Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,197)

Search Parameters:
Keywords = measurement of movement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3870 KiB  
Article
Universal Vector Calibration for Orientation-Invariant 3D Sensor Data
by Wonjoon Son and Lynn Choi
Sensors 2025, 25(15), 4609; https://doi.org/10.3390/s25154609 - 25 Jul 2025
Abstract
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt [...] Read more.
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt or heading can change the vector values. To avoid complications, applications using these sensors often use only the magnitude of the vector, as in geomagnetic-based indoor positioning, or assume fixed device holding postures such as holding a smartphone in portrait mode only. However, using only the magnitude of the vector loses the directional information, while ad hoc posture assumptions work under controlled laboratory conditions but often fail in real-world scenarios. To resolve these problems, we propose a universal vector calibration algorithm that enables consistent three-dimensional vector measurements for the same physical activity, regardless of device orientation. The algorithm works in two stages. First, it transforms vector values in local coordinates to those in global coordinates by calibrating device tilting using pitch and roll angles computed from the initial vector values. Second, it additionally transforms vector values from the global coordinate to a reference coordinate when the target coordinate is different from the global coordinate by correcting yaw rotation to align with application-specific reference coordinate systems. We evaluated our algorithm on geomagnetic field-based indoor positioning and bidirectional step detection. For indoor positioning, our vector calibration achieved an 83.6% reduction in mismatches between sampled magnetic vectors and magnetic field map vectors and reduced the LSTM-based positioning error from 31.14 m to 0.66 m. For bidirectional step detection, the proposed algorithm with vector calibration improved step detection accuracy from 67.63% to 99.25% and forward/backward classification from 65.54% to 100% across various device orientations. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 304 KiB  
Article
The Effects of Participation in Organized Prayer Movements on Christians’ Development of Faith, Hope, Spiritual Wellness, and Love
by Hong Sheung Chui, Edmund Sui Lung Ng and K. F. Au-Yeung Chan
Religions 2025, 16(8), 968; https://doi.org/10.3390/rel16080968 - 25 Jul 2025
Abstract
The teaching of the Bible emphasizes the importance of prayer for Christians’ faith and spiritual growth, particularly during times of trial and difficulty. Through prayers, Christians enable their spiritual experience of continuous transformation. This study tries to investigate the effects of the organised [...] Read more.
The teaching of the Bible emphasizes the importance of prayer for Christians’ faith and spiritual growth, particularly during times of trial and difficulty. Through prayers, Christians enable their spiritual experience of continuous transformation. This study tries to investigate the effects of the organised prayer movement by Jireh Fund Prayer Movement (JFPM) in Hong Kong on Christians who follow the movement. This study explores the effects of participating in the JFPM on Christians’ development of faith, spiritual wellness, resilience and love. A cross-sectional survey study was conducted in 2024, with more than 500 Christians from 67 churches responding to a questionnaire developed for the study to measure the various effects on Christians after they participated in the movement. The questionnaire was developed to measure Christians’ participation in the movement, their spiritual development of faith with hope, spiritual wellness, love, and resilience in the face of stress experienced. The findings are that the organised prayer movements provided by the Jireh Fund have a profound influence on Christians’ development of faith, spiritual wellness, and love. Through shared experiences in participating in prayer group movements, individuals strengthen their faith, enhance their spiritual development, experience divine love, and reduce stress in their daily lives. The sense of community and support found in these movements enhances spiritual wellness, while the focus on collective prayer fosters a culture of love and compassion. Through prayer, believers are empowered to grow in their relationship with God and to extend His love to others, demonstrating the transformative power of organised prayer movements in the lives of Christians. Full article
(This article belongs to the Section Religions and Theologies)
Show Figures

