Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,959)

Search Parameters:
Keywords = mechanical behavior evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5087 KB  
Article
Study on the Strength Characteristics of Ion-Adsorbed Rare Earth Ore Under Chemical Leaching and the Duncan–Chang Model Parameters
by Zhongqun Guo, Xiaoming Lin, Haoxuan Wang, Qiqi Liu and Jianqi Wu
Metals 2025, 15(10), 1104; https://doi.org/10.3390/met15101104 - 3 Oct 2025
Abstract
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO [...] Read more.
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO4)3 solutions of varying concentrations were used as leaching agents to investigate the evolution of shear strength, the characteristics of Duncan–Chang hyperbolic model parameters, and the changes in microstructural pore characteristics of rare earth samples under different leaching conditions. The results show that the stress–strain curves of all samples consistently exhibit strain-hardening behavior under all leaching conditions, and shear strength is jointly influenced by confining pressure and the chemical interaction between the leaching solution and the soil. The samples leached with MgSO4 exhibited higher shear strength than those treated with water. The samples leached with 3% and 6% Al2(SO4)3 showed increased strength, while 9% Al2(SO4)3 caused a slight decrease. With increasing leaching agent concentration, the cohesion of the samples significantly declined, whereas the internal friction angle remained relatively stable. The Duncan–Chang model accurately described the nonlinear deformation behavior of the rare earth samples, with the model parameter b markedly decreasing as confining pressure increased, indicating that confining stress plays a dominant role in governing the nonlinear response. Under the coupled effects of chemical leaching and mechanical stress, the number and size distribution of pores of the rare earth samples underwent a complex multiscale co-evolution. These results provide theoretical support for the green, efficient, and safe exploitation of ionic rare earth ores. Full article
(This article belongs to the Special Issue Metal Leaching and Recovery)
Show Figures

Figure 1

28 pages, 11514 KB  
Article
Effects of Carbon–Magnesium Reactions on the Physical and Mechanical Properties of Lightweight Carbonated Stabilized Soil
by Li Shao, Wangcheng Yu, Qinglong You, Suran Wang, Xi Du, Bin He, Shichao Tao, Honghui Ding and Chao Bao
Buildings 2025, 15(19), 3571; https://doi.org/10.3390/buildings15193571 - 3 Oct 2025
Abstract
Global urbanization has led to massive generation of high-water-content waste slurry, creating serious environmental challenges. Conventional treatment methods are costly and unsustainable, while cement-based foamed lightweight soils typically exhibit low strength and limited CO2 sequestration. To address this issue, this study proposes [...] Read more.
Global urbanization has led to massive generation of high-water-content waste slurry, creating serious environmental challenges. Conventional treatment methods are costly and unsustainable, while cement-based foamed lightweight soils typically exhibit low strength and limited CO2 sequestration. To address this issue, this study proposes a novel stabilization pathway by integrating a MgO–mineral powder–carbide slag composite binder with CO2 foaming–carbonation. The approach enables simultaneous slurry lightweighting, strength enhancement, and CO2 fixation. A series of laboratory tests were conducted to evaluate flowability, density, compressive