Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (241)

Search Parameters:
Keywords = measurement noise covariance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11424 KB  
Article
AI-Based Optimization of a Neural Discrete-Time Sliding Mode Controller via Bayesian, Particle Swarm, and Genetic Algorithms
by Carlos E. Castañeda
Robotics 2025, 14(9), 128; https://doi.org/10.3390/robotics14090128 - 19 Sep 2025
Viewed by 251
Abstract
This work introduces a unified Artificial Intelligence-based framework for the optimal tuning of gains in a neural discrete-time sliding mode controller (SMC) applied to a two-degree-of-freedom robotic manipulator. The novelty lies in combining surrogate-assisted optimization with normalized search spaces to enable a fair [...] Read more.
This work introduces a unified Artificial Intelligence-based framework for the optimal tuning of gains in a neural discrete-time sliding mode controller (SMC) applied to a two-degree-of-freedom robotic manipulator. The novelty lies in combining surrogate-assisted optimization with normalized search spaces to enable a fair comparative analysis of three metaheuristic strategies: Bayesian Optimization (BO), Particle Swarm Optimization (PSO), and Genetic Algorithms (GAs). The manipulator dynamics are identified via a discrete-time recurrent high-order neural network (NN) trained online using an Extended Kalman Filter with adaptive noise covariance updates, allowing the model to accurately capture unmodeled dynamics, nonlinearities, parametric variations, and process/measurement noise. This neural representation serves as the predictive plant for the discrete-time SMC, enabling precise control of joint angular positions under sinusoidal phase-shifted references. To construct the optimization dataset, MATLAB® simulations sweep the controller gains (k0*,k1*) over a bounded physical domain, logging steady-state tracking errors. These are normalized to mitigate scaling effects and improve convergence stability. Optimization is executed in Python® using integrated scikit-learn, DEAP, and scikit-optimize routines. Simulation results reveal that all three algorithms reach high-performance gain configurations. Here, the combined cost is the normalized aggregate objective J˜ constructed from the steady-state tracking errors of both joints. Under identical experimental conditions (shared data loading/normalization and a single Python pipeline), PSO attains the lowest error in Joint 1 (7.36×105 rad) with the shortest runtime (23.44 s); GA yields the lowest error in Joint 2 (8.18×103 rad) at higher computational expense (≈69.7 s including refinement); and BO is competitive in both joints (7.81×105 rad, 8.39×103 rad) with a runtime comparable to PSO (23.65 s) while using only 50 evaluations. Full article
(This article belongs to the Section AI in Robotics)
Show Figures

Figure 1

10 pages, 2239 KB  
Proceeding Paper
Combining Forgetting Factor Recursive Least Squares and Adaptive Extended Kalman Filter Techniques for Dynamic Estimation of Lithium Battery State of Charge
by En-Jui Liu, Cai-Chun Ting, Wei-Hsuan Hsu, Pei-Zhang Chen, Wei-Hua Hong and Hung-Chih Ku
Eng. Proc. 2025, 108(1), 1; https://doi.org/10.3390/engproc2025108001 - 28 Aug 2025
Viewed by 1800
Abstract
For electric vehicles widely used recently, lithium-ion batteries serve as the primary energy storage units, affecting the vehicles’ performance, safety, and lifespan. Accurate state of charge (SOC) estimation is pivotal for the battery management system (BMS) to enhance the predictability of the vehicle’s [...] Read more.
For electric vehicles widely used recently, lithium-ion batteries serve as the primary energy storage units, affecting the vehicles’ performance, safety, and lifespan. Accurate state of charge (SOC) estimation is pivotal for the battery management system (BMS) to enhance the predictability of the vehicle’s range and avert thermal runaway due to improper charging methods. In this study, an adaptive SOC estimation methodology was developed using parameter identification with forgetting factor recursive least squares (FFRLS). These parameters are then incorporated into a dual adaptive extended Kalman filter (DAEKF) for SOC estimation under varying load conditions. DAEKF is used to dynamically adjust the covariance matrices for process and measurement noises, significantly enhancing the filter’s adaptability and precision. The integration of FFRLS and DAEKF enables a robust SOC estimation of electric vehicles, featuring rapid computation speeds, high accuracy, and excellent adaptability, positioning them as ideal candidates for enhancements in battery management system technology. Full article
Show Figures

