Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,561)

Search Parameters:
Keywords = mean density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4615 KiB  
Article
Daily Variation in the Feeding Activity of Pacific Crown-of-Thorns Starfish (Acanthaster cf. solaris)
by Josie F. Chandler, Deborah Burn, Will F. Figueira, Peter C. Doll, Abby Johandes, Agustina Piccaluga and Morgan S. Pratchett
Biology 2025, 14(8), 1001; https://doi.org/10.3390/biology14081001 - 5 Aug 2025
Abstract
The ecological impact of crown-of-thorns starfish (CoTS; Acanthaster spp.) on coral reefs is intrinsically linked to their feeding behaviour. Management thresholds designed to mitigate coral loss driven by elevated densities of crown-of-thorns starfish rely on accurate estimates of individual feeding rates. In this [...] Read more.
The ecological impact of crown-of-thorns starfish (CoTS; Acanthaster spp.) on coral reefs is intrinsically linked to their feeding behaviour. Management thresholds designed to mitigate coral loss driven by elevated densities of crown-of-thorns starfish rely on accurate estimates of individual feeding rates. In this study, structure-from-motion photogrammetry and intensive tracking of adult Pacific CoTS over an extended survey period were used to generate three-dimensional, high-resolution estimates of daily feeding rates. Our findings revealed substantial variation in the areal extent of coral consumed, both across consecutive days and among individuals. Notably, CoTS did not feed consistently; feeding occurred on 65% of observation days, with 2–3 days periods of inactivity common. Despite this variability, mean daily feeding rates aligned with previous studies (1.35 coral colonies d−1; 198.4 cm2 day−1 planar area, and 998.83 cm2 day−1 three-dimensional surface area). Across all tracked individuals (n = 8), feeding was recorded on 17 coral genera; however, Acropora alone accounted for 51% of colonies consumed and contributed 82% of the total three-dimensional surface area ingested during the survey period. This highlights the disproportionately large feeding yield derived from Acropora-dominated diets and raises important questions about how future declines in Acropora cover may impact CoTS feeding success and energetic intake. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

14 pages, 9504 KiB  
Article
Evaluating Habitat Conditions for the Ringlet Butterfly (Erebia pronoe glottis) in a Multi-Use Mountain Landscape in the French Pyrenees
by Martin Wendt and Thomas Schmitt
Diversity 2025, 17(8), 554; https://doi.org/10.3390/d17080554 - 5 Aug 2025
Abstract
We conducted a mark–release–recapture study of the ringlet butterfly, Erebia pronoe glottis, in the Pyrenees to study population density, flight activity, dispersal, and nectar plant preferences. We found differences between both sexes in population density (males: 48/ha; females: 23/ha), sex ratio (2.1), [...] Read more.
We conducted a mark–release–recapture study of the ringlet butterfly, Erebia pronoe glottis, in the Pyrenees to study population density, flight activity, dispersal, and nectar plant preferences. We found differences between both sexes in population density (males: 48/ha; females: 23/ha), sex ratio (2.1), and behaviour (75.4 vs. 20.5% flying). Both sexes used a wide range of nectar plants (Asteraceae, 40.6%; Apiaceae, 34.4%; Caprifoliaceae, 18.8%). However, local abundance appeared to be limited by the availability of nectar plants. Compared to a population of an extensively used pasture in the Alps, a significant increase in flight activity, but not in range, was observed. Movement patterns showed the establishment of home ranges, which significantly limited the dispersal potential, being low for both sexes (mean fight distances-males: 101 m ± 73 SD; females: 68 m ± 80 SD). A sedentary taxon such as E. pronoe glottis does not seem to be able to avoid the pressure of resource shortage by dispersal. As a late-flying pollinator, Erebia pronoe competes seasonally for scarce resources. These are further reduced by grazing pressure and are exploited by honey bees as a superior competitor, resulting in low habitat quality and, consequently, in comparatively low abundance of E. pronoe glottis. Full article
(This article belongs to the Special Issue Biodiversity, Ecology and Conservation of Lepidoptera)
Show Figures

