Microstructural Mechanisms Influencing Soil-Interface Shear Strength: A Case Study on Loess and Concrete Plate Contact
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Test Procedure
2.2.1. Loess–Concrete Interface Shear Strength Test
2.2.2. SEM Test
2.2.3. Image Processing
2.2.4. Multivariate Statistical Analyses
3. Results and Discussion
3.1. Loess–Concrete Interface Shear Strength
3.2. Microstructure Morphology
3.3. Pore Area Ratio
3.4. Pore Shape Factor
3.5. Pore Fractal Dimension
3.6. Pore Angle Distribution
3.7. Multivariate Statistical Analysis
3.7.1. Pearson Correlation Analysis
3.7.2. Principal Component Analysis
3.7.3. Hierarchical Cluster Analysis
3.7.4. Multivariate Methods for Analyzing Loess–Concrete Interface Shear Strength Mechanisms
4. Conclusions
- (1)
- The loess–concrete interface shear strength varies with depth, primarily influenced by the total pore area ratio (PAR(tol)), which shows a strong negative correlation with F. At shallow depths (5 m), high porosity and macropores reduce friction strength, while at greater depths (30 m), reduced porosity and increased micropore content enhance soil densification, resulting in higher friction strength.
- (2)
- Small pores (PAR(sma)) and micropores (PAR(mic)) positively correlate with F, improving soil density and inter-particle contact. Conversely, mesopores (PAR(mes)) and macropores (PAR(mac)) reduce friction strength due to their role in stress relief. Fractal dimension (D) reflects pore boundary regularity and shows a negative correlation with strength, as lower values at greater depths correspond to denser packing and stronger interparticle contact. In contrast, directional probability entropy (Hm) positively correlates with F, demonstrating that more isotropic pore orientations facilitate uniform stress transfer and improve shear resistance.
- (3)
- Pearson correlation analysis and PCA reveal that micropores and small pores significantly contribute to increased friction strength by enhancing compaction and inter-particle contact. Larger pores and higher fractal dimensions weaken the soil’s mechanical integrity. HCA clusters reveal that deeper samples with lower porosity and higher micropore content exhibit higher friction strength due to improved soil compaction.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Jiang, Y.; Gao, Y.; Yuan, X. Structural Characteristics and Its Influencing Factors of Typical Loess. Bull. Eng. Geol. Environ. 2019, 78, 4893–4905. [Google Scholar] [CrossRef]
- Pham, T.A.; Nadimi, S.; Sutman, M. Critical Review of Physical-Mechanical Principles in Geostructure-Soil Interface Mechanics. Geotech. Geol. Eng. 2024, 42, 6757–6808. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C. Nonlinear Shear Characteristics of Frozen Loess-Concrete Interface. PLoS ONE 2023, 18, e0290025. [Google Scholar] [CrossRef]
- Hu, C.; Li, X. Experimental Analysis of Shear Slip Characteristics at the Interface Between Loess and Cement Mortar. In Building Seismic Monitoring and Detection Technology; CRC Press: Boca Raton, FL, USA, 2023; pp. 136–149. [Google Scholar]
- Pye, K. The Nature, Origin and Accumulation of Loess. Quat. Sci. Rev. 1995, 14, 653–667. [Google Scholar] [CrossRef]
- Lancaster, N. On the Formation of Desert Loess. Quat. Res. 2020, 96, 105–122. [Google Scholar] [CrossRef]
- Yuan, K.; Ni, W.; Lü, X.; Vecchia, G.D.; Wang, H.; Li, L.; Nie, Y. Influence of Wetting–Drying Cycles on the Compression Behavior of a Compacted Loess from Microstructure Analysis. Bull. Eng. Geol. Environ. 2022, 81, 348. [Google Scholar] [CrossRef]
- Zhou, W.-H.; Jing, X.-Y.; Yin, Z.-Y.; Geng, X. Effects of Particle Sphericity and Initial Fabric on the Shearing Behavior of Soil–Rough Structural Interface. Acta Geotech. 2019, 14, 1699–1716. [Google Scholar] [CrossRef]