strength, and deformation characteristics of the carbonated lightweight stabilized slurry. Microstructural analyses, including SEM and XRD, were used to reveal the formation of carbonate phases and pore structures. The results showed that MgO content strongly promoted carbonation, leading to denser microstructures and higher strength, while mineral powder and carbide slag optimized workability and pore stability. Orthogonal testing indicated that a mix with 25% mineral powder, 12.5% MgO, and 7.5% carbide slag achieved the best performance, with unconfined compressive strength up to 0.48 MPa after carbonation. Compared with conventional cement- or GGBS-based foamed lightweight soils, the proposed system exhibits superior strength development, improved pore stability, and enhanced CO2 sequestration potential. These findings demonstrate the feasibility of recycling high-water-content waste slurry into value-added construction materials while contributing to carbon reduction targets. This study not only provides a sustainable solution for waste slurry management but also offers new insights into the integration of CO2 mineralization into geotechnical engineering practice. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 9362 KB  
Review
In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction
by Jinchao Zhang, Honglin Gao, Zhen Wang, Haiyang Gao, Li Che, Kunqi Xiao and Aiyi Dong
Nanomaterials 2025, 15(19), 1517; https://doi.org/10.3390/nano15191517 - 3 Oct 2025
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their [...] Read more.
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their unique performance in generating multi-carbon (C2+) products such as ethylene and ethanol; however, there are still many controversies regarding their complex reaction mechanisms, active sites, and the dynamic evolution of intermediates. In situ Raman spectroscopy, with its high surface sensitivity, applicability in aqueous environments, and precise detection of molecular vibration modes, has become a powerful tool for studying the structural evolution of Cu catalysts and key reaction intermediates during CO2RR. This article reviews the principles of electrochemical in situ Raman spectroscopy and its latest developments in the study of CO2RR on Cu-based catalysts, focusing on its applications in monitoring the dynamic structural changes of the catalyst surface (such as Cu+, Cu0, and Cu2+ oxide species) and identifying key reaction intermediates (such as *CO, *OCCO(*O=C-C=O), *COOH, etc.). Numerous studies have shown that Cu-based oxide precursors undergo rapid reduction and surface reconstruction under CO2RR conditions, resulting in metallic Cu nanoclusters with unique crystal facets and particle size distributions. These oxide-derived active sites are considered crucial for achieving high selectivity toward C2+ products. Time-resolved Raman spectroscopy and surface-enhanced Raman scattering (SERS) techniques have further revealed the dynamic characteristics of local pH changes at the electrode/electrolyte interface and the adsorption behavior of intermediates, providing molecular-level insights into the mechanisms of selectivity control in CO2RR. However, technical challenges such as weak signal intensity, laser-induced damage, and background fluorescence interference, and opportunities such as coupling high-precision confocal Raman technology with in situ X-ray absorption spectroscopy or synchrotron radiation Fourier transform infrared spectroscopy in researching the mechanisms of CO2RR are also put forward. Full article
Show Figures

