Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = mdmx

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1967 KiB  
Article
Analysis of p53-Independent Functions of the Mdm2-MdmX Complex Using Data-Independent Acquisition-Based Profiling
by Anu Jain, Rafaela Muniz de Queiroz, Jayanta K. Chakrabarty, Karl A. T. Makepeace, Carol Prives and Lewis M. Brown
Proteomes 2025, 13(2), 18; https://doi.org/10.3390/proteomes13020018 - 22 May 2025
Viewed by 762
Abstract
Background: We utilized data-independent acquisition (DIA) to study the poorly understood biology of Mdm2 and MdmX in a p53-null context. Mdm2 and MdmX form an E3-ligase complex that has as its most well-studied function the negative regulation of the tumor suppressor p53; however, [...] Read more.
Background: We utilized data-independent acquisition (DIA) to study the poorly understood biology of Mdm2 and MdmX in a p53-null context. Mdm2 and MdmX form an E3-ligase complex that has as its most well-studied function the negative regulation of the tumor suppressor p53; however, it is also known to interact with many other proteins in a p53-independent manner. Methods: In this work, small-molecule and siRNA-based technology were used to modify Mdm2/MdmX activity in a human non-small-cell lung carcinoma cell line lacking p53 expression. Study of the proteome of these cells helped identify biological processes where Mdm2 and MdmX may play roles in a p53-independent manner. Proteins from H1299 cells, treated with the drug MEL23 or siRNA against Mdm2 or MdmX, were analyzed. Results: Protein ontology and function were analyzed, revealing which pathways are affected by modulation of the proteins that form the complex. Insights into how those functions are dependent on the activity of the complex also gained via comparisons among the three groups of samples. Conclusions: We selected a potential target from the DIA analysis and validated it by immunoblotting and qPCR, and this allows us to demonstrate a new interaction partner of the Mdm2-MdmX complex in human cells. Full article
Show Figures

Figure 1

15 pages, 1851 KiB  
Review
Mechanistic Role of the Mdm2/MdmX Lid Domain in Regulating Their Interactions with p53
by Qiuyin Wei, Chenqi Li, Yibing Tang, Jinping Bai, Wang Li, Jidong Liu, Zhengding Su and Xiyao Cheng
Biomolecules 2025, 15(5), 642; https://doi.org/10.3390/biom15050642 - 30 Apr 2025
Viewed by 615
Abstract
p53 functions as a critical guardian of the genome, orchestrating tumor suppression pathways and ensuring the integrity of chromosomal stability. Mdm2 and MdmX, homologous proteins, serve as negative feedback regulators of p53. In approximately half of tumor cases, overexpression of Mdm2/MdmX results in [...] Read more.
p53 functions as a critical guardian of the genome, orchestrating tumor suppression pathways and ensuring the integrity of chromosomal stability. Mdm2 and MdmX, homologous proteins, serve as negative feedback regulators of p53. In approximately half of tumor cases, overexpression of Mdm2/MdmX results in the inhibition of p53 activity. Current research focuses on designing Mdm2 and MdmX inhibitors based on the structure of lidless N-terminal forms of these proteins. However, growing evidence suggests that the lid of Mdm2 and MdmX plays a key role in the selective binding of p53 and inhibitors. Therefore, targeting the lid in the screening and design of Mdm2/MdmX inhibitors may offer a novel strategy for developing anti-cancer drugs. This review examines the impact of the Mdm2/MdmX lid on ligand binding, providing valuable insights for future research and guiding new approaches to the screening and design of innovative anti-cancer therapeutics. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

18 pages, 5251 KiB  
Review
Strategies for p53 Activation and Targeted Inhibitors of the p53-Mdm2/MdmX Interaction
by Ye Huang, Wang Li, Yuke Zhou, Jinping Bai, Ning Li, Zhengding Su and Xiyao Cheng
Cells 2025, 14(8), 583; https://doi.org/10.3390/cells14080583 - 12 Apr 2025
Viewed by 2069
Abstract
p53 is a tumor suppressor gene and is regarded as one of the most crucial genes in protecting humans against cancer. The protein Mdm2 and its homolog MdmX serve as negative regulators of p53. In nearly half of cancer cells, there is an [...] Read more.
p53 is a tumor suppressor gene and is regarded as one of the most crucial genes in protecting humans against cancer. The protein Mdm2 and its homolog MdmX serve as negative regulators of p53. In nearly half of cancer cells, there is an overexpression of Mdm2 and MdmX, which inhibit p53 activity. Furthermore, Mdm2’s E3 ubiquitin ligase activity promotes the ubiquitination and degradation of p53. Therefore, blocking the interaction between p53 and Mdm2/MdmX to prevent the degradation of wild-type p53 is an effective strategy for inhibiting tumor growth. This paper primarily discusses the regulatory relationship between p53, MdmX and Mdm2, and provides a review of the current status of p53-Mdm2/MdmX inhibitors. It aims to offer a theoretical foundation and research direction for the future discovery and design of targeted inhibitors against the p53-Mdm2/MdmX interaction. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