- Tang, Z.C.; Zhang, Y. Temperature-Dependent Peak Shear-Strength Criterion for Granite Fractures. Eng. Geol. 2020, 269, 105552. [Google Scholar] [CrossRef]
- Rui, S.; Wang, L.; Guo, Z.; Cheng, X.; Wu, B. Monotonic Behavior of Interface Shear between Carbonate Sands and Steel. Acta Geotech. 2021, 16, 167–187. [Google Scholar] [CrossRef]
- Wang, S.; Ni, Z.; Hou, F.; Li, W.; Bing, L. Consideration of Different Soil Properties and Roughness in Shear Characteristics of Concrete–Soil Interface. Buildings 2024, 14, 2889. [Google Scholar] [CrossRef]
- Meng, Z.; Li, Y.; Li, H.; Xu, J.; Shen, S. Effect Mechanism of Particle Size and Interface Geometry Characteristics on Shear Mechanical Behavior of Sand-Concrete Interface. Mater. constr. 2025, 75, e370. [Google Scholar] [CrossRef]
- You, Z.; Wang, T.; Zhang, L.; Wang, J. Experimental and DEM Investigation of Shear Behaviors of a Loess and Rough Concrete Interface. Buildings 2025, 15, 3178. [Google Scholar] [CrossRef]
- Guo, X.E.; Kim, C.H. Mechanical Consequence of Trabecular Bone Loss and Its Treatment: A Three-Dimensional Model Simulation. Bone 2002, 30, 404–411. [Google Scholar] [CrossRef]
- Yuan, K.; Ni, W.; Della Vecchia, G.; Lü, X.; Wang, H.; Nie, Y. A Microstructural Insight on a Lime-Stabilized Loess: Experimental Evidences and Pore Size Distribution Modeling. Acta Geotech. 2025, 20, 3249–3267. [Google Scholar] [CrossRef]
- Romero, E.; Simms, P.H. Microstructure Investigation in Unsaturated Soils: A Review with Special Attention to Contribution of Mercury Intrusion Porosimetry and Environmental Scanning Electron Microscopy. Geotech. Geol. Eng. 2008, 26, 705–727. [Google Scholar] [CrossRef]
- Beckett, C.T.S.; Hall, M.R.; Augarde, C.E. Macrostructural Changes in Compacted Earthen Construction Materials under Loading. Acta Geotech. 2013, 8, 423–438. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, W. Research on the Thermal Conductivity and Microstructure of Calcium Lignosulfonate-Magnesium Oxide Solidified Loess. Appl. Sci. 2025, 15, 4545. [Google Scholar] [CrossRef]
- Pan, T.; Zhao, Z.; Ma, J.; Liu, F. Experimental Investigation of Mechanical Properties and Pore Characteristics of Hipparion Laterite Under Freeze–Thaw Cycles. Appl. Sci. 2025, 15, 5202. [Google Scholar] [CrossRef]
- Vos, K.; Vandenberghe, N.; Elsen, J. Surface Textural Analysis of Quartz Grains by Scanning Electron Microscopy (SEM): From Sample Preparation to Environmental Interpretation. Earth Sci. Rev. 2014, 128, 93–104. [Google Scholar] [CrossRef]
- Yuan, K.; Ni, W.; Lü, X.; Wang, H.; Nie, Y.; Della Vecchia, G. Loess Compaction at Different Water Contents: Effects on Hydraulic Conductivity, Compression Behavior, Microstructure, and Water Distribution. J. Rock Mech. Geotech. Eng. 2025, 17, 5307–5317. [Google Scholar] [CrossRef]
- Wei, Y.; Fan, W.; Yu, B.; Deng, L.; Wei, T. Characterization and Evolution of Three-Dimensional Microstructure of Malan Loess. CATENA 2020, 192, 104585. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Zhang, Y.; Wu, X.; Zhang, F.; Zhang, J.; Li, X. The Mechanical Strength, Microstructure, and Transport Properties of Steel Slag Reinforced Loess Soil System. Case Stud. Constr. Mater. 2024, 20, e02702. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Wen, Q.; Li, Y. The Transformation of Agricultural Development towards a Sustainable Future from an Evolutionary View on the Chinese Loess Plateau: A Case Study of Fuxian County. Sustainability 2014, 6, 3644–3668. [Google Scholar] [CrossRef]
- Hu, Q.; Gao, X.; Wang, S.; Wang, Q.; Qin, Y.; Zhang, W.; Lun, F.; Li, Z. Exploring the Characteristics and Driving Forces of Orchard Expansion in Ecological Fragile Region: A Case Study of Three Typical Counties in the Loess Plateau. Front. Environ. Sci. 2023, 10, 1097236. [Google Scholar] [CrossRef]
