Evaluating Habitat Conditions for the Ringlet Butterfly (Erebia pronoe glottis) in a Multi-Use Mountain Landscape in the French Pyrenees
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mark–Release–Recapture (MRR)
2.3. Population Demography
2.4. Mobility Parameters
3. Results
3.1. Demography
3.2. Mobility and Movement Patterns
3.3. Behavioural Differences Between Sexes
3.4. Use of Nectar Plants
4. Discussion
4.1. Population Density
4.2. Mobility and Movement Behaviour
4.3. Environmental Stress on Alpine Species
4.4. Conservation Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef]
- Seibold, S.; Gossner, M.M.; Simons, N.K.; Blüthgen, N.; Müller, J.; Ambarlı, D.; Ammer, C.; Bauhus, J.; Fischer, M.; Habel, J.C.; et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 2019, 574, 671–674. [Google Scholar] [CrossRef]
- Wagner, D.L. Insect Declines in the Anthropocene. Annu. Rev. Èntomol. 2020, 65, 457–480. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Dover, J.; Settele, J. The influences of landscape structure on butterfly distribution and movement: A review. J. Insect Conserv. 2008, 13, 3–27. [Google Scholar] [CrossRef]
- Kruess, A.; Tscharntke, T. Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conserv. Biol. 2002, 16, 1570–1580. [Google Scholar] [CrossRef]
- Dennis, R.L.H.; Shreeve, T.G.; Dyck, H. Towards a functional resource-based concept for habitat: A butterfly biology viewpoint. Oikos 2003, 102, 417–426. [Google Scholar]
- Baguette, M.; Van Dyck, H. Landscape connectivity and animal behavior: Functional grain as a key determinant for dispersal. Landsc. Ecol. 2007, 22, 1117–1129. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Stuhldreher, G.; Hermann, G.; Fartmann, T. Cold-adapted species in a warming world—An explorative study on the impact of high winter temperatures on a continental butterfly. Èntomol. Exp. Appl. 2014, 151, 270–279. [Google Scholar] [CrossRef]
- Konvicka, M.; Benes, J.; Cizek, O.; Kuras, T.; Kleckova, I. Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains? Eur. J. Èntomol. 2016, 113, 295–301. [Google Scholar] [CrossRef]
- Junker, M.; Wagner, S.; Gros, P.; Schmitt, T. Changing demography and dispersal behaviour: Ecological adaptations in an alpine butterfly. Oecologia 2010, 164, 971–980. [Google Scholar] [CrossRef]
- Ehl, S.; Dalstein, V.; Tull, F.; Gros, P.; Schmitt, T. Specialized or opportunistic—How does the high mountain endemic butterfly Erebia nivalis survive in its extreme habitats? Insect Sci. 2016, 25, 161–171. [Google Scholar] [CrossRef]
- Maes, D.; Van Dyck, H. Habitat quality and biodiversity indicator performances of a threatened butterfly versus a multispecies group for wet heathlands in Belgium. Biol. Conserv. 2005, 123, 177–187. [Google Scholar] [CrossRef]
- Viljur, M.-L.; Teder, T. Disperse or die: Colonisation of transient open habitats in production forests is only weakly dispersal-limited in butterflies. Biol. Conserv. 2018, 218, 32–40. [Google Scholar] [CrossRef]
- Huemer, P. Biodiversit{ä}t von Schmetterlingen (Lepidoptera) im Gebiet des Naturparks Schlern. Gredleriana 2007, 7, 233–306. [Google Scholar]
- Warren, B.C.S. Notes on Erebiid species. Entomologist’s Record 1933, 45, 40–41. [Google Scholar]
- Fruhstorfer, H. Altes und Neues über Erebien. Archiv für Naturgeschichte 1920, 84, 83–108. [Google Scholar]
- Paučulová, L.; Dzurinka, M.; Šemeláková, M.; Csanády, A.; Panigaj, Ľ. Phylogeography, genetic structure and wing pattern variation of Erebia pronoe (Esper, 1780) (Lepidoptera: Nymphalidae) in Europe. Zootaxa 2018, 4441, 279–297. [Google Scholar] [CrossRef]