Figure 1

19 pages, 6218 KiB  
Article
Quantitative Relationship Between Electrical Resistivity and Water Content in Unsaturated Loess: Theoretical Model and ERT Imaging Verification
by Hu Zeng, Qianli Zhang, Cui Du, Jie Liu and Yilin Li
Geosciences 2025, 15(8), 302; https://doi.org/10.3390/geosciences15080302 - 5 Aug 2025
Abstract
As a typical porous medium, unsaturated loess demonstrates critical hydro-mechanical coupling properties that fundamentally influence geohazard mitigation, groundwater resource evaluation, and foundation stability in geotechnical engineering. This investigation develops a novel theoretical framework to overcome the limitations of existing models in converting electrical [...] Read more.
As a typical porous medium, unsaturated loess demonstrates critical hydro-mechanical coupling properties that fundamentally influence geohazard mitigation, groundwater resource evaluation, and foundation stability in geotechnical engineering. This investigation develops a novel theoretical framework to overcome the limitations of existing models in converting electrical resistivity tomography (ERT) profiles into water content distributions for unsaturated loess through quantitative inversion modeling. Systematic laboratory investigations on remolded loess specimens with controlled density and water content conditions revealed distinct resistivity–water interaction mechanisms. A characteristic two-stage decay pattern was identified: resistivity exhibited an exponential decrease from 420 Ω·m (water saturation (Sw = 10%)) to 90 Ω·m (Sw = 40%), followed by asymptotic stabilization at Sw ≥ 40%. The derived quantitative correlation provides a robust mathematical basis for water content profile inversion. Field validation through integrated ERT and borehole data demonstrated exceptional predictive accuracy in shallow strata (<20 m depth), achieving mean absolute errors of <5%. However, inversion reliability decreased with depth (>20 m), primarily attributed to density-dependent charge transport mechanisms. This underscores the necessity of incorporating coupled thermo-hydro-mechanical processes for deep-layer characterization. This study provides a robust framework for engineering applications of ERT in loess terrains, offering significant advancements in geotechnical monitoring and geohazard prevention. Full article
Show Figures

Figure 1

24 pages, 11081 KiB  
Article
Quantifying Wildfire Dynamics Through Spatio-Temporal Clustering and Remote Sensing Metrics: The 2023 Quebec Case Study
by Tuğrul Urfalı and Abdurrahman Eymen
Fire 2025, 8(8), 308; https://doi.org/10.3390/fire8080308 - 5 Aug 2025
Abstract
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the [...] Read more.
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the differenced Normalized Burn Ratio (ΔNBR) to characterize the dynamics and ecological impacts of large-scale wildfires, using the extreme 2023 Quebec fire season as a case study. The analysis of 80,228 VIIRS fire detections resulted in 19 distinct clusters across four fire zones. Validation against the National Burned Area Composite (NBAC) showed high spatial agreement in densely burned areas, with Intersection over Union (IoU) scores reaching 62.6%. Gaussian Process Regression (GPR) revealed significant non-linear relationships between FRP and key fire behavior metrics. Higher mean FRP was associated with both longer durations and greater burn severity. While FRP was also linked to faster spread rates, this relationship varied by zone. Notably, Fire Zone 2 exhibited the most severe ecological impact, with 83.8% of the area classified as high-severity burn. These findings demonstrate the value of integrating spatial clustering, radiative intensity, and post-fire vegetation damage into a unified analytical framework. Unlike traditional methods, this approach enables scalable, hypothesis-driven assessment of fire behavior, supporting improved fire management, ecosystem recovery planning, and climate resilience efforts in fire-prone regions. Full article
Show Figures

Figure 1

15 pages, 2255 KiB  
Article
Nonnormalized Field Statistics in Coupled Reverberation Chambers
by Angelo Gifuni, Anett Kenderes and Giuseppe Grassini
Symmetry 2025, 17(8), 1239; https://doi.org/10.3390/sym17081239 - 5 Aug 2025
Abstract
In this work, we show the probability density functions (PDFs) and cumulative density functions (CDFs) of the nonnormalized field components and the associated powers received inside coupled reverberation chambers (CRCs), considering two canonical cases of single electrically small coupling apertures (ESCAs). These two [...] Read more.
In this work, we show the probability density functions (PDFs) and cumulative density functions (CDFs) of the nonnormalized field components and the associated powers received inside coupled reverberation chambers (CRCs), considering two canonical cases of single electrically small coupling apertures (ESCAs). These two cases involve one-dimensional (1D) and two-dimensional (2D) single electrically small CAs, respectively. We achieve normalized statistics from the nonnormalized ones for both field components and associated powers. We show that the comparison of the mean square values (MSVs) of the nonnormalized PDFs of the field components to the mean values (MVs) of the related nonnormalized PDFs of the powers is a proper method to corroborate the accuracy of the same achieved theoretical distributions, when they are achieved in an independent way. The achieved theoretical results are also validated by measurements. Moreover, for the sake of completeness and rigor of published results, we show two useful cases of the results from the measurements using two electrically large CAs. Full article
Show Figures