- Zhuang, J.; Peng, J.; Wang, G.; Iqbal, J.; Wang, Y.; Li, W.; Xu, Q.; Zhu, X. Prediction of Rainfall-induced Shallow Landslides in the Loess Plateau, Yan’an, China, Using the TRIGRS Model. Earth Surf. Process. Landf. 2017, 42, 915–927. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, H.; Tan, Y. Collapse Behavior and Microstructural Alteration of Remolded Loess under Graded Wetting Tests. Eng. Geol. 2018, 233, 11–22. [Google Scholar] [CrossRef]
- ASTM. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); American Society for Testing and Materials: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Matsuoka, H.; Sakakibara, K. A Constitutive Model for Sands and Clays Evaluating Principal Stress Rotation. Soils Found. 1987, 27, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Li, P.; Pan, Z.; Hou, Y.; Wang, J. Relationship between Water Retention Capacity and Pore-Size Distribution of Compacted Loess. J. Soils Sediments 2022, 22, 3151–3165. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, Q.; Qian, H.; Qu, W.; Li, M. Microstructure and Permeability Evolution of Remolded Loess with Different Dry Densities under Saturated Seepage. Eng. Geol. 2021, 282, 105875. [Google Scholar] [CrossRef]
- Besson, M.; Metian, M.; Bustamante, P.; Hédouin, L. Metal(Loid)s in Superficial Sediments from Coral Reefs of French Polynesia. Mar. Pollut. Bull. 2020, 155, 111175. [Google Scholar] [CrossRef] [PubMed]
- Radelyuk, I.; Tussupova, K.; Persson, M.; Zhapargazinova, K.; Yelubay, M. Assessment of Groundwater Safety Surrounding Contaminated Water Storage Sites Using Multivariate Statistical Analysis and Heckman Selection Model: A Case Study of Kazakhstan. Environ. Geochem. Health 2021, 43, 1029–1050. [Google Scholar] [CrossRef] [PubMed]
- Kianoush, P.; Mohammadi, G.; Hosseini, S.A.; Keshavarz Faraj Khah, N.; Afzal, P. ANN-Based Estimation of Pore Pressure of Hydrocarbon Reservoirs—A Case Study. Arab. J. Geosci. 2023, 16, 302. [Google Scholar] [CrossRef]
- Hou, K.; Qian, H.; Zhang, Y.; Qu, W.; Ren, W.; Wang, H. Relationship between Fractal Characteristics of Grain-Size and Physical Properties: Insights from a Typical Loess Profile of the Loess Plateau. CATENA 2021, 207, 105653. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kim, E.-H.; Lee, O.-K.; Park, S.-Y.; Lee, B.; Kim, S.-H.; Park, I.; Chung, I.-M. Variation and Correlation Analysis of Phenolic Compounds in Mungbean (Vigna Radiata L.) Varieties. Food Chem. 2013, 141, 2988–2997. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, N.; Satyam, N.; Sharma, M. Micro-Mechanical Performance Evaluation of Expansive Soil Biotreated with Indigenous Bacteria Using MICP Method. Sci. Rep. 2021, 11, 10324. [Google Scholar] [CrossRef]
- Romero, E.; Della Vecchia, G.; Jommi, C. An Insight into the Water Retention Properties of Compacted Clayey Soils. Géotechnique 2011, 61, 313–328. [Google Scholar] [CrossRef]
- Musso, G.; Azizi, A.; Jommi, C. A Microstructure-Based Elastoplastic Model to Describe the Behaviour of a Compacted Clayey Silt in Isotropic and Triaxial Compression. Can. Geotech. J. 2020, 57, 1025–1043. [Google Scholar] [CrossRef]
- Yuan, W.; Fan, W. Quantitative Study on the Microstructure of Loess Soils at Micrometer Scale via X-Ray Computed Tomography. Powder Technol. 2022, 408, 117712. [Google Scholar] [CrossRef]
- Lei, X. Pore Type of Loess in China and Collapsibility. Sci. China Ser. B 1987, 12, 1309–1316. [Google Scholar]
- Lv, Q.; Sui, W.; Zhang, Z.; Amat, G. Macro–Micro Correlation Analysis on the Loess from Ili River Valley Subjected to Freeze–Thaw Cycles. Sci. Rep. 2024, 14, 19322. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, W.-C.; Hu, W.; Wen, S.; Shang, S. Effect of Seepage Conditions on the Microstructural Evolution of Loess across North-West China. iScience 2022, 25, 104691. [Google Scholar] [CrossRef]
- Ju, X.; Jia, Y.; Li, T.; Gao, L.; Gan, M. Morphology and Multifractal Characteristics of Soil Pores and Their Functional Implication. CATENA 2021, 196, 104822. [Google Scholar] [CrossRef]