15 pages, 3611 KiB  
Article
Chemokine CXCL12 Activates CXC Receptor 4 Metastasis Signaling Through the Upregulation of a CXCL12/CXCR4/MDMX (MDM4) Axis
by Rusia Lee, Viola Ellison, Dominique Forbes, Chong Gao, Diana Katanov, Alexandra Kern, Fayola Levine, Pam Leybengrub, Olorunseun Ogunwobi, Gu Xiao, Zhaohui Feng and Jill Bargonetti
Cancers 2024, 16(24), 4194; https://doi.org/10.3390/cancers16244194 - 16 Dec 2024
Viewed by 1662
Abstract
Background: The metastasis-promoting G-protein-coupled receptor CXC Receptor 4 (CXCR4) is activated by the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1). The CXCL12/CXCR4 pathway in cancer promotes metastasis but the molecular details of how this pathway cross-talks with oncogenes are understudied. [...] Read more.
Background: The metastasis-promoting G-protein-coupled receptor CXC Receptor 4 (CXCR4) is activated by the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1). The CXCL12/CXCR4 pathway in cancer promotes metastasis but the molecular details of how this pathway cross-talks with oncogenes are understudied. An oncogene pathway known to promote breast cancer metastasis in MDA-MB-231 xenografts is that of Mouse Double Minute 2 and 4 (MDM2 and MDM4, also known as MDMX). MDM2 and MDMX promote circulating tumor cell (CTC) formation and metastasis, and positively correlate with a high expression of CXCR4. Interestingly, this MDMX-associated upregulation of CXCR4 is only observed in cells grown in the tumor microenvironment (TME), but not in MDA-MB-231 cells grown in a tissue culture dish. This suggested a cross-talk signaling factor from the TME which was predicted to be CXCL12 and, as such, we asked if the exogenous addition of the cell non-autonomous CXCL12 ligand would recapitulate the MDMX-dependent upregulation of CXCR4. Methods: We used MDA-MB-231 cells and isolated CTCs, with and without MDMX knockdown, plus the exogenous addition of CXCL12 to determine if MDMX-dependent upregulation of CXCR4 could be recapitulated outside of the TME context. We added exogenous CXCL12 to the culture medium used for growth of MDA-MB-231 cells and isogenic cell lines engineered for MDM2 or MDMX depletion. We carried out immunoblotting, and quantitative RT-PCR to compare the expression of CXCR4, MDM2, MDMX, and AKT activation. We carried out Boyden chamber and wound healing assays to assess the influence of MDMX and CXCL12 on the cells’ migration capacity. Results: The addition of the CXCL12 chemokine to the medium increased the CXCR4 cellular protein level and activated the PI3K/AKT signaling pathway. Surprisingly, we observed that the addition of CXCL12 mediated the upregulation of MDM2 and MDMX at the protein, but not at the mRNA, level. A reduction in MDMX, but not MDM2, diminished both the CXCL12-mediated CXCR4 and MDM2 upregulation. Moreover, a reduction in both MDM2 and MDMX hindered the ability of the added CXCL12 to promote Boyden chamber-assessed cell migration. The upregulation of MDMX by CXCL12 was mediated, at least in part, by a step upstream of the proteasome pathway because CXCL12 did not increase protein stability after cycloheximide treatment, or when the proteasome pathway was blocked. Conclusions: These data demonstrate a positive feed-forward activation loop between the CXCL12/CXCR4 pathway and the MDM2/MDMX pathway. As such, MDMX expression in tumor cells may be upregulated in the primary tumor microenvironment by CXCL12 expression. Furthermore, CXCL12/CXCR4 metastatic signaling may be upregulated by the MDM2/MDMX axis. Our findings highlight a novel positive regulatory loop between CXCL12/CXCR4 signaling and MDMX to promote metastasis. Full article
Show Figures