Figure 1

22 pages, 5322 KiB  
Article
Comparative Modeling of Vanadium Redox Flow Batteries Using Multiple Linear Regression and Random Forest Algorithms
by Ammar Ali, Sohel Anwar and Afshin Izadian
Energy Storage Appl. 2025, 2(3), 11; https://doi.org/10.3390/esa2030011 - 5 Aug 2025
Abstract
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model [...] Read more.
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model training, validation, and testing. The MLR model, built using eight optimized features, achieved a mean error (ME) of 0.0204 V, a residual sum of squares (RSS) of 8.87, and a root mean squared error (RMSE) of 0.1796 V on the test data, demonstrating high predictive performance in stationary operating regions. However, it exhibited limited accuracy during dynamic transitions. Optimized through out-of-bag (OOB) error minimization, the Random Forest model achieved a training RMSE of 0.093 V and a test RMSE of 0.110 V, significantly outperforming MLR in capturing dynamic behavior while maintaining comparable performance in steady-state regions. The accuracy remained high even at lower current densities. Feature importance analysis and partial dependence plots (PDPs) confirmed the dominance of current-related features and SOC dynamics in influencing VRFB terminal voltage. Overall, the Random Forest model offers superior accuracy and robustness, making it highly suitable for real-time VRFB system monitoring, control, and digital twin integration. This study highlights the potential of combining machine learning algorithms with electrochemical domain knowledge to enhance battery system modeling for future energy storage applications. Full article
Show Figures

Figure 1

20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

26 pages, 4294 KiB  
Article
Post Hoc Event-Related Potential Analysis of Kinesthetic Motor Imagery-Based Brain-Computer Interface Control of Anthropomorphic Robotic Arms
by Miltiadis Spanos, Theodora Gazea, Vasileios Triantafyllidis, Konstantinos Mitsopoulos, Aristidis Vrahatis, Maria Hadjinicolaou, Panagiotis D. Bamidis and Alkinoos Athanasiou
Electronics 2025, 14(15), 3106; https://doi.org/10.3390/electronics14153106 - 4 Aug 2025
Abstract
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and [...] Read more.
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and imagery remains under investigation in terms of activations, processing of motor onset, and BCI control. The current work aims to conduct a post hoc investigation of the event-related potential (ERP)-based processing of KMI during BCI control of anthropomorphic robotic arms by spinal cord injury (SCI) patients and healthy control participants in a completed clinical trial. For this purpose, we analyzed 14-channel electroencephalography (EEG) data from 10 patients with cervical SCI and 8 healthy individuals, recorded through Emotiv EPOC BCI, as the participants attempted to move anthropomorphic robotic arms using KMI. EEG data were pre-processed by band-pass filtering (8–30 Hz) and independent component analysis (ICA). ERPs were calculated at the sensor space, and analysis of variance (ANOVA) was used to determine potential differences between groups. Our results showed no statistically significant differences between SCI patients and healthy control groups regarding mean amplitude and latency (p < 0.05) across the recorded channels at various time points during stimulus presentation. Notably, no significant differences were observed in ERP components, except for the P200 component at the T8 channel. These findings suggest that brain circuits associated with motor planning and sensorimotor processes are not disrupted due to anatomical damage following SCI. The temporal dynamics of motor-related areas—particularly in channels like F3, FC5, and F7—indicate that essential motor imagery (MI) circuits remain functional. Limitations include the relatively small sample size that may hamper the generalization of our findings, the sensor-space analysis that restricts anatomical specificity and neurophysiological interpretations, and the use of a low-density EEG headset, lacking coverage over key motor regions. Non-invasive EEG-based BCI systems for motor rehabilitation in SCI patients could effectively leverage intact neural circuits to promote neuroplasticity and facilitate motor recovery. Future work should include validation against larger, longitudinal, high-density, source-space EEG datasets. Full article
(This article belongs to the Special Issue EEG Analysis and Brain–Computer Interface (BCI) Technology)
Show Figures