Figure 1

18 pages, 1814 KB  
Article
Student’s t Kernel-Based Maximum Correntropy Criterion Extended Kalman Filter for GPS Navigation
by Dah-Jing Jwo, Yi Chang, Yun-Han Hsu and Amita Biswal
Appl. Sci. 2025, 15(15), 8645; https://doi.org/10.3390/app15158645 - 5 Aug 2025
Viewed by 519
Abstract
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting [...] Read more.
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting the effectiveness of satellite navigation filters. This paper presents a robust Extended Kalman Filter (EKF) based on the Maximum Correntropy Criterion with a Student’s t kernel (STMCCEKF) for GPS navigation under non-Gaussian noise. Unlike traditional EKF and Gaussian-kernel MCCEKF, the proposed method enhances robustness by leveraging the heavy-tailed Student’s t kernel, which effectively suppresses outliers and dynamic observation noise. A fixed-point iterative algorithm is used for state update, and a new posterior error covariance expression is derived. The simulation results demonstrate that STMCCEKF outperforms conventional filters in positioning accuracy and robustness, particularly in environments with impulsive noise and multipath interference. The Student’s t-distribution kernel efficiently mitigates heavy-tailed non-Gaussian noise, while it adaptively adjusts process and measurement noise covariances, leading to improved estimation performance. A detailed explanation of several key concepts along with practical examples are discussed to aid in understanding and applying the Global Positioning System (GPS) navigation filter. By integrating cutting-edge reinforcement learning with robust statistical approaches, this work advances adaptive signal processing and estimation, offering a significant contribution to the field. Full article
Show Figures

Figure 1

24 pages, 6924 KB  
Article
Robust Adaptive Multiple Backtracking VBKF for In-Motion Alignment of Low-Cost SINS/GNSS
by Weiwei Lyu, Yingli Wang, Shuanggen Jin, Haocai Huang, Xiaojuan Tian and Jinling Wang
Remote Sens. 2025, 17(15), 2680; https://doi.org/10.3390/rs17152680 - 2 Aug 2025
Viewed by 368
Abstract
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To [...] Read more.
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To address the issue that low-cost SINS/GNSS cannot effectively achieve rapid and high-accuracy alignment in complex environments that contain noise and external interference, an adaptive multiple backtracking robust alignment method is proposed. The sliding window that constructs observation and reference vectors is established, which effectively avoids the accumulation of sensor errors during the full integration process. A new observation vector based on the magnitude matching is then constructed to effectively reduce the effect of outliers on the alignment process. An adaptive multiple backtracking method is designed in which the window size can be dynamically adjusted based on the innovation gradient; thus, the alignment time can be significantly shortened. Furthermore, the modified variational Bayesian Kalman filter (VBKF) that accurately adjusts the measurement noise covariance matrix is proposed, and the Expectation–Maximization (EM) algorithm is employed to refine the prior parameter of the predicted error covariance matrix. Simulation and experimental results demonstrate that the proposed method significantly reduces alignment time and improves alignment accuracy. Taking heading error as the critical evaluation indicator, the proposed method achieves rapid alignment within 120 s and maintains a stable error below 1.2° after 80 s, yielding an improvement of over 63% compared to the backtracking-based Kalman filter (BKF) method and over 57% compared to the fuzzy adaptive KF (FAKF) method. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