Figure 1

34 pages, 3039 KB  
Article
Research on the Behavioral Strategies of Manufacturing Enterprises for High-Quality Development: A Perspective on Endogenous and Exogenous Factors
by Yongqiang Su, Jinfa Shi and Manman Zhang
Mathematics 2025, 13(19), 3165; https://doi.org/10.3390/math13193165 - 2 Oct 2025
Abstract
High-quality development highlights the importance of environmental protection and green low-carbon development. The high-quality development of the manufacturing industry is not only the key content for achieving green transformation, but also an important cornerstone for building a modern national industrial system. Current research [...] Read more.
High-quality development highlights the importance of environmental protection and green low-carbon development. The high-quality development of the manufacturing industry is not only the key content for achieving green transformation, but also an important cornerstone for building a modern national industrial system. Current research focuses on companies and governments, ignoring the important value of suppliers and consumers. As a result, existing mechanisms have failed to deliver the desired results. This paper constructs an evolutionary game model involving manufacturing enterprises, local governments, suppliers, and consumers, and systematically analyzes the strategy selection process of the four participating populations. On this basis, the impact of exogenous and endogenous factors on the evolutionarily stable strategy is studied at the microscopic level using numerical simulation methods. The results show that (1) increasing any of the endogenous factors, such as innovative capability, organization building, and industrial resources, can accelerate the evolution of manufacturing enterprises evolve to smart upgrade strategy. (2) Increasing any one of the exogenous factors, such as policy environment, industrial cooperation, and market demand, can accelerate the rate at which manufacturing enterprises choose to adopt the strategy of smart upgrade. The purpose of this paper is to provide a theoretical reference for the behavioral strategies of manufacturing enterprises, and to provide a realistic reference for local governments to build a mechanism to promote the high-quality development of the manufacturing industry. Full article
12 pages, 446 KB  
Article
A PEI Simulation Method for Process Manufacturing
by Xiaobin Tang, Meng Yan, Wenfeng Xu, Gaoping Xu and Yize Sun
Processes 2025, 13(10), 3148; https://doi.org/10.3390/pr13103148 - 30 Sep 2025
Abstract
In response to the growing complexity of modern process manufacturing systems, this paper proposes a novel simulation framework named the Process–Equipment–In-Process State (PEI) simulation method, which introduces a unified and structured approach to modeling multi-stage industrial processes. Unlike conventional simulation approaches that rely [...] Read more.
In response to the growing complexity of modern process manufacturing systems, this paper proposes a novel simulation framework named the Process–Equipment–In-Process State (PEI) simulation method, which introduces a unified and structured approach to modeling multi-stage industrial processes. Unlike conventional simulation approaches that rely on ad hoc or loosely organized modules, the PEI method decomposes the simulation system into three core and interoperable modules: Process Structure (P), Equipment Behavior (E), and In-Process State (I). This modular abstraction facilitates the decoupling of model logic. It also enables a structure-driven simulation execution mechanism. In this structure, the process topology governs task scheduling; equipment models translate control inputs into physical conditions; and state models simulate material evolution accordingly. A complete simulation case involving water mixing, heat exchange, and slurry transformation demonstrates the method’s capability to support traceable state evolution, logical task flow, and extensible model binding. The results demonstrate that the proposed method enables module decoupling, clear simulation pathways, and traceable state changes, providing effective support for structured modeling and behavioral evolution analysis in process manufacturing. Full article
(This article belongs to the Section Process Control and Monitoring)
26 pages, 1452 KB  
Article
A Smart Evolving Fuzzy Predictor with Customized Firefly Optimization for Battery RUL Prediction
by Mohamed Ahwiadi and Wilson Wang
Batteries 2025, 11(10), 362; https://doi.org/10.3390/batteries11100362 - 30 Sep 2025
Abstract
Accurate prediction of system degradation and remaining useful life (RUL) is essential for reliable health monitoring of Lithium-ion (Li-ion) batteries, as well as other dynamic systems. While evolving systems can offer adequate adaptability to the nonstationary and nonlinear behavior of battery degradation, existing [...] Read more.
Accurate prediction of system degradation and remaining useful life (RUL) is essential for reliable health monitoring of Lithium-ion (Li-ion) batteries, as well as other dynamic systems. While evolving systems can offer adequate adaptability to the nonstationary and nonlinear behavior of battery degradation, existing methods often face challenges such as uncontrolled rule growth, limited adaptability, and reduced accuracy under noisy conditions. To address these limitations, this paper presents a smart evolving fuzzy predictor with customized firefly optimization (SEFP-FO) to provide a better solution for battery RUL prediction. The proposed SEFP-FO technique introduces two main contributions: (1) An activation- and distance-aware penalization strategy is proposed to govern rule evolution by evaluating the structural relevance of incoming data. This mechanism can control rule growth while maintaining model convergence. (2) A customized firefly algorithm is suggested to optimize the antecedent parameters of newly generated fuzzy rules, thereby enhancing prediction accuracy and improving the predictor’s adaptive capability to time-varying system conditions. The effectiveness of the proposed SEFP-FO technique is first validated by simulation using nonlinear benchmark datasets, which is then applied Full article
Show Figures