Figure 1

12 pages, 535 KiB  
Article
Real-World Effectiveness of Rosuvastatin–Ezetimibe Single Pill (Rovazet®) in Korean Dyslipidemia Patients
by Hack-Lyoung Kim, Hyun Sung Joh, Sang-Hyun Kim and Myung-A Kim
J. Clin. Med. 2025, 14(15), 5480; https://doi.org/10.3390/jcm14155480 - 4 Aug 2025
Abstract
Background: Fixed-dose combinations of rosuvastatin and ezetimibe are increasingly used in clinical practice, but real-world data on their effectiveness and safety in large populations remain limited. Methods: This prospective, single-group, open-label, non-interventional observational study was conducted in the Republic of Korea to evaluate [...] Read more.
Background: Fixed-dose combinations of rosuvastatin and ezetimibe are increasingly used in clinical practice, but real-world data on their effectiveness and safety in large populations remain limited. Methods: This prospective, single-group, open-label, non-interventional observational study was conducted in the Republic of Korea to evaluate the effectiveness and safety of Rovazet® (a fixed-dose combination of rosuvastatin and ezetimibe). Patients were prospectively enrolled from 235 institutions (50 general hospitals and 185 private clinics) as part of routine clinical practice over a five-year period. Lipid profiles and medication compliance questionnaire results were collected at baseline, 12 weeks, and 24 weeks of treatment. Results: A total of 5527 patients with dyslipidemia, the majority were men (53.0%), and the mean age was 60.4 years. Rovazet® significantly reduced low-density lipoprotein cholesterol (LDL-C) by 23.5% at 12 weeks (from 117.47 ± 50.65 mg/dL to 81.14 ± 38.20 mg/dL; p < 0.0001) and by 27.4% at 24 weeks (from 117.47 ± 50.65 mg/dL to 74.52 ± 33.36 mg/dL; p < 0.0001). Total cholesterol was significantly reduced by 17.7% at 12 weeks and by 19.8% at 24 weeks. Rovazet® treatment reduced triglycerides by 4.1% at 12 weeks and by 7.2% at 24 weeks. High-density lipoprotein cholesterol increased by 4.5% at 12 weeks and by 7.9% at 24 weeks following Rovazet® treatment. These changes in lipid profiles were consistent, regardless of cardiovascular risk profiles. By 24 weeks of treatment with Rovazet®, 91.8% of patients had reached their target LDL-C goals. Adverse drug reactions were reported in 2.81% of patients, most of which were minor, indicating that Rovazet® was well tolerated. Conclusions: Rovazet® was effective in improving lipid profiles and well tolerated in Korean adults with dyslipidemia. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

18 pages, 914 KiB  
Article
Microvascular, Biochemical, and Clinical Impact of Hyperbaric Oxygen Therapy in Recalcitrant Diabetic Foot Ulcers
by Daniela Martins-Mendes, Raquel Costa, Ilda Rodrigues, Óscar Camacho, Pedro Barata Coelho, Vítor Paixão-Dias, Carla Luís, Ana Cláudia Pereira, Rúben Fernandes, Jorge Lima and Raquel Soares
Cells 2025, 14(15), 1196; https://doi.org/10.3390/cells14151196 - 4 Aug 2025
Abstract
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study aimed to evaluate the impact of HBOT on systemic biomarkers, local microvasculature, and clinical outcomes in patients with DFUs. Methods: In this non-randomized prospective study, 20 patients with ischemic DFUs were followed over a 36-month period. Fourteen received HBOT in addition to standard care, while six received standard care alone. Clinical outcomes—including DFU resolution, recurrence, lower extremity amputation (LEA), and mortality—were assessed alongside systemic inflammatory and angiogenic biomarkers and wound characteristics at baseline and at 3, 6, 12, and 36 months. CD31 immunostaining was performed on available tissue samples. Results: The two groups were comparable at baseline (mean age 62 ± 12 years; diabetes duration 18 ± 9 years). At 3 months, the HBOT group showed significant reductions in erythrocyte sedimentation rate and DFU size (p < 0.05), with downward trends observed in C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and an increase in stromal-derived factor-1 alpha (SDF1-α). No significant changes were observed in the control group. CD31+ microvessel density appeared to increase in HBOT-treated DFU tissue after one month, although the sample size was limited. Patients receiving HBOT had lower rates of LEA and mortality, improved wound healing, and sustained outcomes over three years. DFU recurrence rates were similar between groups. Conclusions: HBOT was associated with improved wound healing and favorable biomarker profiles in patients with treatment-resistant ischemic DFUs. While these findings are encouraging, the small sample size and non-randomized design limit their generalizability, highlighting the need for larger, controlled studies. Full article
Show Figures

