Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = mean seasonal cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2576 KiB  
Article
Modeling and Spatiotemporal Analysis of Actual Evapotranspiration in a Desert Steppe Based on SEBS
by Yanlin Feng, Lixia Wang, Chunwei Liu, Baozhong Zhang, Jun Wang, Pei Zhang and Ranghui Wang
Hydrology 2025, 12(8), 205; https://doi.org/10.3390/hydrology12080205 - 6 Aug 2025
Abstract
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based [...] Read more.
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based validation that significantly enhances spatiotemporal ET accuracy in the vulnerable desert steppe ecosystems. The study utilized meteorological data from several national stations and Landsat-8 imagery to process monthly remote sensing images in 2019. The Surface Energy Balance System (SEBS) model, chosen for its ability to estimate ET over large areas, was applied to derive modeled daily ET values, which were validated by a large-weighted lysimeter. It was shown that ET varied seasonally, peaking in July at 6.40 mm/day, and reaching a minimum value in winter with 1.83 mm/day in December. ET was significantly higher in southern regions compared to central and northern areas. SEBS-derived ET showed strong agreement with lysimeter measurements, with a mean relative error of 4.30%, which also consistently outperformed MOD16A2 ET products in accuracy. This spatial heterogeneity was driven by greater vegetation coverage and enhanced precipitation in the southeast. The steppe ET showed a strong positive correlation with surface temperatures and vegetation density. Moreover, the precipitation gradients and land use were primary controllers of spatial ET patterns. The process-based SEBS frameworks demonstrate dual functionality as resource-optimized computational platforms while enabling multi-scale quantification of ET spatiotemporal heterogeneity; it was therefore a reliable tool for ecohydrological assessments in an arid steppe, providing critical insights for water resource management and drought monitoring. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 267
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

11 pages, 1161 KiB  
Proceeding Paper
Spatio-Temporal PM2.5 Forecasting Using Machine Learning and Low-Cost Sensors: An Urban Perspective
by Mateusz Zareba, Szymon Cogiel and Tomasz Danek
Eng. Proc. 2025, 101(1), 6; https://doi.org/10.3390/engproc2025101006 - 25 Jul 2025
Viewed by 222
Abstract
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and [...] Read more.
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and generating nearly 20,000 observations per month. The network captured both spatial and temporal variability. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test confirmed trend-based non-stationarity, which was addressed through differencing, revealing distinct daily and 12 h cycles linked to traffic and temperature variations. Additive seasonal decomposition exhibited time-inconsistent residuals, leading to the adoption of multiplicative decomposition, which better captured pollution outliers associated with agricultural burning. Machine learning models—Ridge Regression, XGBoost, and LSTM (Long Short-Term Memory) neural networks—were evaluated under high spatial and temporal variability (winter) and low variability (summer) conditions. Ridge Regression showed the best performance, achieving the highest R2 (0.97 in winter, 0.93 in summer) and the lowest mean squared errors. XGBoost showed strong predictive capabilities but tended to overestimate moderate pollution events, while LSTM systematically underestimated PM2.5 levels in December. The residual analysis confirmed that Ridge Regression provided the most stable predictions, capturing extreme pollution episodes effectively, whereas XGBoost exhibited larger outliers. The study proved the potential of low-cost sensor networks and machine learning in urban air quality forecasting focused on rare smog episodes (RSEs). Full article
Show Figures