Graphical abstract

19 pages, 3326 KB  
Article
Dynamic Properties of Mineral-Based Cementitious Material-Stabilized Slurry Soil Under Vehicle Loading
by Zhenlong Sun, Yingying Zhao, Jun Luo, Fengxi Zhou, Xianzhang Ling, Yongbo Wang, Yaping Yang and Sanping Han
Materials 2025, 18(19), 4539; https://doi.org/10.3390/ma18194539 - 29 Sep 2025
Abstract
Sludge is a common engineering byproduct that poses environmental and land-use challenges when disposed of directly. Converting sludge into high-quality subgrade filling material through solidification is therefore of both engineering and ecological significance. In this study, dynamic triaxial tests were conducted on sludge [...] Read more.
Sludge is a common engineering byproduct that poses environmental and land-use challenges when disposed of directly. Converting sludge into high-quality subgrade filling material through solidification is therefore of both engineering and ecological significance. In this study, dynamic triaxial tests were conducted on sludge soils stabilized with mineral-based cementitious binders to investigate the effects of binder content, loading frequency, and curing age on the backbone curve, dynamic shear modulus, maximum shear modulus, ultimate stress amplitude, shear modulus ratio, and damping ratio. Scanning electron microscopy (SEM) was further employed to examine the microstructural evolution of the stabilized soils. The results indicate that increasing binder content and curing age significantly enhance the dynamic shear modulus while reducing the damping ratio, and the modulus exhibits a frequency-dependent behavior within the tested loading range. The modified Hardin-Drnevich constitutive model was successfully applied to fit the experimental data, accurately characterizing the dynamic response of stabilized sludge soils and enabling the development of a normalized model for the dynamic shear modulus ratio. SEM observations confirm that hydration reactions between the binder and soil produce gel products that fill interparticle pores, leading to a denser structure and explaining the observed macroscopic improvements in mechanical behavior. Overall, this work elucidates the dynamic response mechanisms of sludge stabilized with mineral-based cementitious materials and provides theoretical and experimental support for its resource utilization in road engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 4932 KB  
Article
An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining
by Ülke Şimşek and Can Çoğun
Crystals 2025, 15(10), 849; https://doi.org/10.3390/cryst15100849 - 29 Sep 2025
Abstract
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is [...] Read more.
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is employed to model anisotropic slip behavior and microscale deformation mechanisms. The primary objective is to elucidate how initial crystallographic orientation influences hardness, thermal conductivity, and electrical conductivity. Simulations are performed on single-crystal copper for three representative Face Centered Cubic (FCC) orientations. Using an explicit CPFEM model, the study examines texture evolution and deformation heterogeneity during the ECAP process of single-crystal copper. The results indicate that the <100> single-crystal orientation exhibits the highest Taylor factor and the most homogeneous distribution of plastic equivalent strain (PEEQ), suggesting enhanced resistance to plastic flow. In contrast, the <111> single-crystal orientation displays localized deformation and reduced hardening. A decreasing Taylor factor correlates with more uniform slip, which improves both electrical and thermal conductivity, as well as machinability, by minimizing dislocation-related resistance. These findings make a novel contribution to the field by highlighting the critical role of crystallographic orientation in governing slip activity and deformation pathways, which directly impact thermal wear resistance and the fabrication efficiency of ECAP-processed copper electrodes in EDM. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

19 pages, 3880 KB  
Article
Microstructural Mechanisms Influencing Soil-Interface Shear Strength: A Case Study on Loess and Concrete Plate Contact
by Chengliang Ji, Wanli Xie, Qingyi Yang, Chenfei Qu, Peijun Fan, Zhiyi Wu and Kangze Yuan
Buildings 2025, 15(19), 3512; https://doi.org/10.3390/buildings15193512 - 29 Sep 2025
Abstract
Understanding the shear behavior of loess–concrete interfaces is essential for foundation design in collapsible loess regions, yet the pore-scale mechanisms remain unclear. This study investigates the relationship between interface shear strength and loess microstructure at different burial depths. Direct shear tests were conducted [...] Read more.
Understanding the shear behavior of loess–concrete interfaces is essential for foundation design in collapsible loess regions, yet the pore-scale mechanisms remain unclear. This study investigates the relationship between interface shear strength and loess microstructure at different burial depths. Direct shear tests were conducted on undisturbed loess samples under stress conditions simulating in situ confinement. High-resolution SEM images were analyzed via Avizo to quantify pore area ratios at multiple scales, fractal dimensions, and directional probability entropy. Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA) were employed to statistically interpret the microstructure–mechanics relationship. Results show that interface shear strength increases significantly with depth (35.2–258.4 kPa), primarily due to reduced total porosity and macropore content, increased small and micropore fractions, and enhanced isotropy of pore orientation. Fractal dimension negatively correlates with strength, indicating that compaction-induced boundary regularization enhances particle contact and shear resistance, while entropy positively correlates with strength, reflecting structural homogenization and isotropic pore orientation. PCA and HCA further confirm that small and micropores are the dominant contributors to interface resistance. This study provides a quantitative framework linking microstructural evolution to mechanical performance, offering new insights for optimizing pile–soil interface design in loess areas. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