17 pages, 5247 KB  
Article
An Intelligent Optimization-Based Secure Filter Design for State Estimation of Power Systems with Multiple Disturbances
by Yudong Xu, Wei Wang, Yong Liu, Xiaokai Meng, Yutong Chen and Zhixiang Liu
Electronics 2025, 14(15), 3059; https://doi.org/10.3390/electronics14153059 - 31 Jul 2025
Viewed by 344
Abstract
To address multiple disturbance threats such as system anomalies and cyberattacks faced by power systems, an intelligent optimized secure filter method is developed in this paper for state estimation of power systems with the aid of the improved sparrow search algorithm–optimized unscented Kalman [...] Read more.
To address multiple disturbance threats such as system anomalies and cyberattacks faced by power systems, an intelligent optimized secure filter method is developed in this paper for state estimation of power systems with the aid of the improved sparrow search algorithm–optimized unscented Kalman filter (ISSA-UKF). Firstly, the problem of insufficient robustness in noise modeling and parameter selection of the conventional unscented Kalman filter (UKF) is analyzed. Secondly, an intelligent optimization method is adopted to adaptively update the UKF’s process and measurement noise covariances in real time, and an ISSA-UKF fusion framework is constructed to improve the estimation accuracy and system response capability. Thirdly, an adaptive weight function based on disturbance observation differences is provided to strengthen the stability of the algorithm in response to abnormal measurements at edge nodes and dynamic system changes. Finally, simulation analysis under a typical power system model shows that compared with the conventional UKF method, the developed ISSA-UKF algorithm demonstrates significant improvements in estimation accuracy, robustness, and dynamic response performance and can effectively cope with non-ideal disturbances that may occur in power systems. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

24 pages, 2508 KB  
Article
Class-Discrepancy Dynamic Weighting for Cross-Domain Few-Shot Hyperspectral Image Classification
by Chen Ding, Jiahao Yue, Sirui Zheng, Yizhuo Dong, Wenqiang Hua, Xueling Chen, Yu Xie, Song Yan, Wei Wei and Lei Zhang
Remote Sens. 2025, 17(15), 2605; https://doi.org/10.3390/rs17152605 - 27 Jul 2025
Viewed by 597
Abstract
In recent years, cross-domain few-shot learning (CDFSL) has demonstrated remarkable performance in hyperspectral image classification (HSIC), partially alleviating the distribution shift problem. However, most domain adaptation methods rely on similarity metrics to establish cross-domain class matching, making it difficult to simultaneously account for [...] Read more.
In recent years, cross-domain few-shot learning (CDFSL) has demonstrated remarkable performance in hyperspectral image classification (HSIC), partially alleviating the distribution shift problem. However, most domain adaptation methods rely on similarity metrics to establish cross-domain class matching, making it difficult to simultaneously account for intra-class sample size variations and inherent inter-class differences. To address this problem, existing studies have introduced a class weighting mechanism within the prototype network framework, determining class weights by calculating inter-sample similarity through distance metrics. However, this method suffers from a dual limitation: susceptibility to noise interference and insufficient capacity to capture global class variations, which may lead to distorted weight allocation and consequently result in alignment bias. To solve these issues, we propose a novel class-discrepancy dynamic weighting-based cross-domain FSL (CDDW-CFSL) framework. It integrates three key components: (1) the class-weighted domain adaptation (CWDA) method dynamically measures cross-domain distribution shifts using global class mean discrepancies. It employs discrepancy-sensitive weighting to strengthen the alignment of critical categories, enabling accurate domain adaptation while maintaining feature topology; (2) the class mean refinement (CMR) method incorporates class covariance distance to compute distribution discrepancies between support set samples and class prototypes, enabling the precise capture of cross-domain feature internal structures; (3) a novel multi-dimensional feature extractor that captures both local spatial details and continuous spectral characteristics simultaneously, facilitating deep cross-dimensional feature fusion. The results in three publicly available HSIC datasets show the effectiveness of the CDDW-CFSL. Full article
Show Figures

Figure 1

27 pages, 5938 KB  
Article
Noise-Adaptive GNSS/INS Fusion Positioning for Autonomous Driving in Complex Environments
by Xingyang Feng, Mianhao Qiu, Tao Wang, Xinmin Yao, Hua Cong and Yu Zhang
Vehicles 2025, 7(3), 77; https://doi.org/10.3390/vehicles7030077 - 22 Jul 2025
Cited by 2 | Viewed by 2675
Abstract
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation [...] Read more.
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) measurements. Our key innovation lies in developing a dual noise estimation model that synergizes priori weighting with posterior variance compensation. Specifically, we establish an a priori weighting model for satellite pseudorange errors based on elevation angles and signal-to-noise ratios (SNRs), complemented by a Helmert variance component estimation for posterior refinement. For INS error modeling, we derive a bias instability noise accumulation model through Allan variance analysis. These adaptive noise estimates dynamically update both process and observation noise covariance matrices in our Error-State Kalman Filter (ESKF) implementation, enabling real-time calibration of GNSS and INS contributions. Comprehensive field experiments demonstrate two key advantages: (1) The proposed noise estimation model achieves 37.7% higher accuracy in quantifying GNSS single-point positioning uncertainties compared to conventional elevation-based weighting; (2) in unstructured environments with intermittent signal outages, the fusion system maintains an average absolute trajectory error (ATE) of less than 0.6 m, outperforming state-of-the-art fixed-weight fusion methods by 36.71% in positioning consistency. These results validate the framework’s capability to autonomously balance sensor reliability under dynamic environmental conditions, significantly enhancing positioning robustness for autonomous vehicles. Full article
Show Figures

Figure 1

19 pages, 55351 KB  
Article
Improving UAV Remote Sensing Photogrammetry Accuracy Under Navigation Interference Using Anomaly Detection and Data Fusion
by Chen Meng, Haoyang Yang, Cuicui Jiang, Qinglei Hu and Dongyu Li
Remote Sens. 2025, 17(13), 2176; https://doi.org/10.3390/rs17132176 - 25 Jun 2025
Viewed by 732
Abstract
Accurate and robust navigation is fundamental to Unmanned Aerial Vehicle (UAV) remote sensing operations. However, the susceptibility of UAV navigation sensors to diverse interference and malicious attacks can severely degrade positioning accuracy and compromise mission integrity. Addressing these vulnerabilities, this paper presents an [...] Read more.
Accurate and robust navigation is fundamental to Unmanned Aerial Vehicle (UAV) remote sensing operations. However, the susceptibility of UAV navigation sensors to diverse interference and malicious attacks can severely degrade positioning accuracy and compromise mission integrity. Addressing these vulnerabilities, this paper presents an integrated framework combining sensor anomaly detection with a Dynamic Adaptive Extended Kalman Filter (DAEKF) and federated filtering algorithms to bolster navigation resilience and accuracy for UAV remote sensing. Specifically, mathematical models for prevalent UAV sensor attacks were established. The proposed framework employs adaptive thresholding and residual consistency checks for the real-time identification and isolation of anomalous sensor measurements. Based on these detection outcomes, the DAEKF dynamically adjusts its sensor fusion strategies and noise covariance matrices. To further enhance the fault tolerance, a federated filtering architecture was implemented, utilizing adaptively weighted sub-filters based on assessed trustworthiness to effectively isolate faults. The efficacy of this framework was validated through rigorous experiments that involved real-world flight data and software-defined radio (SDR)-based Global Positioning System (GPS) spoofing, alongside simulated attacks. The results demonstrate exceptional performance, where the average anomaly detection accuracy exceeded 99% and the precision surpassed 98%. Notably, when benchmarked against traditional methods, the proposed system reduced navigation errors by a factor of approximately 2-3 under attack scenarios, which substantially enhanced the operational stability of the UAVs in challenging environments. Full article
Show Figures

Figure 1

21 pages, 4676 KB  
Article
RFID-Based Real-Time Salt Concentration Monitoring with Adaptive EKF
by Renhai Feng and Xinyi Lin
Sensors 2025, 25(12), 3826; https://doi.org/10.3390/s25123826 - 19 Jun 2025
Viewed by 566
Abstract
Salt concentration monitoring is crucial for industrial process control and wastewater management, yet existing methods often lack real-time capability or require invasive sampling. This paper presents a novel RFID wireless sensing system for noninvasive solution concentration monitoring, combining physical modeling with advanced estimation [...] Read more.
Salt concentration monitoring is crucial for industrial process control and wastewater management, yet existing methods often lack real-time capability or require invasive sampling. This paper presents a novel RFID wireless sensing system for noninvasive solution concentration monitoring, combining physical modeling with advanced estimation algorithms. By combining the Cole–Cole model and the slit cylindrical capacitor (SCC) model, the system establishes physics-based state-space models to characterize concentration-dependent RFID signal variations. The concentration dynamics are modeled as a hidden Markov process and tracked using an adaptive extended Kalman filter (AEKF). The AEKF algorithm avoids computationally expensive inversion of complex observation equations while automatically adjusting noise covariance matrices via innovation sequence. Experimental results demonstrate a mean relative error (MRE) of 2.8% for CaCl2 solution across 2–10 g/L concentrations. Within the experimentally validated optimal range (2–8 g/L CaCl2), the system maintains MRE below 3% under artificially introduced measurement noise, confirming its strong robustness. Compared with baseline approaches, the proposed AEKF algorithm shows improved performance in both accuracy and computational efficiency. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

21 pages, 2212 KB  
Article
A Novel Variational Bayesian Method with Unknown Noise for Underwater INS/DVL/USBL Localization
by Haoqian Huang, Chenhui Dong, Yutong Zhang and Shuang Zhang
Sensors 2025, 25(12), 3708; https://doi.org/10.3390/s25123708 - 13 Jun 2025
Cited by 1 | Viewed by 490
Abstract
In the complex underwater environment, it is hard to obtain accurate system noise prior information. If uncertainty system noise model is used in state determination, the precision will decrease. To address the problem, this paper proposes a novel inverse-Wishart (IW) based variational Bayesian [...] Read more.
In the complex underwater environment, it is hard to obtain accurate system noise prior information. If uncertainty system noise model is used in state determination, the precision will decrease. To address the problem, this paper proposes a novel inverse-Wishart (IW) based variational Bayesian adaptive cubature Kalman filter (IW-VACKF), and the inverse-Wishart distribution is employed as the conjugate prior distribution of system noise covariance matrices. To improve the modeling accuracy, a mixing probability vector is introduced based on the inverse-Wishart distribution to better characterize the uncertainty and dynamic of state noise in underwater environments. Then, the state transition and the measurement process are derived as hierarchical Gaussian models. Subsequently, the posterior information of the system is jointly calculated by employing the variational Bayesian method. Simulations and real trials illustrate that the proposed IW-VACKF can improve the state estimation precision efficiently in the complex underwater environment. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 51676 KB  
Article
Acoustic Tomography of the Atmosphere: A Large-Eddy Simulation Sensitivity Study
by Emina Maric, Bumseok Lee, Regis Thedin, Eliot Quon and Nicholas Hamilton
Remote Sens. 2025, 17(11), 1892; https://doi.org/10.3390/rs17111892 - 29 May 2025
Viewed by 622
Abstract
Accurate measurement of atmospheric turbulent fluctuations is critical for understanding environmental dynamics and improving models in applications such as wind energy. Advanced remote sensing technologies are essential for capturing instantaneous velocity and temperature fluctuations. Acoustic tomography (AT) offers a promising approach that utilizes [...] Read more.
Accurate measurement of atmospheric turbulent fluctuations is critical for understanding environmental dynamics and improving models in applications such as wind energy. Advanced remote sensing technologies are essential for capturing instantaneous velocity and temperature fluctuations. Acoustic tomography (AT) offers a promising approach that utilizes sound travel times between an array of transducers to reconstruct turbulence fields. This study presents a systematic evaluation of the time-dependent stochastic inversion (TDSI) algorithm for AT using synthetic travel-time measurements derived from large-eddy simulation (LES) fields under both neutral and convective atmospheric boundary-layer conditions. Unlike prior work that relied on field observations or idealized fields, the LES framework provides a ground-truth atmospheric state, enabling quantitative assessment of TDSI retrieval reliability, sensitivity to travel-time measurement noise, and dependence on covariance model parameters and temporal data integration. A detailed sensitivity analysis was conducted to determine the best-fit model parameters, identify the tolerance thresholds for parameter mismatch, and establish a maximum spatial resolution. The TDSI algorithm successfully reconstructed large-scale velocity and temperature fluctuations with root mean square errors (RMSEs) below 0.35 m/s and 0.12 K, respectively. Spectral analysis established a maximum spatial resolution of approximately 1.4 m, and reconstructions remained robust for travel-time measurement uncertainties up to 0.002 s. These findings provide critical insights into the operational limits of TDSI and inform future applications of AT for atmospheric turbulence characterization and system design. Full article
(This article belongs to the Special Issue New Insights from Wind Remote Sensing)
Show Figures

Figure 1

9 pages, 1763 KB  
Proceeding Paper
Robust and Reliable State Estimation for a Five-Axis Robot Using Adaptive Unscented Kalman Filtering
by Geetha Sundaram, Selvam Bose, Vetrivel Kumar Kandasamy and Bothiraj Thandiyappan
Eng. Proc. 2025, 95(1), 1; https://doi.org/10.3390/engproc2025095001 - 26 May 2025
Viewed by 383
Abstract
Robust robot manipulation hinges on effective state estimation. The VRT 6 robot leverages an inertia measurement unit with triaxial gyroscopes, magnetometers, and accelerometers, as well as a position sensor, but these sensors are plagued by noise that demands rigorous filtering. To tackle this, [...] Read more.
Robust robot manipulation hinges on effective state estimation. The VRT 6 robot leverages an inertia measurement unit with triaxial gyroscopes, magnetometers, and accelerometers, as well as a position sensor, but these sensors are plagued by noise that demands rigorous filtering. To tackle this, an adaptively scaled unscented Kalman filter was employed. The filter’s scaling parameter was meticulously optimized using density- and moment-based techniques, as both system properties and estimated state impact this crucial parameter. A Maximum Likelihood Estimation (ML) substantiates the enhanced quality of the estimated velocity and acceleration, on par with the position estimate. Minimizing measurement prediction error (MMPE) also shows better results with less RMSE when compared to fixed-kappa values, and the quality of position estimates is higher with the increase in the domain of the scaling parameter. By carefully selecting the adaptive scaling parameters’ range to minimize sigma point weights and ensure the positive definiteness of the covariance matrix, this enhanced UKF method achieved markedly superior state estimates compared to standard UKF implementations. Full article
Show Figures

Figure 1

19 pages, 3233 KB  
Article
A Novel Variational Bayesian Method Based on Student’s t Noise for Underwater Localization
by Haoqian Huang, Yutong Zhang and Chenhui Dong
Sensors 2025, 25(11), 3291; https://doi.org/10.3390/s25113291 - 23 May 2025
Viewed by 737
Abstract
In underwater environments, the presence of multipath effects can cause measurement outliers in acoustic sensors, leading to reduced estimation accuracy for integrated navigation. To address this issue, this paper proposes a sliding window variational Kalman filter based on Student’s t-distribution (SWVKF-ST) to [...] Read more.
In underwater environments, the presence of multipath effects can cause measurement outliers in acoustic sensors, leading to reduced estimation accuracy for integrated navigation. To address this issue, this paper proposes a sliding window variational Kalman filter based on Student’s t-distribution (SWVKF-ST) to improve state estimation accuracy. First, this method makes use of Student’s t-distribution to model heavy-tailed noise and adopts the inverse Wishart distribution as the prior for noise covariance, thereby enhancing robustness against heavy-tailed distributions. On this basis, the state variables and measurements within the sliding window are jointly estimated using the variational Bayesian framework, which helps mitigate the impact of unknown noise characteristics on state estimation. In addition, this method constructs multiple fading factors to prevent the degradation of estimation accuracy caused by excessive adjustment of the predicted error covariance matrix. Finally, the simulations and actual experiment validate that the SWVKF-ST outperforms the compared filters, achieving higher filtering precision and stronger robustness to outliers. The method effectively reduces the uncertainty in the measurement noise covariance matrix and demonstrates excellent adaptability in complex underwater environments. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