Figure 1

10 pages, 409 KiB  
Article
Electromyographic Analysis of Lower Limb Muscles During Multi-Joint Eccentric Isokinetic Exercise Using the Eccentron Dynamometer
by Brennan J. Thompson, Merrill Ward, Brayden Worley and Talin Louder
Appl. Sci. 2025, 15(15), 8280; https://doi.org/10.3390/app15158280 - 25 Jul 2025
Abstract
Eccentric muscle actions are integral to human movement, rehabilitation, and performance training due to their characteristic high force output (overload) and low energy cost and perceived exertion. Despite the growing use of eccentric devices, a gap in the research exists exploring multi-muscle activation [...] Read more.
Eccentric muscle actions are integral to human movement, rehabilitation, and performance training due to their characteristic high force output (overload) and low energy cost and perceived exertion. Despite the growing use of eccentric devices, a gap in the research exists exploring multi-muscle activation profiles during multi-joint eccentric-only, isokinetic exercise. This study aimed to quantify and compare surface electromyographic (EMG) activity of four leg muscles—vastus lateralis (VL), tibialis anterior (TA), biceps femoris (BF), and medial gastrocnemius (GM)—during a standardized (isokinetic) submaximal eccentric multi-joint exercise using the Eccentron dynamometer. Eighteen healthy adults performed eccentric exercise at 40% of their maximal eccentric strength. Surface EMG data were analyzed using root mean square (RMS) and integrated EMG (iEMG) variables. Repeated-measures ANOVAs and effect sizes (ES) were used to evaluate within-subject differences across muscles. Results showed significantly greater activation in the VL compared to all other muscles (p < 0.05; and ES of 1.28–3.17 versus all other muscles), with the TA also demonstrating higher activation than the BF (p < 0.05). The BF exhibited the lowest activation, suggesting limited hamstring engagement. These findings highlight the effectiveness of the multi-joint isokinetic eccentric leg press movement (via an Eccentron machine) in targeting the quadriceps and dorsiflexors, while indicating the possible need for supplementary hamstring and plantar flexor exercises when aiming for a comprehensive lower body training routine. This study provides important insights for optimizing eccentric training protocols and rehabilitation strategies. Full article
Show Figures

Figure 1

22 pages, 3429 KiB  
Article
Indoor Positioning and Tracking System in a Multi-Level Residential Building Using WiFi
by Elmer Magsino, Joshua Kenichi Sim, Rica Rizabel Tagabuhin and Jan Jayson Tirados
Information 2025, 16(8), 633; https://doi.org/10.3390/info16080633 - 24 Jul 2025
Abstract
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the [...] Read more.
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the Received Signal Strength Indicator (RSSI) signals from WiFi Anchor Points (APs).Indoor movement is detected through a successive estimation of a target’s multiple positions. Using the K-Nearest Neighbors (KNN) and Particle Swarm Optimization (PSO) algorithms, these RSSI measurements are trained for estimating the position of an indoor target. Additionally, the Density-based Spatial Clustering of Applications with Noise (DBSCAN) has been integrated into the PSO method for removing RSSI-estimated position outliers of the mobile device to further improve indoor position detection and monitoring accuracy. We also employed Time Reversal Resonating Strength (TRRS) as a correlation technique as the third method of localization. Our extensive and rigorous experimentation covers the influence of various weather conditions in indoor detection. Our proposed localization methods have maximum accuracies of 92%, 80%, and 75% for TRRS, KNN, and PSO + DBSCAN, respectively. Each method also has an approximate one-meter deviation, which is a short distance from our targets. Full article
Show Figures

Graphical abstract

20 pages, 4310 KiB  
Article
Training Rarámuri Criollo Cattle to Virtual Fencing in a Chaparral Rangeland
by Sara E. Campa Madrid, Andres R. Perea, Micah Funk, Maximiliano J. Spetter, Mehmet Bakir, Jeremy Walker, Rick E. Estell, Brandon Smythe, Sergio Soto-Navarro, Sheri A. Spiegal, Brandon T. Bestelmeyer and Santiago A. Utsumi
Animals 2025, 15(15), 2178; https://doi.org/10.3390/ani15152178 - 24 Jul 2025
Abstract
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed [...] Read more.
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed in chaparral rangeland pastures. The study included a 14-day training phase followed by an 18-day testing phase. The collar-recorded variables, including audio warnings and electric pulses, animal movement, and daily typical behavior patterns of cows classified into a High or Low virtual fence response group, were compared using repeated-measure analyses with mixed models. During training, High-response cows (i.e., resistant responders) received more audio warnings and electric pulses, while Low-response cows (i.e., active responders) had fewer audio warnings and electric pulses, explored smaller areas, and exhibited lower mobility. Despite these differences, both groups showed a time-dependent decrease in the pulse-to-warning ratio, indicating increased reliance on audio cues and reduced need for electrical stimulation to achieve similar containment rates. In the testing phase, both groups maintained high containment with minimal reinforcement. The study found that Rarámuri Criollo cows can effectively adapt to virtual fencing technology, achieving over 99% containment rate while displaying typical diurnal patterns for grazing, resting, or traveling behavior. These findings support the technical feasibility of using virtual fencing in chaparral rangelands and underscore the importance of accounting for individual behavioral variability in behavior-based containment systems. Full article
Show Figures