Figure 1

24 pages, 4382 KiB  
Article
MTL-PlotCounter: Multitask Driven Soybean Seedling Counting at the Plot Scale Based on UAV Imagery
by Xiaoqin Xue, Chenfei Li, Zonglin Liu, Yile Sun, Xuru Li and Haiyan Song
Remote Sens. 2025, 17(15), 2688; https://doi.org/10.3390/rs17152688 - 3 Aug 2025
Viewed by 48
Abstract
Accurate and timely estimation of soybean emergence at the plot scale using unmanned aerial vehicle (UAV) remote sensing imagery is essential for germplasm evaluation in breeding programs, where breeders prioritize overall plot-scale emergence rates over subimage-based counts. This study proposes PlotCounter, a deep [...] Read more.
Accurate and timely estimation of soybean emergence at the plot scale using unmanned aerial vehicle (UAV) remote sensing imagery is essential for germplasm evaluation in breeding programs, where breeders prioritize overall plot-scale emergence rates over subimage-based counts. This study proposes PlotCounter, a deep learning regression model based on the TasselNetV2++ architecture, designed for plot-scale soybean seedling counting. It employs a patch-based training strategy combined with full-plot validation to achieve reliable performance with limited breeding plot data. To incorporate additional agronomic information, PlotCounter is extended into a multitask learning framework (MTL-PlotCounter) that integrates sowing metadata such as variety, number of seeds per hole, and sowing density as auxiliary classification tasks. RGB images of 54 breeding plots were captured in 2023 using a DJI Mavic 2 Pro UAV and processed into an orthomosaic for model development and evaluation, showing effective performance. PlotCounter achieves a root mean square error (RMSE) of 6.98 and a relative RMSE (rRMSE) of 6.93%. The variety-integrated MTL-PlotCounter, V-MTL-PlotCounter, performs the best, with relative reductions of 8.74% in RMSE and 3.03% in rRMSE compared to PlotCounter, and outperforms representative YOLO-based models. Additionally, both PlotCounter and V-MTL-PlotCounter are deployed on a web-based platform, enabling users to upload images via an interactive interface, automatically count seedlings, and analyze plot-scale emergence, powered by a multimodal large language model. This study highlights the potential of integrating UAV remote sensing, agronomic metadata, specialized deep learning models, and multimodal large language models for advanced crop monitoring. Full article
(This article belongs to the Special Issue Recent Advances in Multimodal Hyperspectral Remote Sensing)
Show Figures