35 pages, 7715 KB  
Article
Micro-Interface Slip Damping in a Compressed Coir Vibration Isolator
by Jem A. Rongong, Jin-Song Pei, Joseph P. Wright and Gerald A. Miller
Materials 2025, 18(19), 4521; https://doi.org/10.3390/ma18194521 - 29 Sep 2025
Abstract
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work [...] Read more.
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work studies a compressed coir vibration isolator that provides a lightweight, low cost and environmentally friendly alternative to common polymer devices. Under cyclic loading, it displays highly nonlinear hysteresis and a gradual change in properties based on the load history. The nonlinear hysteresis is captured with a Masing model, which has been shown to provide an adequate phenomenological representation of systems with large numbers of miniature stick-slip contacts. This study further explores a new way to enrich the Masing model by encoding time evolution using restoring force or displacement time integral, directly adopted from mem-models, a new family of models transferred from electrical engineering. In addition to using the data from the coir isolator, two additional datasets from clayey soil, another application of micro-interface slip damping, are used to validate the modeling approach. Full article
Show Figures

Figure 1

25 pages, 11496 KB  
Article
Axial Force Analysis and Geometric Nonlinear Beam-Spring Finite Element Calculation of Micro Anti-Slide Piles
by Guoping Lei, Dongmei Yuan, Zexiong Wu and Feifan Liu
Buildings 2025, 15(19), 3498; https://doi.org/10.3390/buildings15193498 - 28 Sep 2025
Abstract
This study investigates the development of axial force in micro anti-slide piles under soil movement during slope stabilization. Axial force arises from two primary mechanisms: axial soil displacement (zs) and pile kinematics. The former plays a dominant role, producing either [...] Read more.
This study investigates the development of axial force in micro anti-slide piles under soil movement during slope stabilization. Axial force arises from two primary mechanisms: axial soil displacement (zs) and pile kinematics. The former plays a dominant role, producing either tensile or compressive axial force depending on the direction of zs, while the kinematically induced component remains consistently tensile. A sliding angle of α=5° represents an approximate transition point where these two effects balance each other. Furthermore, the two mechanisms exhibit distinct mobilization behaviors: zs-induced axial force mobilizes earlier than both bending moment and shear force, whereas kinematically induced axial force mobilizes significantly later. The study reveals two distinct pile–soil interaction mechanisms depending on proximity to the slip surface: away from the slip surface, axial soil resistance is governed by rigid cross-section translation, whereas near the slip surface, rotation-dominated displacement accompanied by soil–pile separation introduces significant complexity in predicting both the magnitude and direction of axial friction. A hyperbolic formulation was adopted to model both the lateral soil resistance relative to lateral pile–soil displacement (p-y behavior) and the axial frictional resistance relative to axial pile–soil displacement (t-z behavior). Soil resistance equations were derived to explicitly incorporate the effects of cross-sectional rotation and pile–soil separation. A novel beam-spring finite element method (BSFEM) that incorporates both geometric and material nonlinearities of the pile behavior was developed, using a soil displacement-driven solution algorithm. Validation against both numerical simulations and field monitoring data from an engineering application demonstrates the model’s effectiveness in capturing the distribution and evolution of axial deformation and axial force in micropiles under varying soil movement conditions. Full article
Show Figures