Figure 1

21 pages, 2794 KiB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Figure 1

24 pages, 5586 KiB  
Article
Integration of Leveling and GNSS Data to Develop Relative Vertical Movements of the Earth’s Crust Using Hybrid Models
by Bartosz Naumowicz and Kamil Kowalczyk
Appl. Sci. 2025, 15(15), 8224; https://doi.org/10.3390/app15158224 - 24 Jul 2025
Abstract
This study compared two approaches to integrating leveling and GNSS data to develop relative vertical movements of the Earth’s crust. Novel approaches were tested using transformation and hybrid grid adjustment. The results from double-leveling measurements in Poland were used as test data, and [...] Read more.
This study compared two approaches to integrating leveling and GNSS data to develop relative vertical movements of the Earth’s crust. Novel approaches were tested using transformation and hybrid grid adjustment. The results from double-leveling measurements in Poland were used as test data, and GNSS measurements developed using the PPP technique were used as Supplementary Data. The least squares method was used for the adjustment, and the isometric, conformal and affine methods were used for the transformation, with and without Hausbrandt correction. So-called pseudo-nodal points, i.e., points identified as common in both networks, whose weight was determined according to the assumptions of scale-free network theory, were used as integration points. Both integration methods have similar results and are suitable for integrating leveling and GNSS data to determine the relative vertical movements of the Earth’s crust. The average unit error m0 of the transformation was 0.1 mm/yr and the average error after adjustment of the hybrid network was 0.1 mm/yr. The use of the Hausbrandt correction does not significantly improve the transformation results. A 12-parameter affine transformation is recommended as the transformation method. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