- Wendt, M.; Kulanek, D.; Varga, Z.; Rákosy, L.; Schmitt, T. Pronounced mito-nuclear discordance and various Wolbachia infections in the water ringlet Erebia pronoe have resulted in a complex phylogeographic structure. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Tolman, T.; Lewington, R. Schmetterlinge Europas Und Nordwestafrikas, 2nd ed.; Kosmos: Stuttgart, Germany, 2012. [Google Scholar]
- Sonderegger, P. Die Erebien der Schweiz (Lepidoptera: Satyrinae, Genus Erebia); Private Publication: Biel, Switzerland, 2005. [Google Scholar]
- Wendt, M.; Senftleben, N.; Gros, P.; Schmitt, T. Coping with Environmental Extremes: Population Ecology and Behavioural Adaptation of Erebia pronoe, an Alpine Butterfly Species. Insects 2021, 12, 896. [Google Scholar] [CrossRef]
- Delpouve, N.; Bergès, L.; Dupouey, J.-L.; Chauchard, S.; Leroy, N.; Thirion, E.; Rathgeber, C.B.K. Long-term forest-line dynamics in the French Pyrenees: An accelerating upward shift related to forest context, global warming and pastoral abandonment. EGUsphere 2025, 1–28. [Google Scholar] [CrossRef]
- Hickel, C.; Gereben-Krenn, B.-A.; Zweimüller, I.; Krenn, H.W. Wetterbedingungen für die Erfassung von Tagfaltern (Lepidoptera: Papilionoidea) in alpinen Lebensräumen in Österreich C. Entomol. Austriaca 2016, 23, 7–18. [Google Scholar]
- Zimmermann, K.; FRIC, Z.; Filipová, L.; Konvička, M. Adult demography, dispersal and behaviour of Brenthis ino (Lepidoptera: Nymphalidae): How to be a successful wetland butterfly. Eur. J. Èntomol. 2005, 102, 699–706. [Google Scholar] [CrossRef]
- Kühn, E.; Musche, M.; Harpke, A.; Feldmann, R.; Metzler, B.; Wiemers, M.; Hirneisen, N.; Settele, J. Tagfalter Monitoring Deutschland. Oedippus 2014, 27, 1–50. [Google Scholar]
- Gall, L.F. The effects of capturing and marking on subsequent activity in Boloria acrocnema (Lepidoptera: Nymphalidae), with a comparison of different numerical models that estimate population size. Biol. Conserv. 1984, 28, 139–154. [Google Scholar] [CrossRef]
- Cooch, E.G.; White, G.C. Using Program MARK: A Gentle Introduction. 2019. Available online: http://www.phidot.org/software/mark/ (accessed on 3 February 2020).
- White, G.C.; Burnham, K.P. Program MARK: Survival estimation from populations of marked animals. Bird Study 1999, 46, S120–S139. [Google Scholar] [CrossRef]
- Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. Theory Methods 1978, 7, 13–26. [Google Scholar] [CrossRef]
- QGIS Development Team. Quantum Geographic Information System (QGIS) Software Version 3.83. Available online: https://qgis.org/en/site/about/index.html (accessed on 12 March 2020).
- R Core Team. R: A Language and Environment for Statistical Computing. 2017. Available online: https://www.R-project.org/ (accessed on 11 December 2023).
- Konvicka, M.; Cizek, O.; Filipová, L.; Fric, Z.; Benes, J.; Krupka, M.; Zamecnik, J.; Dockalova, Z. For whom the bells toll: Demography of the last population of the butterfly Euphydryas maturna in the Czech Republic. Biologia Bratislava 2005, 60, 551. [Google Scholar]
- Plazio, E.; Bubová, T.; Vrabec, V.; Nowicki, P. Sex-biased topography effects on butterfly dispersal. Mov. Ecol. 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Plazio, E.; Margol, T.; Nowicki, P. Intersexual differences in density-dependent dispersal and their evolutionary drivers. J. Evol. Biol. 2020, 33, 1495–1506. [Google Scholar] [CrossRef]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef]
- Kuras, T.; Benes, J.; Fric, Z.; Konvicka, M. Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. Popul. Ecol. 2003, 45, 115–123. [Google Scholar] [CrossRef]
- Ehl, S.; Ebertshäuser, M.; Gros, P.; Schmitt, T. Population demography of alpine butterflies: Boloria pales and Boloria napaea (Lepidoptera: Nymphalidae) and their specific adaptations to high mountain environments. Acta Oecol. 2017, 85, 53–61. [Google Scholar] [CrossRef]
- Ehl, S.; Böhm, N.; Wörner, M.; Rákosy, L.; Schmitt, T. Dispersal and adaptation strategies of the high mountain butterfly Boloria pales in the Romanian Carpathians. Front. Zool. 2019, 16, 1–16. [Google Scholar] [CrossRef] [PubMed]
- WallisDeVries, M.F. Linking species assemblages to environmental change: Moving beyond the specialist-generalist dichotomy. Basic Appl. Ecol. 2014, 15, 279–287. [Google Scholar] [CrossRef]
- Schneider, C. The influence of spatial scale on quantifying insect dispersal: An analysis of butterfly data. Ecol. Èntomol. 2003, 28, 252–256. [Google Scholar] [CrossRef]
- Kőrösi, Á.; Örvössy, N.; Batáry, P.; Kövér, S.; Peregovits, L. Restricted within-habitat movement and time-constrained egg laying of female Maculinea rebeli butterflies. Oecologia 2008, 156, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.C.; Sibly, R.M.; Thorbek, P.; Sims, I.; Oliver, T.H.; Walters, R.J. The importance of including habitat-specific behaviour in models of butterfly movement. Oecologia 2020, 193, 249–259. [Google Scholar] [CrossRef]
- Baguette, M.; Vansteenwegen, C.; Convi, I.; Nève, G. Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta Oecol. 1998, 19, 17–24. [Google Scholar] [CrossRef]
- Petit, S.; Moilanen, A.; Hanski, I.; Baguette, M. Metapopulation dynamics of the bog fritillary butterfly: Movements between habitat patches. Oikos 2001, 92, 491–500. [Google Scholar] [CrossRef]
- Huemer, P.; Tarmann, G.M. Artenvielfalt und Bewirtschaftungsintensität: Problemanalyse am Beispiel der Schmetterlinge auf Wiesen und Weiden Südtirols. Gredleriana 2001, 1, 331–418. [Google Scholar]
- van Swaay, C.A.M.A.; Warren, M.S. Prime Butterfly Areas of Europe: An Initial Selection of Priority Sitesfor Conservation. J. Insect Conserv. 2006, 10, 5–11. [Google Scholar] [CrossRef]
- Zöchling, A. Auswirkungen Unterschiedlicher Bewirtschaftungsweisen und Nutzungsintensitäten von Almen auf die Tagfalterfauna im NP Gesäuse. Master’s Thesis, University of Vienna, Vienna, Austria, 2012. Available online: http://othes.univie.ac.at/23375/ (accessed on 7 May 2019).
- Jerrentrup, J.S.; Klimek, S.; Marchiori, E.; Bittante, G.; Ramanzin, M.; Sturaro, E.; Marini, L. Impact of dairy farming on butterfly diversity in Alpine summer pastures. Agric. Ecosyst. Environ. 2016, 232, 38–45. [Google Scholar] [CrossRef]
- Curtis, R.J.; Brereton, T.M.; Dennis, R.L.H.; Carbone, C.; Isaac, N.J.B.; Diamond, S. Butterfly abundance is determined by food availability and is mediated by species traits. J. Appl. Ecol. 2015, 52, 1676–1684. [Google Scholar] [CrossRef]
- Malo, J.E.; Suárez, F. Herbivorous mammals as seed dispersers in a Mediterranean dehesa. Oecologia 1995, 104, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Carpino, S.; Licitra, G.; Van Soest, P. Selection of forage species by dairy cattle on complex Sicilian pasture. Anim. Feed. Sci. Technol. 2003, 105, 205–214. [Google Scholar] [CrossRef]
- Mayer, C. Pollination services under different grazing intensities. Int. J. Trop. Insect Sci. 2004, 24, 95–103. [Google Scholar] [CrossRef]
- Rook, A.; Dumont, B.; Isselstein, J.; Osoro, K.; WallisDeVries, M.; Parente, G.; Mills, J. Matching type of livestock to desired biodiversity outcomes in pastures—A review. Biol. Conserv. 2004, 119, 137–150. [Google Scholar] [CrossRef]
- Torné-Noguera, A.; Rodrigo, A.; Osorio, S.; Bosch, J. Collateral effects of beekeeping: Impacts on pollen-nectar resources and wild bee communities. Basic Appl. Ecol. 2016, 17, 199–209. [Google Scholar] [CrossRef]
- Klumpers, S.G.T. Beyond Random and Forbidden Interactions in Plant-Pollinator Networks: How Optimizing Energy Gain Results in Morphological Matching Among Subalpine Asteraceae and Their Flower-Visitors. Ph.D. Thesis, Leiden University, Leiden, The Netherlands, 2017. [Google Scholar]
- Wignall, V.R.; Brolly, M.; Uthoff, C.; Norton, K.E.; Chipperfield, H.M.; Balfour, N.J.; Ratnieks, F.L.W. Exploitative competition and displacement mediated by eusocial bees: Experimental evidence in a wild pollinator community. Behav. Ecol. Sociobiol. 2020, 74, 1–15. [Google Scholar] [CrossRef]
- Henry, M.; Rodet, G. Controlling the impact of the managed honeybee on wild bees in protected areas. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Rodet, G. The apiary influence range: A new paradigm for managing the cohabitation of honey bees and wild bee communities. Acta Oecol. 2020, 105, 103555. [Google Scholar] [CrossRef]
- Tautz, J.; Rostás, M. Honeybee buzz attenuates plant damage by caterpillars. Curr. Biol. 2008, 18, R1125–R1126. [Google Scholar] [CrossRef]
- Garbuzov, M.; Balfour, N.J.; Shackleton, K.; Al Toufailia, H.; Scandian, L.; Ratnieks, F.L.W. Multiple methods of assessing nectar foraging conditions indicate peak foraging difficulty in late season. Insect Conserv. Divers. 2020, 13, 532–542. [Google Scholar] [CrossRef]
- Plazio, E.; Nowicki, P. Inter-sexual and inter-generation differences in dispersal of a bivoltine butterfly. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Matter, S.F.; Doyle, A.; Illerbrun, K.; Wheeler, J.; Roland, J. An assessment of direct and indirect effects of climate change for populations of the Rocky Mountain Apollo butterfly (Parnassius smintheus Doubleday). Insect Sci. 2011, 18, 385–392. [Google Scholar] [CrossRef]
- Scalercio, S.; Bonacci, T.; Mazzei, A.; Pizzolotto, R.; Brandmayr, P. Better up, worse down: Bidirectional consequences of three decades of climate change on a relict population of Erebia cassioides. J. Insect Conserv. 2014, 18, 643–650. [Google Scholar] [CrossRef]
Model-Nr. | Model | AICC | Parameters |
---|---|---|---|
1 | {Phi (g) p (g x t) pent (.) N (g)} | 2161.8740 | 35 |
2 | {Phi (g + T) p (t) pent (.) N (g)} | 2163.9 | 36 |
3 | {Phi (g + T2) p (g x t) pent (.) N (g)} | 2164.4757 | 37 |
Phi | Min | Max | SE | p | Min | Max | SE | |
---|---|---|---|---|---|---|---|---|
male | 0.90 ± 0.02 | 0.87 | 0.92 | 0.03 | 0.16 ± 0.05 | 0.02 | 0.3 | 0.03 |
female | 0.78 ± 0.07 | 0.73 | 0.81 | 0.07 | 0.06 (0.02, 0.18) | 0 | 0.26 | 0.04 |
20 m Intervals | 30 m Intervals | 50 m Intervals | ||||
---|---|---|---|---|---|---|
IPF | NEF | IPF | NEF | IPF | NEF | |
males | 0.85 | 0.98 | 0.87 | 0.98 | 0.90 | 0.98 |
females | 0.88 | 0.91 | 0.89 | 0.88 | 0.95 | 0.99 |
Distance | IPF Males | IPF Females | NEF Males | NEF Females |
---|---|---|---|---|
1 km | 0.25 | 0.40 | 7.07 × 10−7 | 3.66 × 10−6 |
2 km | 0.05 | 0.11 | 2.32 × 10−15 | 5.46 × 10−14 |
3 km | 0.02 | 0.05 | 7.6 × 10−24 | 8.15 × 10−22 |
5 km | 0.01 | 0.02 | 8.17 × 10−41 | 1.82 × 10−37 |
Flying | Resting | Feeding | Drinking | Egg Deposition | |
---|---|---|---|---|---|
males | 75.4 | 13.3 | 5.3 | 5.8 | 0 |
females | 20.5 | 59.0 | 12.8 | 0 | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendt, M.; Schmitt, T. Evaluating Habitat Conditions for the Ringlet Butterfly (Erebia pronoe glottis) in a Multi-Use Mountain Landscape in the French Pyrenees. Diversity 2025, 17, 554. https://doi.org/10.3390/d17080554
Wendt M, Schmitt T. Evaluating Habitat Conditions for the Ringlet Butterfly (Erebia pronoe glottis) in a Multi-Use Mountain Landscape in the French Pyrenees. Diversity. 2025; 17(8):554. https://doi.org/10.3390/d17080554
Chicago/Turabian StyleWendt, Martin, and Thomas Schmitt. 2025. "Evaluating Habitat Conditions for the Ringlet Butterfly (Erebia pronoe glottis) in a Multi-Use Mountain Landscape in the French Pyrenees" Diversity 17, no. 8: 554. https://doi.org/10.3390/d17080554
APA StyleWendt, M., & Schmitt, T. (2025). Evaluating Habitat Conditions for the Ringlet Butterfly (Erebia pronoe glottis) in a Multi-Use Mountain Landscape in the French Pyrenees. Diversity, 17(8), 554. https://doi.org/10.3390/d17080554