Figure 1

14 pages, 1461 KB  
Article
Body Design or Behavior? What Explains the Performance of Slender-Billed Gulls (Chroicocephalus genei) Feeding on Brine Shrimp (Artemia sp.) in Salt Pans?
by Maud de Saint Seine, Lyse Hannier, Vincent Bels, Nicolas Schtickzelle and Michel Baguette
Biology 2025, 14(10), 1331; https://doi.org/10.3390/biology14101331 - 26 Sep 2025
Abstract
(1) Background: Understanding the evolution of the form–function relationship requires identifying the selection pressures acting on individuals. The paradigm of Arnold provides a useful framework to infer how the natural selection acting on phenotypic traits can modulate individual fitness. Despite the theoretical advance, [...] Read more.
(1) Background: Understanding the evolution of the form–function relationship requires identifying the selection pressures acting on individuals. The paradigm of Arnold provides a useful framework to infer how the natural selection acting on phenotypic traits can modulate individual fitness. Despite the theoretical advance, experimental studies of individual performances that explicitly address form, i.e., the phenotypic integration of functional morphology (body design and mechanics) and of behavior, are still rare. (2) Methods: Slender-billed gull food acquisition behaviors were video recorded in the salt pans of Salin de Giraud, Camargue, where brine shrimp are their main prey. We averaged the food intake rate over 21 individuals. We computed the mean hourly energy intake of an average gull by multiplying the mean hourly prey intake rate by the weight and energy content of a brine shrimp. We used this mean hourly energy intake to investigate the time needed by an average slender-billed gull individual to acquire the energy required to achieve their daily field metabolic rate. We computed the food metabolic rate of slender-billed gulls by using the model of Dunn et al. In addition, using slow-motion video sequences, we perform a functional and integrative analysis of three performances associated with food acquisition behaviors, i.e., locomotion, food capture, and food transport. (3) Results: We demonstrate that the energy assimilated by this performance is sufficient to cover less than 6 h of an adult gull’s metabolic food rate during its breeding season. We show that brine shrimp capture by gulls does not involve the use of specialized morphological structures but rather involves a particular behavioral sequence that invariably associates a mode of locomotion, a mode of capture and a mode of transport of the prey from the beak to the pharynx. The comparison of this sequence to the register of food acquisition behaviors used by other Charadriiformes reveals its similarity with behaviors that are used by two shorebird species (Phalaropus fulicarius and P. lobatus) also feeding on prey captured from saltwater surfaces. (4) Conclusions: Altogether, our study supports (1) a causal chain in which performance results from the interaction between morphological structures and behaviors and (2) the idea that the performance peak of a realized phenotype can be reached by using the best combination of behaviors, either by convergent evolution or by their conservation among those available in a phylogenetically determined register. Full article
(This article belongs to the Special Issue The Future of Marine Megafauna)
Show Figures

Figure 1

23 pages, 8283 KB  
Article
Research on Deterioration Characteristics of Tuffaceous Sandstone Under Acidic Wet–Dry Cycles
by Dunwen Liu, Mengzhao Wang, Chengtao Yang and Xiaofei Sun
Appl. Sci. 2025, 15(19), 10465; https://doi.org/10.3390/app151910465 - 26 Sep 2025
Abstract
Conducted against the background of a highway project in Zhuji, Zhejiang Province, this study investigates the deterioration behavior of tuffaceous sandstone under the combined action of acid rain and wet–dry cycles. Laboratory experiments were carried out to explore its mechanical properties and damage [...] Read more.
Conducted against the background of a highway project in Zhuji, Zhejiang Province, this study investigates the deterioration behavior of tuffaceous sandstone under the combined action of acid rain and wet–dry cycles. Laboratory experiments were carried out to explore its mechanical properties and damage evolution mechanisms. Standard specimens prepared from field rock samples were subjected to wet–dry cycles using an acidic solution with pH ≈ 5.0. By integrating uniaxial compression, Brazilian splitting, ultrasonic wave monitoring, and acoustic emission techniques, a systematic analysis was carried out to evaluate the degradation of mechanical parameters, the evolution of wave velocity, and the underlying damage and failure mechanisms. The results indicate the following: (1) With the increase in the number of acidic dry–wet cycles, the compressive and tensile strengths of tuffaceous sandstone decrease significantly; the deterioration rate first decreases and then increases, with 150 cycles identified as the critical threshold for strength deterioration, beyond which the material enters a stage of rapid degradation. (2) The evolution of ultrasonic wave velocity shows a significant negative correlation with strength deterioration, and the attenuation rate of wave velocity exhibits a consistent trend with the number of cycles as that of strength deterioration. (3) Acoustic emission RA-AF analysis reveals that tensile cracks in tuffaceous sandstone gradually decrease while shear cracks slowly increase, with cracks primarily developing along the weakly cemented tuffaceous areas. (4) This study established fitting formulas for the deterioration of compressive and tensile strengths with the number of cycles, as well as a damage calculation formula based on changes in wave velocity. (5) This study provides practical support for mitigating natural disasters, such as slope instability, induced by this type of combined weathering. Full article
Show Figures

Figure 1

11 pages, 1538 KB  
Article
The Gas Migration During the Drainage Process of Ultra-Long Directional Boreholes in Coal Seams
by Shuaiyin He, Mingyao Wei and Yingke Liu
Appl. Sci. 2025, 15(19), 10420; https://doi.org/10.3390/app151910420 - 25 Sep 2025
Abstract
The use of ultra-long directional drilling holes for large-scale pre-drainage of gas in coal seams offers advantages such as extensive coverage and high efficiency, but its effectiveness in deep coal seams remains unclear. Focusing on the seepage characteristics of the No. 8 coal [...] Read more.
The use of ultra-long directional drilling holes for large-scale pre-drainage of gas in coal seams offers advantages such as extensive coverage and high efficiency, but its effectiveness in deep coal seams remains unclear. Focusing on the seepage characteristics of the No. 8 coal seam in the Baode Mining Area of Shanxi Province, experimental tests were conducted to investigate the evolution of dual-scale porosity permeability. The relationship between matrix/fracture permeability and effective stress were built. Utilizing numerical simulations, this study reveals the nonlinear mechanism in which permeability behavior during gas drainage is jointly influenced by pore pressure reduction and matrix shrinkage. Field measurements and simulation results demonstrated that in shallow borehole regions (<1500 m), permeability increased by up to 3.5 times, while in deeper regions (>2000 m), drainage efficiency significantly declined due to limited pressure drop propagation. These findings provide theoretical support for optimizing the layout of ultra-long directional drilling holes, enhancing gas drainage efficiency, and ensuring safe mining operations. Full article
(This article belongs to the Topic Advances in Mining and Geotechnical Engineering)
Show Figures

Figure 1

20 pages, 6754 KB  
Article
Study on the Wear Behavior Mechanism of SUS304 Stainless Steel During the Homogenization Process of LFP/NCM Slurry
by Xiangli Wen, Mingkun Bi, Lvzhou Li and Jianning Ding
Materials 2025, 18(19), 4457; https://doi.org/10.3390/ma18194457 - 24 Sep 2025
Viewed by 31
Abstract
During the homogenization process of lithium battery slurry, the slurry shearing process causes the surface of the homogenization equipment to wear and generate metal containing debris, which poses a risk of inducing battery self-discharge and even explosion. Therefore, inhibiting wear of homogenizing equipment [...] Read more.
During the homogenization process of lithium battery slurry, the slurry shearing process causes the surface of the homogenization equipment to wear and generate metal containing debris, which poses a risk of inducing battery self-discharge and even explosion. Therefore, inhibiting wear of homogenizing equipment is imperative, and systematic investigation into the wear behavior and underlying mechanisms of SUS304 stainless steel during homogenization is urgently required. In this study, lithium iron phosphate (LFP) and lithium nickel cobalt manganese oxide (NCM) cathode slurries were used as research objects. Changes in surface parameters, microstructure, and elemental composition of the wear region on SUS304 stainless steel under different working conditions were characterized. The results indicate that in the SUS304-lithium-ion battery slurry system, the potential wear mechanism of SUS304 gradually evolves with changes in load and rotational speed, following the order: adhesive wear (low speed, low load) → abrasive wear (medium speed, high load) → fatigue wear (high speed). Under high-load and high-rotational-speed conditions, oxidative corrosion wear on the ball–disc contact surface is particularly pronounced. Additionally, wear of SUS304 is more severe in the LFP slurry system compared to the NCM system. Macroscopic experiments also revealed that the speed effect is a core factor influencing the wear of SUS304, and the increase in its wear rate is more than twice that caused by the load effect. This study helps to clarify the wear behavior and wear mechanism evolution of homogenization equipment during the lithium battery homogenization process, providing data support and optimization direction for subsequent material screening and surface strengthening treatment of homogenization equipment components. Full article
Show Figures

Figure 1

Back to TopTop