12 pages, 262 KiB  
Article
Sex Differences in Bench Press Strength and Power: A Velocity-Based Analysis Adjusted for Body Composition
by Olga López-Torres, Raúl Nieto-Acevedo, Amelia Guadalupe-Grau and Valentín Emilio Fernández Elías
J. Funct. Morphol. Kinesiol. 2025, 10(3), 284; https://doi.org/10.3390/jfmk10030284 - 24 Jul 2025
Abstract
Background: Resistance training (RT) promotes muscle hypertrophy and strength gains in both men and women. However, sex differences in neuromuscular performance, muscle fiber composition, and the hormonal environment influence strength and power adaptations. While men generally exhibit greater absolute and relative strength, it [...] Read more.
Background: Resistance training (RT) promotes muscle hypertrophy and strength gains in both men and women. However, sex differences in neuromuscular performance, muscle fiber composition, and the hormonal environment influence strength and power adaptations. While men generally exhibit greater absolute and relative strength, it remains unclear to what extent these differences persist across various load intensities. A better understanding of sex-specific strength and power profiles may help optimize training strategies. The aim of this study was to compare strength and power performance during the bench press exercise in physically active males and females, relative to body mass and fat-free mass (FFM). Methods: Twenty-nine physically active individuals (16 men: 21.3 ± 4.1 years, 13 women: 22.6 ± 4.9 years) performed a one-repetition maximum (1RM) test and an incremental velocity-based assessment at 45%, 55%, 65%, 75%, and 85% of the 1RM using a Smith machine. The barbell velocity was measured via a linear transducer, with the mean propulsive velocity (MPV) recorded for each load. Power-related variables (e.g., peak force [F0], maximal velocity [V0], and maximal power [Pmax]) were analyzed. To account for differences in body composition, data were adjusted for body mass and FFM. Results: Men exhibited significantly greater strength and power than women across most loads when adjusted for both body mass and fat-free mass (FFM) (p < 0.05). These differences were particularly pronounced when normalized to FFM (45–75%1RM; p = 0.001–0.031), with large effect sizes observed (ηp2 = 0.185–0.383). Notably, sex differences in mean propulsive velocity (MPV) disappeared at 85%1RM (p = 0.208; ηp2 = 0.06), suggesting that maximal neuromuscular recruitment may minimize sex-related disparities at higher intensities. Furthermore, men demonstrated significantly higher values in six of the seven power-related variables, with no significant differences in the %1RM required to achieve an optimal power output. Conclusions: These findings confirm that men exhibit greater strength and power than women, even after adjusting for body composition. However, at high relative loads (≥85%1RM), sex differences in movement velocity appear to diminish, likely due to similar recruitment patterns of high-threshold motor units. These results highlight the importance of sex-specific resistance training programs, particularly in relation to load prescription and the application of velocity-based training methods. Full article
13 pages, 231 KiB  
Article
Enhancing Preschoolers’ Motor Creativity Through Playfulness and Social Engagement
by Despoina Ourda, Eleni Polyzoudi, Athanasios Gregoriadis and Vassilis Barkoukis
Children 2025, 12(8), 969; https://doi.org/10.3390/children12080969 - 23 Jul 2025
Viewed by 51
Abstract
Background/Objectives: Motor creativity is a vital component of preschoolers’ growth and development. However, its underlying determinants remain largely underexplored. This study investigates the interrelationship among playful behavior, social profile, and motor creativity in preschool children, emphasizing its implications for holistic health and [...] Read more.
Background/Objectives: Motor creativity is a vital component of preschoolers’ growth and development. However, its underlying determinants remain largely underexplored. This study investigates the interrelationship among playful behavior, social profile, and motor creativity in preschool children, emphasizing its implications for holistic health and development. Methods: A total of 200 children and their kindergarten teachers from Greece participated in the study. The Children’s Playfulness Scale (CPS) was employed to assess the children’s playfulness, while a sociometric test was used to evaluate their social standing within peer groups. Motor creativity was measured through TCAM, a performance-based test focusing on fluency, imagination, and originality. Results: The findings revealed that the dimensions of playful behavior, particularly motor and social playfulness, significantly and positively influenced motor creativity, a core component of physical and mental health in early childhood. Conversely, certain aspects of social behavior had a negative association with imaginative capacities. Conclusions: The study underscores the critical role of movement-based playful activities in fostering children’s physical, emotional, cognitive, and social health. It highlights the need for educators to design developmentally appropriate motor play activities that cultivate creativity and social integration, promoting a balanced and health-oriented early education framework. The results contribute to educational policy and practice by reinforcing the importance of structured motor play in supporting preschoolers’ well-being and comprehensive development. Full article
(This article belongs to the Section Global Pediatric Health)
40 pages, 9589 KiB  
Article
Identification of Interactions Between the Effects of Geodynamic Activity and Changes in Radon Concentration as Markers of Seismic Events
by Lidia Fijałkowska-Lichwa, Damian Kasza, Marcin Zając, Tadeusz A. Przylibski and Marek Kaczorowski
Appl. Sci. 2025, 15(15), 8199; https://doi.org/10.3390/app15158199 - 23 Jul 2025
Viewed by 45
Abstract
This article describes the interactions between radon emissions and tectonic movements that accompany seismic activity as a function of time. The interpretation is based on advanced data analysis methods, such as Fourier wavelet transform, SGolay correlation analysis, and time-based data categorization. The dataset [...] Read more.
This article describes the interactions between radon emissions and tectonic movements that accompany seismic activity as a function of time. The interpretation is based on advanced data analysis methods, such as Fourier wavelet transform, SGolay correlation analysis, and time-based data categorization. The dataset comprised the measurement results of 222Rn activity concentrations and the effects of the tectonic activity of rock masses acquired from two water-tube tiltmeters and five SRDN-3 radon probes. The analysis included four seismic events with moderate and light magnitudes (≥4.0), with a hypocenter at a depth of 1–10 km, located approximately 75 km from the research site. Each seismic shock had a different distribution of rock mass phases recorded by the integrated (probe-tiltmeter) measurement system. The results indicate that at the research site, the radon-tectonic signal is best identified between 25 and 48 h and between 49 and 72 h before the seismic shock. Positive correlations between the tectonic signal and the radon signal associated with the tension phase in the rock mass and negative correlations between the tectonic signal and the radon signal associated with the compression phase allow the description of the behavior of the rock mass before the seismic shock. Mixed correlations (positive and negative) indicate that both the stress and strain phases of the rock mass are recorded. The observed correlations seem particularly promising, as they can be recorded already 1–3 days before the seismic event, allowing an appropriately early response to the expected seismic event. Full article
Show Figures