Figure 1

17 pages, 4255 KiB  
Article
Exploring the Global and Regional Factors Influencing the Density of Trachurus japonicus in the South China Sea
by Mingshuai Sun, Yaquan Li, Zuozhi Chen, Youwei Xu, Yutao Yang, Yan Zhang, Yalan Peng and Haoda Zhou
Biology 2025, 14(7), 895; https://doi.org/10.3390/biology14070895 - 21 Jul 2025
Viewed by 233
Abstract
In this cross-disciplinary investigation, we uncover a suite of previously unexamined factors and their intricate interplay that hold causal relationships with the distribution of Trachurus japonicus in the northern reaches of the South China Sea, thereby extending the existing research paradigms. Leveraging advanced [...] Read more.
In this cross-disciplinary investigation, we uncover a suite of previously unexamined factors and their intricate interplay that hold causal relationships with the distribution of Trachurus japonicus in the northern reaches of the South China Sea, thereby extending the existing research paradigms. Leveraging advanced machine learning algorithms and causal inference, our robust experimental design uncovered nine key global and regional factors affecting the distribution of T. japonicus density. A robust experimental design identified nine key factors significantly influencing this density: mean sea-level pressure (msl-0, msl-4), surface pressure (sp-0, sp-4), Summit ozone concentration (Ozone_sum), F10.7 solar flux index (F10.7_index), nitrate concentration at 20 m depth (N3M20), sonar-detected effective vertical range beneath the surface (Height), and survey month (Month). Crucially, stable causal relationships were identified among Ozone_sum, F10.7_index, Height, and N3M20. Variations in Ozone_sum likely impact surface UV radiation levels, influencing plankton dynamics (a primary food source) and potentially larval/juvenile fish survival. The F10.7_index, reflecting solar activity, may affect geomagnetic fields, potentially influencing the migration and orientation behavior of T. japonicus. N3M20 directly modulates primary productivity by limiting phytoplankton growth, thereby shaping the availability and distribution of prey organisms throughout the food web. Height defines the vertical habitat range acoustically detectable, intrinsically linking directly to the vertical distribution and availability of the fish stock itself. Surface pressures (msl-0/sp-0) and their lagged effects (msl-4/sp-4) significantly influence sea surface temperature profiles, ocean currents, and stratification, all critical determinants of suitable habitats and prey aggregation. The strong influence of Month predominantly reflects seasonal changes in water temperature, reproductive cycles, and associated shifts in nutrient supply and plankton blooms. Rigorous robustness checks (Data Subset and Random Common Cause Refutation) confirmed the reliability and consistency of these causal findings. This elucidation of the distinct biological and physical pathways linking these diverse factors leading to T. japonicus density provides a significantly improved foundation for predicting distribution patterns globally and offers concrete scientific insights for sustainable fishery management strategies. Full article
Show Figures

Figure 1

21 pages, 13177 KiB  
Article
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Viewed by 285
Abstract
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport [...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures. Full article
Show Figures

Figure 1

25 pages, 7522 KiB  
Article
Quantitative Estimation of Vegetation Carbon Source/Sink and Its Response to Climate Variability and Anthropogenic Activities in Dongting Lake Wetland, China
by Mengshen Guo, Nianqing Zhou, Yi Cai, Xihua Wang, Xun Zhang, Shuaishuai Lu, Kehao Liu and Wengang Zhao
Remote Sens. 2025, 17(14), 2475; https://doi.org/10.3390/rs17142475 - 16 Jul 2025
Viewed by 308
Abstract
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the [...] Read more.
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the spatiotemporal dynamics and driving mechanisms of carbon sinks from 2000 to 2022, utilizing the Theil-Sen median trend, Mann-Kendall test, and attribution based on the differentiating equation (ADE). Results showed that (1) the annual mean spatial NEP was 50.24 g C/m2/a, which first increased and then decreased, with an overall trend of −1.5 g C/m2/a. The carbon sink was strongest in spring, declined in summer, and shifted to a carbon source in autumn and winter. (2) Climate variability and human activities contributed +2.17 and −3.73 g C/m2/a to NEP, respectively. Human activities were the primary driver of carbon sink degradation (74.30%), whereas climate change mainly promoted carbon sequestration (25.70%). However, from 2000–2011 to 2011–2022, climate change shifted from enhancing to limiting carbon sequestration, mainly due to the transition from water storage and lake reclamation to ecological restoration policies and intensified climate anomalies. (3) NEP was negatively correlated with precipitation and water level. Land use adjustments, such as forest expansion and conversion of cropland and reed to sedge, alongside maintaining growing season water levels between 24.06~26.44 m, are recommended to sustain and enhance wetland carbon sinks. Despite inherent uncertainties in model parameterization and the lack of sufficient in situ flux validation, these findings could provide valuable scientific insights for wetland carbon management and policy-making. Full article
Show Figures