- Nie, Y.; Ni, W.; Lü, X.; Tuo, W.; Yuan, K. Macroscopic Mechanical Behavior and Microstructural Evolution of Compacted Loess in the Chinese Loess Plateau. Soil. Tillage Res. 2023, 232, 105767. [Google Scholar] [CrossRef]
- Li, X.-A.; Sun, J.; Ren, H.; Lu, T.; Ren, Y.; Pang, T. The Effect of Particle Size Distribution and Shape on the Microscopic Behaviour of Loess via the DEM. Environ. Earth Sci. 2022, 81, 290. [Google Scholar] [CrossRef]
- Yuan, K.; Li, Q.; Ni, W.; Lü, X.; Della Vecchia, G.; Wang, H.; Nie, Y. Analysis of the Structural and Environmental Impacts of Hydrophilic ZSM-5 Molecular Sieve on Loess. Constr. Build. Mater. 2023, 366, 130248. [Google Scholar] [CrossRef]
- Bérubé, D.; Jébrak, M. High Precision Boundary Fractal Analysis for Shape Characterization. Comput. Geosci. 1999, 25, 1059–1071. [Google Scholar] [CrossRef]
- Moore, C.A.; Donaldson, C.F. Quantifying Soil Microstructure Using Fractals. Géotechnique 1995, 45, 105–116. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, Y.; Niu, C.; Leng, G.; Tian, G. Dynamic Characteristics of Saturated Loess under Different Confining Pressures: A Microscopic Analysis. Bull. Eng. Geol. Environ. 2019, 78, 931–944. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, Q.; Qian, H.; Li, M.; Yang, F. An Investigation into the Relationship between Saturated Permeability and Microstructure of Remolded Loess: A Case Study from Chinese Loess Plateau. Geoderma 2021, 382, 114774. [Google Scholar] [CrossRef]
- Soto-Gómez, D.; Pérez-Rodríguez, P.; Vázquez Juíz, L.; Paradelo, M.; López-Periago, J.E. 3D Multifractal Characterization of Computed Tomography Images of Soils under Different Tillage Management: Linking Multifractal Parameters to Physical Properties. Geoderma 2020, 363, 114129. [Google Scholar] [CrossRef]
- Wang, H.; Zou, J.; Wu, W.; Ni, W. Assessing Unsaturated Permeability of Loess under Multiple Rainfalls. Eng. Geol. 2023, 324, 107280. [Google Scholar] [CrossRef]
Sample | Depth (m) | In Situ Dry Density (g/cm3) | Natural Water Content (%) | Porosity (-) | Saturation (%) | Cohesion (kPa) | Internal Friction Angle (°) |
---|---|---|---|---|---|---|---|
Loess | 5 | 1.39 ± 0.02 | 24.78 ± 0.5 | 0.49 ± 0.01 | 71.09 ± 1.2 | 28.8 ± 1.1 | 20.56 ± 0.4 |
15 | 1.34 ± 0.01 | 13.87 ± 0.3 | 0.50 ± 0.01 | 56.04 ± 0.9 | 38.21 ± 1.4 | 24.66 ± 0.5 | |
25 | 1.49 ± 0.02 | 20.90 ± 0.4 | 0.45 ± 0.01 | 69.55 ± 1.0 | 36.29 ± 1.2 | 23.94 ± 0.4 | |
30 | 1.59 ± 0.02 | 21.43 ± 0.4 | 0.41 ± 0.01 | 82.87 ± 1.3 | 49.84 ± 1.6 | 26.17 ± 0.5 |
Depth (m) | 5 | 15 | 25 | 30 |
Stress (kPa) | 50 | 150 | 250 | 300 |
Depth (m) | 5 | 15 | 25 | 30 |
Fractal dimension (D) | 1.287 | 1.288 | 1.281 | 1.277 |
Depth (m) | 5 | 15 | 25 | 30 |
Hm | 0.743 | 0.745 | 0.756 | 0.788 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, C.; Xie, W.; Yang, Q.; Qu, C.; Fan, P.; Wu, Z.; Yuan, K. Microstructural Mechanisms Influencing Soil-Interface Shear Strength: A Case Study on Loess and Concrete Plate Contact. Buildings 2025, 15, 3512. https://doi.org/10.3390/buildings15193512
Ji C, Xie W, Yang Q, Qu C, Fan P, Wu Z, Yuan K. Microstructural Mechanisms Influencing Soil-Interface Shear Strength: A Case Study on Loess and Concrete Plate Contact. Buildings. 2025; 15(19):3512. https://doi.org/10.3390/buildings15193512
Chicago/Turabian StyleJi, Chengliang, Wanli Xie, Qingyi Yang, Chenfei Qu, Peijun Fan, Zhiyi Wu, and Kangze Yuan. 2025. "Microstructural Mechanisms Influencing Soil-Interface Shear Strength: A Case Study on Loess and Concrete Plate Contact" Buildings 15, no. 19: 3512. https://doi.org/10.3390/buildings15193512
APA StyleJi, C., Xie, W., Yang, Q., Qu, C., Fan, P., Wu, Z., & Yuan, K. (2025). Microstructural Mechanisms Influencing Soil-Interface Shear Strength: A Case Study on Loess and Concrete Plate Contact. Buildings, 15(19), 3512. https://doi.org/10.3390/buildings15193512