Figure 1

17 pages, 2084 KiB  
Article
Accelerometer Measurements: A Learning Tool to Help Older Adults Understand the Importance of Soft-Landing Techniques in a Community Walking Class
by Tatsuo Doi, Ryosuke Haruna, Naoyo Kamioka, Shuzo Bonkohara and Nobuko Hongu
Sensors 2025, 25(15), 4546; https://doi.org/10.3390/s25154546 - 22 Jul 2025
Viewed by 93
Abstract
When people overextend their step length, it leads to an increase in vertical movement and braking force. The overextension elevates landing impacts, which may increase pain in the knees or lower back. The objective of this study was to examine the effects of [...] Read more.
When people overextend their step length, it leads to an increase in vertical movement and braking force. The overextension elevates landing impacts, which may increase pain in the knees or lower back. The objective of this study was to examine the effects of soft-landing walking techniques in a 90 min, instructor-led group class for older adults. To evaluate a landing impact, an accelerometer measurement system (Descente LTD., Tokyo, Japan) was used to measure a participant 10 meter (m) of walking. Assessment outcomes included the average number of steps, step length, upward acceleration which reflects the landing impact, and survey questions. A total of 223 older adults (31 men, 192 women, mean age 74.4 ± 5.7 years) completed the walking lesson. Following the lesson, participants decreased their step lengths and reduced upward acceleration, along with an increased step count. The number of steps increased, and a positive correlation (r = 0.73, p < 0.01) was observed between the rate of change in step length and upward acceleration. Over 95% of participants gave high marks for practicality and understanding the accelerometer measurements. The information derived from this study will provide valuable insight into the effectiveness of soft-landing techniques as a promotion of a healthy walking program for older adults. Full article
(This article belongs to the Special Issue Advanced Sensors for Health Monitoring in Older Adults)
Show Figures

Figure 1

33 pages, 10277 KiB  
Article
A Finite Element Formulation for True Coupled Modal Analysis and Nonlinear Seismic Modeling of Dam–Reservoir–Foundation Systems: Application to an Arch Dam and Validation
by André Alegre, Sérgio Oliveira, Jorge Proença, Paulo Mendes and Ezequiel Carvalho
Infrastructures 2025, 10(8), 193; https://doi.org/10.3390/infrastructures10080193 - 22 Jul 2025
Viewed by 71
Abstract
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical [...] Read more.
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical governing equation for the whole system with non-proportional damping. For the modal analysis, a state–space method is adopted to solve the coupled eigenproblem, and complex eigenvalues and eigenvectors are computed, corresponding to non-stationary vibration modes. For the seismic analysis, a time-stepping method is applied to the coupled dynamic equation, and the stress–transfer method is introduced to simulate the nonlinear behavior, innovatively combining a constitutive joint model and a concrete damage model with softening and two independent scalar damage variables (tension and compression). This formulation is implemented in the computer program DamDySSA5.0, developed by the authors. To validate the formulation, this paper provides the experimental and numerical results in the case of the Cahora Bassa dam, instrumented in 2010 with a continuous vibration monitoring system designed by the authors. The good comparison achieved between the monitoring data and the dam–reservoir–foundation model shows that the formulation is suitable for simulating the modal response (natural frequencies and mode shapes) for different reservoir water levels and the seismic response under low-intensity earthquakes, using accelerograms measured at the dam base as input. Additionally, the dam’s nonlinear seismic response is simulated under an artificial accelerogram of increasing intensity, showing the structural effects due to vertical joint movements (release of arch tensions near the crest) and the concrete damage evolution. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

12 pages, 219 KiB  
Article
Eye Movements During Pareidolia: Exploring Biomarkers for Thinking and Perception Problems on the Rorschach
by Mellisa Boyle, Barry Dauphin, Harold H. Greene, Mindee Juve and Ellen Day-Suba
J. Eye Mov. Res. 2025, 18(4), 32; https://doi.org/10.3390/jemr18040032 - 22 Jul 2025
Viewed by 178
Abstract
Eye movements (EMs) offer valuable insights into cognitive and perceptual processes, serving as potential biomarkers for disordered thinking. This study explores the relationship between EM indices and perception and thinking problems in the Rorschach Performance Assessment System (R-PAS). Sixty non-clinical participants underwent eye-tracking [...] Read more.
Eye movements (EMs) offer valuable insights into cognitive and perceptual processes, serving as potential biomarkers for disordered thinking. This study explores the relationship between EM indices and perception and thinking problems in the Rorschach Performance Assessment System (R-PAS). Sixty non-clinical participants underwent eye-tracking while completing the Rorschach test, focusing on variables from the Perception and Thinking Problems Domain (e.g., WSumCog, SevCog, FQo%). The results reveal that increased cognitive disturbances were associated with greater exploratory activity but reduced processing efficiency. Regression analyses highlighted the strong predictive role of cognitive variables (e.g., WSumCog) over perceptual ones (e.g., FQo%). Minimal overlap was observed between performance-based (R-PAS) and self-report measures (BSI), underscoring the need for multi-method approaches. The findings suggest that EM patterns could serve as biomarkers for early detection and intervention, offering a foundation for future research on psychotic-spectrum processes in clinical and non-clinical populations. Full article
Show Figures

Graphical abstract

14 pages, 926 KiB  
Article
The Effectiveness of Manual Therapy in the Cervical Spine and Diaphragm, in Combination with Breathing Re-Education Exercises, on the Range of Motion and Forward Head Posture in Patients with Non-Specific Chronic Neck Pain: A Randomized Controlled Trial
by Petros I. Tatsios, Eirini Grammatopoulou, Zacharias Dimitriadis and George A. Koumantakis
Healthcare 2025, 13(14), 1765; https://doi.org/10.3390/healthcare13141765 - 21 Jul 2025
Viewed by 176
Abstract
Background/Objectives: A randomized controlled trial (RCT) was designed to test the emerging role of respiratory mechanics as part of physiotherapy in patients with non-specific chronic neck pain (NSCNP). Methods: Ninety patients with NSCNP and symptom duration >3 months were randomly allocated to three [...] Read more.
Background/Objectives: A randomized controlled trial (RCT) was designed to test the emerging role of respiratory mechanics as part of physiotherapy in patients with non-specific chronic neck pain (NSCNP). Methods: Ninety patients with NSCNP and symptom duration >3 months were randomly allocated to three intervention groups of equal size, receiving either cervical spine (according to the Mulligan Concept) and diaphragm manual therapy plus breathing reeducation exercises (experimental group—EG1), cervical spine manual therapy plus sham diaphragmatic manual techniques (EG2), or conventional physiotherapy (control group—CG). The treatment period lasted one month (10 sessions) for all groups. The effect on the cervical spine range of motion (CS-ROM) and on the craniovertebral angle (CVA) was examined. Outcomes were collected before treatment (0/12), after treatment (1/12), and three months after the end of treatment (4/12). The main analysis comprised a two-way mixed ANOVA with a repeated measures factor (time) and a between-groups factor (group). Post hoc tests assessed the source of significant interactions detected. The significance level was set at p = 0.05. Results: No significant between-group baseline differences were identified. Increases in CS-ROM and in CVA were registered mainly post-treatment, with improvements maintained at follow-up for CS-ROM. EG1 significantly improved over CG in all movement directions except for flexion and over EG2 for extension only, at 1/12 and 4/12. All groups improved by the same amount for CVA. Conclusions: EG1, which included diaphragm manual therapy and breathing re-education exercises, registered the largest overall improvement over CG (except for flexion and CVA), and for extension over EG2. The interaction between respiratory mechanics and neck mobility may provide new therapeutic and assessment insights of patients with NSCNP. Full article
(This article belongs to the Special Issue Future Trends of Physical Activity in Health Promotion)
Show Figures

Figure 1

19 pages, 1818 KiB  
Article
Explainable AI Highlights the Most Relevant Gait Features for Neurodegenerative Disease Classification
by Gianmarco Tiddia, Francesca Mainas, Alessandra Retico and Piernicola Oliva
Appl. Sci. 2025, 15(14), 8078; https://doi.org/10.3390/app15148078 - 21 Jul 2025
Viewed by 168
Abstract
Gait analysis is a valuable tool for aiding in the diagnosis of neurological diseases, providing objective measurements of human gait kinematics and kinetics. These data enable the quantitative estimation of movement abnormalities, which helps to diagnose disorders and assess their severity. In this [...] Read more.
Gait analysis is a valuable tool for aiding in the diagnosis of neurological diseases, providing objective measurements of human gait kinematics and kinetics. These data enable the quantitative estimation of movement abnormalities, which helps to diagnose disorders and assess their severity. In this regard, machine learning techniques and explainability methods offer an opportunity to enhance anomaly detection in gait measurements and support a more objective assessment of neurodegenerative disease, providing insights into the most relevant gait parameters used for disease identification. This study employs several classifiers and explainability methods to analyze gait data from a public dataset composed of patients affected by degenerative neurological diseases and healthy controls. The work investigates the relevance of spatial, temporal, and kinematic gait parameters in distinguishing such diseases. The findings are consistent among the classifiers employed and in agreement with known clinical findings about the major gait impairments for each disease. This work promotes the use of data-driven assessments in clinical settings, helping reduce subjectivity in gait evaluation and enabling broader deployment in healthcare environments. Full article
(This article belongs to the Special Issue Machine Learning in Biomedical Sciences)
Show Figures

Figure 1

Back to TopTop