Figure 1

27 pages, 10097 KiB  
Article
Biocrusts Alter the Pore Structure and Water Infiltration in the Top Layer of Rammed Soils at Weiyuan Section of the Great Wall in China
by Xiaoju Yang, Fasi Wu, Long Li, Ruihua Shang, Dandan Li, Lina Xu, Jing Cui and Xueyong Zhao
Coatings 2025, 15(8), 908; https://doi.org/10.3390/coatings15080908 (registering DOI) - 3 Aug 2025
Viewed by 55
Abstract
The surface of the Great Wall harbors a large number of non-vascular plants dominated by cyanobacteria, lichens and mosses as well as microorganisms, and form biocrusts by cementing with the soils and greatly alters the pore structure of the soil and the ecohydrological [...] Read more.
The surface of the Great Wall harbors a large number of non-vascular plants dominated by cyanobacteria, lichens and mosses as well as microorganisms, and form biocrusts by cementing with the soils and greatly alters the pore structure of the soil and the ecohydrological processes associated with the soil pore space, and thus influences the soil resistance to erosion. However, the microscopic role of the biocrusts in influencing the pore structure of the surface of the Great Wall is not clear. This study chose the Warring States Qin Great Wall in Weiyuan, Gansu Province, China, as research site to quantify thepore structure characteristics of the three-dimensional of bare soil, cyanobacterial-lichen crusts, and moss crusts at the depth of 0–50 mm, by using optical microscopy, scanning electron microscopy, and X-ray computed tomography and image analysis, and the precipitation infiltration process. The results showed that the moss crust layer was dominated by large pores with long extension and good connectivity, which provided preferential seepage channels for precipitation infiltration, while the connectivity between the cyanobacterial-lichen crust voids was poor; The porosity of the cyanobacterial-lichen crust and the moss crust was 500% and 903.27% higher than that of the bare soil, respectively. The porosity of the subsurface layer of cyanobacterial-lichen crust and moss crust was significantly lower than that of the biocrusts layer by 92.54% and 97.96%, respectively, and the porosity of the moss crust was significantly higher than that of the cyanobacterial-lichen crust in the same layer; Cyanobacterial-lichen crusts increased the degree of anisotropy, mean tortuosity, moss crust reduced the degree of anisotropy, mean tortuosity. Biocrusts increased the fractal dimension and Euler number of pores. Compared with bare soil, moss crust and cyanobacterial-lichen crust increased the isolated porosity by 2555% and 4085%, respectively; Biocrusts increased the complexity of the pore network models; The initial infiltration rate, stable infiltration rate, average infiltration rate, and the total amount of infiltration of moss crusted soil was 2.26 and 3.12 times, 1.07 and 1.63 times, respectively, higher than that of the cyanobacterial-lichen crusts and the bare soil, by 1.53 and 2.33 times, and 1.13 and 2.08 times, respectively; CT porosity and clay content are significantly positively correlated with initial soil infiltration rate (|r| ≥ 0.85), while soil type and organic matter content are negatively correlated with initial soil infiltration rate. The soil type and bulk density are directly positively and negatively correlated with CT porosity, respectively (|r| ≥ 0.52). There is a significant negative correlation between soil clay content and porosity (|r| = 0.15, p < 0.001). Biocrusts alter the erosion resistance of rammed earth walls by affecting the soil microstructure of the earth’s great wall, altering precipitation infiltration, and promoting vascular plant colonisation, which in turn alters the erosion resistance of the wall. The research results have important reference for the development of disposal plans for biocrusts on the surface of archaeological sites. Full article
Show Figures

Figure 1

25 pages, 5704 KiB  
Article
A Robust Framework for Bamboo Forest AGB Estimation by Integrating Geostatistical Prediction and Ensemble Learning
by Lianjin Fu, Qingtai Shu, Cuifen Xia, Zeyu Li, Hailing He, Zhengying Li, Shaoyang Ma, Chaoguan Qin, Rong Wei, Qin Xiang, Xiao Zhang, Yiran Zhang and Huashi Cai
Remote Sens. 2025, 17(15), 2682; https://doi.org/10.3390/rs17152682 - 3 Aug 2025
Viewed by 65
Abstract
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain [...] Read more.
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain environment. This study first employed Empirical Bayesian Kriging Regression Prediction (EBKRP) to spatialize sparse GEDI and ICESat-2 LiDAR metrics using Sentinel-2 and topographic covariates. Subsequently, a stacked ensemble model, integrating four machine learning algorithms, predicted AGB from the full suite of continuous variables. The stacking model achieved high predictive accuracy (R2 = 0.84, RMSE = 11.07 Mg ha−1) and substantially mitigated the common bias of underestimating high AGB, improving the predicted observed regression slope from a base model average of 0.63 to 0.81. Furthermore, SHAP analysis provided mechanistic insights, identifying the canopy photon rate as the dominant predictor and quantifying the ecological thresholds governing AGB distribution. The mean AGB density was 71.8 ± 21.9 Mg ha−1, with its spatial pattern influenced by elevation and human settlements. This research provides a robust framework for synergizing multi-source remote sensing data to improve AGB estimation, offering a refined methodological pathway for large-scale carbon stock assessments. Full article
Show Figures