29 pages, 3690 KB  
Article
Application of the Adaptive Mixed-Order Cubature Particle Filter Algorithm Based on Matrix Lie Group Representation for the Initial Alignment of SINS
by Ning Wang and Fanming Liu
Information 2025, 16(5), 416; https://doi.org/10.3390/info16050416 - 20 May 2025
Viewed by 481
Abstract
Under large azimuth misalignment conditions, the initial alignment of strapdown inertial navigation systems (SINS) is challenged by the nonlinear characteristics of the error model. Traditional particle filter (PF) algorithms suffer from the inappropriate selection of importance density functions and severe particle degeneration, which [...] Read more.
Under large azimuth misalignment conditions, the initial alignment of strapdown inertial navigation systems (SINS) is challenged by the nonlinear characteristics of the error model. Traditional particle filter (PF) algorithms suffer from the inappropriate selection of importance density functions and severe particle degeneration, which limit their applicability in high-precision navigation. To address these limitations, this paper proposes an adaptive mixed-order spherical simplex-radial cubature particle filter (MLG-AMSSRCPF) algorithm based on matrix Lie group representation. In this approach, attitude errors are represented on the matrix Lie group SO(3), while velocity errors and inertial sensor biases are retained in Euclidean space. Efficient bidirectional conversion between Euclidean and manifold spaces is achieved through exponential and logarithmic maps, enabling accurate attitude estimation without the need for Jacobian matrices. A hybrid-order cubature transformation is introduced to reduce model linearization errors, thereby enhancing the estimation accuracy. To improve the algorithm’s adaptability in dynamic noise environments, an adaptive noise covariance update mechanism is integrated. Meanwhile, the particle similarity is evaluated using Euclidean distance, allowing the dynamic adjustment of particle numbers to balance the filtering accuracy and computational load. Furthermore, a multivariate Huber loss function is employed to adaptively adjust particle weights, effectively suppressing the influence of outliers and significantly improving the robustness of the filter. Simulation and the experimental results validate the superior performance of the proposed algorithm under moving-base alignment conditions. Compared with the conventional cubature particle filter (CPF), the heading accuracy of the MLG-AMSSRCPF algorithm was improved by 31.29% under measurement outlier interference and by 39.79% under system noise mutation scenarios. In comparison with the unscented Kalman filter (UKF), it yields improvements of 58.51% and 58.82%, respectively. These results demonstrate that the proposed method substantially enhances the filtering accuracy, robustness, and computational efficiency of SINS, confirming its practical value for initial alignment in high-noise, complex dynamic, and nonlinear navigation systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

27 pages, 3688 KB  
Article
Vehicle Pose Estimation Method Based on Maximum Correntropy Square Root Unscented Kalman Filter
by Shuyu Liu and Ying Guo
Appl. Sci. 2025, 15(10), 5662; https://doi.org/10.3390/app15105662 - 19 May 2025
Viewed by 632
Abstract
Simultaneous Localization and Mapping (SLAM) is an effective method for estimating and correcting the pose of the mobile robot. However, a large amount of external noise and observed outliers in complex unknown environments often lead to a decrease in the estimation accuracy and [...] Read more.
Simultaneous Localization and Mapping (SLAM) is an effective method for estimating and correcting the pose of the mobile robot. However, a large amount of external noise and observed outliers in complex unknown environments often lead to a decrease in the estimation accuracy and robustness of the SLAM algorithm. To improve the performance of the Square Root Unscented Kalman Filter SLAM (SRUKF-SLAM), this paper proposes the Maximum Correntropy Square Root Unscented Kalman Filter SLAM (MCSRUKF-SLAM) algorithm. The method first generates an estimate of the predicted state and covariance matrix through the Unscented Transform (UT), and then obtains the square root matrix of the covariance through Cholesky and QR decomposition to replace the original covariance, effectively preserving the positive definiteness of the covariance and improving the accuracy of the algorithm. Moreover, the proposed MCSRUKF-SLAM recharacterizes measurement information at the cost of the Maximum Correntropy (MC) instead of the Minimum Mean Square Error (MMSE), effectively improving the SLAM algorithm’s ability to suppress non-Gaussian noise. The simulation results show that compared with EKF-SLAM, UKF-SLAM, SRUKF-SLAM, and MCUKF-SLAM, the accuracy of the proposed MCSRUKF-SLAM in Gaussian mixture noise improves by 81.8%, 80.9%, 78.7%, and 63.6%, and the accuracy of the proposed MCSRUKF-SLAM in colored noise improves by 50.3%, 39.9%, 38.2%, and 36.3%. Full article
Show Figures

Figure 1

Back to TopTop