Graphical abstract

15 pages, 2547 KiB  
Case Report
Heart Rate Variability Measurements Across the Menstrual Cycle and Oral Contraceptive Phases in Two Olympian Female Swimmers: A Case Report
by Marine Dupuit, Kilian Barlier, Benjamin Tranchard, Jean-François Toussaint, Juliana Antero and Robin Pla
Sports 2025, 13(6), 185; https://doi.org/10.3390/sports13060185 - 12 Jun 2025
Viewed by 1329
Abstract
The heart rate variability (HRV), influenced by female sex hormone fluctuations, is an indicator of athletes’ adaptation. This case study explores HRV responses over 18 months across a natural menstrual cycle (MC) and during oral contraceptive (OC) use in two Olympic female swimmers. [...] Read more.
The heart rate variability (HRV), influenced by female sex hormone fluctuations, is an indicator of athletes’ adaptation. This case study explores HRV responses over 18 months across a natural menstrual cycle (MC) and during oral contraceptive (OC) use in two Olympic female swimmers. HRV measurements—including mean heart rate (HR); root mean square of successive differences (RMSSD); and frequency-domain indices—were collected at rest in supine (SU) and standing (ST) positions across two competitive seasons. Nocturnal HR and RMSSD were assessed using the Ōura® ring. MC and OC phases were identified through specific tracking, and training load was controlled. In both athletes, resting HR was lower during bleeding phases, increasing from menstruation to the luteal phase (MC) and from withdrawal to active pill phases (OC). In the ST position, RMSSD was higher but decreased throughout the phases. Nocturnal measurements confirmed these trends. Overall, findings suggest a phase-related parasympathetic overactivity shift. This study provides novel insights into HRV responses across hormonal cycles in elite female athletes, which present unique characteristics. Such monitoring tools may support a data-informed approach to guide and periodize training more effectively. Full article
(This article belongs to the Special Issue Women's Special Issue Series: Sports)
Show Figures

Figure 1

23 pages, 2177 KiB  
Article
Climatological Seasonal Cycle of River Discharge into the Oceans: Contributions from Major Rivers and Implications for Ocean Modeling
by Moncef Boukthir and Jihene Abdennadher
Hydrology 2025, 12(6), 147; https://doi.org/10.3390/hydrology12060147 - 12 Jun 2025
Viewed by 1342
Abstract
This study presents a global assessment of the climatological seasonal variability of river discharge into the oceans, based on an expanded dataset comprising 958 gauging stations across 136 countries. Monthly discharges were compiled for 145 major rivers and tributaries, with a focus on [...] Read more.
This study presents a global assessment of the climatological seasonal variability of river discharge into the oceans, based on an expanded dataset comprising 958 gauging stations across 136 countries. Monthly discharges were compiled for 145 major rivers and tributaries, with a focus on improving the accuracy and spatial coverage of global freshwater flux estimates. Compared to previous datasets, this updated compilation includes a broader set of rivers, explicitly integrates tributary inflows, and quantifies both the absolute and relative seasonal amplitudes of discharge variability. The results reveal substantial differences among ocean basins. The Atlantic Ocean, although receiving the highest total runoff, shows relatively weak seasonal variability, with a coefficient of variation of CV = 12.6% due to asynchronous peak discharge from its major rivers (Amazon, Congo, Orinoco). In contrast, the Indian Ocean exhibits the most pronounced seasonal cycle (CV = 88.3%), driven by monsoonal rivers. The Pacific Ocean shows intermediate variability (CV = 62.1%), influenced by a combination of monsoon rains and snowmelt. At the river scale, Orinoco and Changjiang display high seasonal amplitudes, exceeding 89% of their mean flows, whereas more stable regimes are found in equatorial and temperate rivers like the Amazon and Saint Lawrence. In addition, the critical role of tributaries in altering discharge magnitude and seasonal variability is well established. This study provides high-resolution monthly discharge climatologies at global and basin scales, enhancing freshwater forcing in OGCMs. By improving the representation of land–ocean exchanges, it enables more accurate simulations of salinity, circulation, biogeochemical cycles, and climate-sensitive processes in coastal and open-ocean regions. Full article
Show Figures

Figure 1

25 pages, 1341 KiB  
Article
Phenological Performance, Thermal Demand, and Qualitative Potential of Wine Grape Cultivars Under Double Pruning
by Carolina Ragoni Maniero, Marco Antonio Tecchio, Harleson Sidney Almeida Monteiro, Camilo André Pereira Contreras Sánchez, Giuliano Elias Pereira, Juliane Barreto de Oliveira, Sinara de Nazaré Santana Brito, Francisco José Domingues Neto, Sarita Leonel, Marcelo de Souza Silva, Ricardo Figueira and Pricila Veiga dos Santos
Agriculture 2025, 15(12), 1241; https://doi.org/10.3390/agriculture15121241 - 6 Jun 2025
Viewed by 648
Abstract
The production of winter wines in Southeastern Brazil represents a relatively recent but expanding viticultural approach, with increasing adoption across diverse wine-growing regions. This system relies on the double-pruning technique, which allows for the harvest of grapes during the dry and cooler winter [...] Read more.
The production of winter wines in Southeastern Brazil represents a relatively recent but expanding viticultural approach, with increasing adoption across diverse wine-growing regions. This system relies on the double-pruning technique, which allows for the harvest of grapes during the dry and cooler winter season, favoring a greater accumulation of sugars, acids, and phenolic compounds. This study aimed to characterize the phenological stages, thermal requirements, yield, and fruit quality of the fine wine grape cultivars ‘Sauvignon Blanc’, ‘Merlot’, ‘Tannat’, ‘Pinot Noir’, ‘Malbec’, and ‘Cabernet Sauvignon’ under double-pruning management in a subtropical climate. The vineyard was established in 2020, and two production cycles were evaluated (2022/2023 and 2023/2024). Significant differences in the duration of phenological stages were observed among cultivars, ranging from 146 to 172 days from pruning to harvest. The accumulated thermal demand was higher in the first cycle, with a mean of 1476.9 growing degree days (GDD) across cultivars. The results demonstrate the potential of Vitis vinifera L. cultivars managed with double pruning for high-quality wine production under subtropical conditions, supporting the viability of expanding viticulture in the state of São Paulo. ‘Cabernet Sauvignon’ and ‘Sauvignon Blanc’ showed the highest yields, reaching 3.03 and 2.75 kg per plant, respectively, with productivity values of up to 10.8 t ha−1. ‘Tannat’ stood out for its high sugar accumulation (23.4 °Brix), while ‘Merlot’ exhibited the highest phenolic (234.9 mg 100 g−1) and flavonoid (15.3 mg 100 g−1) contents. These results highlight the enological potential of the evaluated cultivars and confirm the efficiency of the double-pruning system in improving grape composition and wine quality in non-traditional viticultural regions. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Figure 1

48 pages, 6502 KiB  
Article
Environmental Data Analytics for Smart Cities: A Machine Learning and Statistical Approach
by Ali Suliman AlSalehy and Mike Bailey
Smart Cities 2025, 8(3), 90; https://doi.org/10.3390/smartcities8030090 - 28 May 2025
Viewed by 1832
Abstract
Effectively managing carbon monoxide (CO) pollution in complex industrial cities like Jubail remains challenging due to the diversity of emission sources and local environmental dynamics. This study analyzes spatiotemporal CO patterns and builds accurate predictive models using five years (2018–2022) of data from [...] Read more.
Effectively managing carbon monoxide (CO) pollution in complex industrial cities like Jubail remains challenging due to the diversity of emission sources and local environmental dynamics. This study analyzes spatiotemporal CO patterns and builds accurate predictive models using five years (2018–2022) of data from ten monitoring stations, combined with meteorological variables. Exploratory analysis revealed distinct diurnal and moderate weekly CO cycles, with prevailing northwesterly winds shaping dispersion. Spatial correlation of CO was low (average 0.14), suggesting strong local sources, unlike temperature (0.92) and wind (0.5–0.6), which showed higher spatial coherence. Seasonal Trend decomposition (STL) confirmed stronger seasonality in meteorological factors than in CO levels. Low wind speeds were associated with elevated CO concentrations. Key predictive features, such as 3-h rolling mean and median values of CO, dominated feature importance. Spatiotemporal analysis highlighted persistent hotspots in industrial areas and unexpectedly high levels in some residential zones. A range of models was tested, with ensemble methods (Extreme Gradient Boosting (XGBoost) and Categorical Boosting (CatBoost)) achieving the best performance (R2>0.95) and XGBoost producing the lowest Root Mean Squared Error (RMSE) of 0.0371 ppm. This work enhances understanding of CO dynamics in complex urban–industrial areas, providing accurate predictive models (R2>0.95) and highlighting the importance of local sources and temporal patterns for improving air quality forecasts. Full article
Show Figures

Figure 1

27 pages, 10535 KiB  
Article
Performance Evaluation and Spatiotemporal Dynamics of Nine Reanalysis and Remote Sensing Evapotranspiration Products in China
by Yujie Liu, Wen Wang, Tianqing Zhao and Zhiyuan Huo
Remote Sens. 2025, 17(11), 1881; https://doi.org/10.3390/rs17111881 - 28 May 2025
Viewed by 474
Abstract
Evapotranspiration (ET) is a critical component of the hydrological cycle. The eddy covariance data at 40 flux stations in different climatic regions in China were used to evaluate the accuracy of five reanalysis actual ET datasets (ERA5, ERA5-LAND, GLDAS-2.1, MERRA-2, TerraClimate) and four [...] Read more.
Evapotranspiration (ET) is a critical component of the hydrological cycle. The eddy covariance data at 40 flux stations in different climatic regions in China were used to evaluate the accuracy of five reanalysis actual ET datasets (ERA5, ERA5-LAND, GLDAS-2.1, MERRA-2, TerraClimate) and four remote sensing estimation ET datasets (ETMonitor, GLEAM4.2a, PML_V2, SiTHv2), which are widely used by the hydrometeorological and climatological communities, in terms of the root mean square error, Pearson correlation coefficient, mean absolute deviation, and Taylor skill score. The results show that remote sensing products outperform reanalysis datasets. Among them, ETMonitor has the highest accuracy, followed by PML_V2 and SiTHv2. TerraClimate and MERRA-2 have the least agreement with the observations at flux sites across nearly all evaluation metrics. All products can capture the seasonality of ET in China, but underestimate ET in northwest China and overestimate ET in southern China throughout the year. We tried to merge three optimal data products (ETMonitor, PML_V2, and SiTHv2) using the triple collocation analysis method to improve the ET estimation, but the results showed that the improvement by the data fusion approach is marginal. The estimation of the multi-year average evapotranspiration during the period from 2001 to 2020 ranges from 397.8 mm/year (GLEAM4.2a) to 504.8 mm/year (ERA5-Land) in China. From 2001 to 2020, annual evapotranspiration in China generally increased, but with varying rates across different products. MERRA-2 showed the largest annual increase rate (3.71 mm/year), while SiTHv2 had the smallest (0.17 mm/year). There are no significant changes in the seasonality of ET by most ET products from 2001 to 2020, except for PML_V2 and SiTHv2, which indicate an increase in seasonality in terms of the evapotranspiration concentration index. This ET intercomparison addresses a key knowledge gap in terrestrial water flux quantification, aiding climate and hydrological research. Full article
Show Figures

Figure 1

23 pages, 3008 KiB  
Article
Prediction of Crops Cycle with Seasonal Forecasts to Support Decision-Making
by Daniel Garcia, Nicolas Silva, João Rolim, Antónia Ferreira, João A. Santos, Maria do Rosário Cameira and Paula Paredes
Agronomy 2025, 15(6), 1291; https://doi.org/10.3390/agronomy15061291 - 24 May 2025
Viewed by 760
Abstract
Climate variability, intensified by climate change, poses significant challenges to agriculture, affecting crop development and productivity. Integrating seasonal weather forecasts (SWF) into crop growth modelling tools is therefore essential for improving agricultural decision-making. This study assessed the uncertainties of raw (non-bias-corrected) temperature forecasts [...] Read more.
Climate variability, intensified by climate change, poses significant challenges to agriculture, affecting crop development and productivity. Integrating seasonal weather forecasts (SWF) into crop growth modelling tools is therefore essential for improving agricultural decision-making. This study assessed the uncertainties of raw (non-bias-corrected) temperature forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) SEAS5 seasonal (seven-month forecasts) to estimate the spring–summer maize, melon, sunflower, and tomato crops cycle from 2013 to 2022 in the Caia Irrigation Scheme, southern Portugal. AgERA5 reanalysis data, after simple bias correction using local weather station data, was used as a reference. The growing degree-day (GDD) approach was applied to estimate the crop cycle duration, which was then validated against ground truth and satellite data. The results show that SWF tend to underestimate maximum temperatures and overestimate minimum temperatures, with these biases partially offsetting to improve mean temperature accuracy. Forecast skill decreased non-linearly with lead time, especially after the second month; however, in some cases, longer lead times outperformed earlier ones. Temperature forecast biases affected GDD-based crop cycle estimates, resulting in a slight underestimation of all crop cycle durations by around a week. Nevertheless, the forecasts captured the overall increasing temperature trend, interannual variability, and anomaly signals, but with marginal added value over climatological data. This study highlights the potential of integrating ground truth and Earth observation data, together with reanalysis data and SWF, into GDD tools to support agricultural decision-making, aiming at enhancing yield and resources management. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

16 pages, 6912 KiB  
Article
The Interannual Cyclicity of Precipitation in Xinjiang During the Past 70 Years and Its Contributing Factors
by Wenjie Ma, Xiaokang Liu, Shasha Shang, Zhen Wang, Yuyang Sun, Jian Huang, Mengfei Ma, Meihong Ma and Liangcheng Tan
Atmosphere 2025, 16(5), 629; https://doi.org/10.3390/atmos16050629 - 21 May 2025
Viewed by 498
Abstract
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional [...] Read more.
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional precipitation from 1951 to 2021 and analyze its contributing factors. The results indicated that the mean annual precipitation in Xinjiang (MAP_XJ) was dominated by a remarkably increasing trend over the past 70 years, which was superimposed by two bands of interannual cycles of approximately 3 years with explanatory variance of 56.57% (Band I) and 6–7 years with explanatory variance of 23.38% (Band II). This is generally consistent with previous studies on the cyclicity of precipitation in Xinjiang for both seasonal and annual precipitation. We analyzed the North Tropical Atlantic sea-surface temperature (NTASST), El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), and Indian Summer Monsoon (ISM) as potential forcing factors that show similar interannual cycles and may contribute to the identified precipitation variability. Two approaches, multivariate linear regression and the Random Forest model, were employed to ascertain the relative significance of each factor influencing Bands I and II, respectively. The multivariate linear regression analysis revealed that the AO index contributed the most to Band I, with a significance score of −0.656, whereas the ENSO index with a one-year lead (ENSO−1yr) played a dominant role in Band II (significance score = 0.457). The Random Forest model also suggested that the AO index exhibited the highest significance score (0.859) for Band I, whereas the AO index with a one-year lead (AO−1yr) had the highest significance score (0.876) for Band II. Overall, our findings highlight the necessity of employing different methods that consider both the linear and non-linear response of climate variability to driving factors crucial for future climate prediction. Full article
(This article belongs to the Special Issue Desert Climate and Environmental Change: From Past to Present)
Show Figures

Figure 1

36 pages, 29158 KiB  
Article
Variability of the Diurnal Cycle of Precipitation in South America
by Ronald G. Ramírez-Nina, Maria Assunção Faus da Silva Dias and Pedro Leite da Silva Dias
Meteorology 2025, 4(2), 13; https://doi.org/10.3390/meteorology4020013 - 21 May 2025
Viewed by 1354
Abstract
A seasonal climatology of the diurnal cycle of precipitation (DCP) and the assessment of its observed trend since the beginning of the 21st century using the IMERG product are performed for South America (SA). Its high spatial–temporal resolution ( [...] Read more.
A seasonal climatology of the diurnal cycle of precipitation (DCP) and the assessment of its observed trend since the beginning of the 21st century using the IMERG product are performed for South America (SA). Its high spatial–temporal resolution (Δx=0.1, Δt=0.5 h) enables the examination of the fine-scale features of the DCP associated with the complex physical characteristics of SA. Using 20 years of precipitation rate data, diurnal and semi-diurnal scale processes are analyzed through harmonic analysis. Diurnal metrics—including the hourly mean precipitation rate, normalized amplitude, and phase—are employed to quantify the DCP. The results indicate that large-scale mechanisms, such as the South American Monsoon System (SAMS), seasonally modulate the DCP. These mechanisms in combination with local factors (e.g., land use, topography, and water bodies) influence the timing of peak and intensity of precipitation rates. Cluster analysis identifies regions with homogeneous DCP; however, some distant regions are classified as homogeneous, suggesting that local-scale physical processes triggering precipitation onset operate similarly across these regions (e.g., thermally induced local circulations). The trend analysis of the DCP reveals that, over the past 20 years, the tropical region of SA has undergone changes in the intensity and hourly distribution of this fine-scale climate variability mode. This trend is heterogeneous in space and time and is possibly associated with land-use changes. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2025))
Show Figures

Figure 1

16 pages, 1700 KiB  
Article
Soil Respiration in Maize, Wheat, and Barley Across a Growing Season: Findings from Croatia’s Continental Region
by Dija Bhandari, Nikola Bilandžija, Tajana Krička, Zvonimir Zdunić, Soni Ghimire, Theresa Reinhardt Piskáčková and Darija Bilandžija
Sustainability 2025, 17(9), 4207; https://doi.org/10.3390/su17094207 - 7 May 2025
Viewed by 546
Abstract
Soil respiration (Rs) in croplands is of primary importance in understanding the carbon (C) cycle mechanism and C balance of agroecosystems. This study examines the seasonal Rs dynamics in three predominant cereal crops, maize, wheat, and barley, in continental Croatia during the growing [...] Read more.
Soil respiration (Rs) in croplands is of primary importance in understanding the carbon (C) cycle mechanism and C balance of agroecosystems. This study examines the seasonal Rs dynamics in three predominant cereal crops, maize, wheat, and barley, in continental Croatia during the growing season 2021/2022. This study was conducted at the Agricultural Institute Osijek, featuring a continental climate and silty clay soil. Rs was measured monthly throughout the growing season by following an in situ closed static chamber method and using Infrared Gas Analyzers (IRGAs) with three replicates for each crop and a fallow control. This study found that crop type plays a prominent role in Rs dynamics, while temperature and moisture can have modifying effects. Significant (p < 0.05) temporal variation in Rs between months was found in wheat, barley, and maize. Mean seasonal Rs values for wheat, barley, and maize were, respectively, 14.73, 19.64, and 12.72 kg CO2-C ha−1 day−1. Cropped fields demonstrated two to three times higher Rs than no vegetation/fallow and indicated the significance of autotrophic respiration in cropped fields. There exists a seasonal dynamics of Rs governed by the complex interaction of biotic and abiotic factors that influences Rs. This necessitates a multifaceted examination for effective understanding of seasonal Rs dynamics and its integration to modeling studies. Full article
Show Figures

Figure 1

Back to TopTop