Figure 1

11 pages, 782 KiB  
Article
Exploring the Association Between Platelet Count, the Systemic Immune Inflammation Index, and Fracture Risk in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study
by Cecilia Oliveri, Anastasia Xourafa, Rita Maria Agostino, Valentina Corigliano, Antonino Botindari, Agostino Gaudio, Nunziata Morabito, Alessandro Allegra and Antonino Catalano
J. Clin. Med. 2025, 14(15), 5453; https://doi.org/10.3390/jcm14155453 - 2 Aug 2025
Viewed by 281
Abstract
Background/Objectives: Platelets play a role in bone metabolism and fracture healing. This study aimed to investigate the association between platelet indices and the derived systemic immune inflammation index (SII) with fracture risk in postmenopausal women. Methods: Platelet count, mean platelet volume, platelet distribution [...] Read more.
Background/Objectives: Platelets play a role in bone metabolism and fracture healing. This study aimed to investigate the association between platelet indices and the derived systemic immune inflammation index (SII) with fracture risk in postmenopausal women. Methods: Platelet count, mean platelet volume, platelet distribution width (PDW), platelet crit, percentage of large platelets (P-LCR), platelet–lymphocyte ratio, and the SII, calculated as (NxP)/L, where N, P, and L represented neutrophils, platelets and lymphocytes counts, respectively, were evaluated. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Results: A total of 124 women (mean age 68.4 ± 9 years) were stratified into two groups based on the median platelet count; the “lower platelet count group” (n = 58) had a count of 200,000 (174,000 to 226,000), while the “higher platelet count group” (n = 66) had a count of 281,500 (256,500 to 308,500). The higher platelet count group showed a higher hip fracture risk (7.4 vs. 4.5%, p = 0.08) and lower lumbar spine BMD (0.773 vs. 0.83 gr/cm2, p = 0.03). By dividing the participants into two groups with higher SSI (950,848.6 ± 746,097.99) (n = 61) and lower SII (355,751.2 ± 88,662.6) (n = 63), the group with the higher SII showed the higher hip fracture risk (7.4 vs. 3.6%, p = 0.01). Univariate regression analysis revealed correlations between chronological age and PDW (r = 0.188, p = 0.047), and P-LCR (r = 0.208, p = 0.03), as well as associations between vitamin D status and P-LCR (r = −0.301, p = 0.034), and between SII and hip fracture risk (r = 0.12, p = 0.007). Conclusions: Platelet count and SII were associated with fracture risk in postmenopausal women undergoing osteoporosis assessment. Given their reproducibility and cost-effectiveness, these markers warrant further investigation in future prospective studies focused on bone fragility. Full article
(This article belongs to the Special Issue Diagnosis, Treatment, Prevention and Rehabilitation in Osteoporosis)
Show Figures

Figure 1

24 pages, 6855 KiB  
Article
Estimation of the Kinetic Coefficient of Friction of Asphalt Pavements Using the Top Topography Surface Roughness Power Spectrum
by Bo Sun, Haoyuan Luo, Yibo Rong and Yanqin Yang
Materials 2025, 18(15), 3643; https://doi.org/10.3390/ma18153643 - 2 Aug 2025
Viewed by 188
Abstract
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better [...] Read more.
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better reflect the actual contact conditions. This approach avoids including deeper roughness components that do not contribute to real rubber–pavement contact due to surface skewness. The key aspect of the method is determining an appropriate cutting plane to isolate the top surface. Four cutting strategies were evaluated. Results show that the cutting plane defined at 0.5 times the root mean square (RMS) height exhibits the highest robustness across all pavement types, with the estimated COF closely matching the measured values for all four tested surfaces. This study presents an improved method for estimating the kinetic coefficient of friction (COF) of asphalt pavements by employing the power spectral density (PSD) of the top surface roughness, rather than the total surface profile. This refinement is based on Persson’s friction theory and aims to exclude the influence of deep surface irregularities that do not make actual contact with the rubber interface. The core of the method lies in defining an appropriate cutting plane to isolate the topographical features that contribute most to frictional interactions. Four cutting strategies were investigated. Among them, the cutting plane positioned at 0.5 times the root mean square (RMS) height demonstrated the best overall applicability. COF estimates derived from this method showed strong consistency with experimentally measured values across all four tested asphalt pavement surfaces, indicating its robustness and practical potential. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop