinsic value of understanding the potential for carbon sequestration in diverse soil types, biogeochemical models of the carbon cycle necessitate the assessment of the total quantity, nature, provenance, and resilience of the sequestered organic matter. This emphasises the necessity of applying specific techniques to gain insights into their molecular structures. The application of appropriate analytical techniques to soil organic matter, including sequential chemolysis or thermal degradation combined with isotopic analysis and high-resolution mass spectrometry, derivative spectroscopy (visible and infrared), or 13C magnetic resonance after selective degradation, enables the simultaneous assessment of the concurrent biophysicochemical stabilisation mechanisms of C in soils. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

Back to TopTop