Figure 1

24 pages, 8957 KiB  
Article
An Anti-Invasive Role for Mdmx through the RhoA GTPase under the Control of the NEDD8 Pathway
by Lara J. Bou Malhab, Susanne Schmidt, Christine Fagotto-Kaufmann, Emmanuelle Pion, Gilles Gadea, Pierre Roux, Francois Fagotto, Anne Debant and Dimitris P. Xirodimas
Cells 2024, 13(19), 1625; https://doi.org/10.3390/cells13191625 - 28 Sep 2024
Viewed by 1660
Abstract
Mdmx (Mdm4) is established as an oncogene mainly through repression of the p53 tumour suppressor. On the other hand, anti-oncogenic functions for Mdmx have also been proposed, but the underlying regulatory pathways remain unknown. Investigations into the effect of inhibitors for the NEDD8 [...] Read more.
Mdmx (Mdm4) is established as an oncogene mainly through repression of the p53 tumour suppressor. On the other hand, anti-oncogenic functions for Mdmx have also been proposed, but the underlying regulatory pathways remain unknown. Investigations into the effect of inhibitors for the NEDD8 pathway in p53 activation, human cell morphology, and in cell motility during gastrulation in Xenopus embryos revealed an anti-invasive function of Mdmx. Through stabilisation and activation of the RhoA GTPase, Mdmx is required for the anti-invasive effects of NEDDylation inhibitors. Mechanistically, through its Zn finger domain, Mdmx preferentially interacts with the inactive GDP-form of RhoA. This protects RhoA from degradation and allows for RhoA targeting to the plasma membrane for its subsequent activation. The effect is transient, as prolonged NEDDylation inhibition targets Mdmx for degradation, which subsequently leads to RhoA destabilisation. Surprisingly, Mdmx degradation requires non-NEDDylated (inactive) Culin4A and the Mdm2 E3-ligase. This study reveals that Mdmx can control cell invasion through RhoA stabilisation/activation, which is potentially linked to the reported anti-oncogenic functions of Mdmx. As inhibitors of the NEDD8 pathway are in clinical trials, the status of Mdmx may be a critical determinant for the anti-tumour effects of these inhibitors. Full article
Show Figures

Figure 1

12 pages, 2688 KiB  
Article
CEP-1347 Dually Targets MDM4 and PKC to Activate p53 and Inhibit the Growth of Uveal Melanoma Cells
by Keita Togashi, Shuhei Suzuki, Yuta Mitobe, Yurika Nakagawa-Saito, Asuka Sugai, Senri Takenouchi, Masahiko Sugimoto, Chifumi Kitanaka and Masashi Okada
Cancers 2024, 16(1), 118; https://doi.org/10.3390/cancers16010118 - 25 Dec 2023
Cited by 3 | Viewed by 1652
Abstract
Uveal melanoma (UM) is among the most common primary intraocular neoplasms in adults, with limited therapeutic options for advanced/metastatic disease. Since UM is characterized by infrequent p53 mutation coupled with the overexpression of MDM4, a major negative regulator of p53, we aimed to [...] Read more.
Uveal melanoma (UM) is among the most common primary intraocular neoplasms in adults, with limited therapeutic options for advanced/metastatic disease. Since UM is characterized by infrequent p53 mutation coupled with the overexpression of MDM4, a major negative regulator of p53, we aimed to investigate in this study the effects on UM cells of CEP-1347, a novel MDM4 inhibitor with a known safety profile in humans. We also examined the impact of CEP-1347 on the protein kinase C (PKC) pathway, known to play a pivotal role in UM cell growth. High-grade UM cell lines were used to analyze the effects of genetic and pharmacological inhibition of MDM4 and PKC, respectively, as well as those of CEP-1347 treatment, on p53 expression and cell viability. The results showed that, at its clinically relevant concentrations, CEP-1347 reduced not only MDM4 expression but also PKC activity, activated the p53 pathway, and effectively inhibited the growth of UM cells. Importantly, whereas inhibition of either MDM4 expression or PKC activity alone failed to efficiently activate p53 and inhibit cell growth, inhibition of both resulted in effective activation of p53 and inhibition of cell growth. These data suggest that there exists a hitherto unrecognized interaction between MDM4 and PKC to inactivate the p53-dependent growth control in UM cells. CEP-1347, which dually targets MDM4 and PKC, could therefore be a promising therapeutic candidate in the treatment of UM. Full article
(This article belongs to the Special Issue Current Progress and Research Trends in Ocular Oncology)
Show Figures

Figure 1

11 pages, 3134 KiB  
Article
Antagonizing MDM2 Overexpression Induced by MDM4 Inhibitor CEP-1347 Effectively Reactivates Wild-Type p53 in Malignant Brain Tumor Cells
by Yuta Mitobe, Shuhei Suzuki, Yurika Nakagawa-Saito, Keita Togashi, Asuka Sugai, Yukihiko Sonoda, Chifumi Kitanaka and Masashi Okada
Cancers 2023, 15(17), 4326; https://doi.org/10.3390/cancers15174326 - 30 Aug 2023
Cited by 6 | Viewed by 2787
Abstract
The development of MDM4 inhibitors as an approach to reactivating p53 in human cancer is attracting increasing attention; however, whether they affect the function of MDM2 and how they interact with MDM2 inhibitors remain unknown. We addressed this question in the present study [...] Read more.
The development of MDM4 inhibitors as an approach to reactivating p53 in human cancer is attracting increasing attention; however, whether they affect the function of MDM2 and how they interact with MDM2 inhibitors remain unknown. We addressed this question in the present study using CEP-1347, an inhibitor of MDM4 protein expression. The effects of CEP-1347, the genetic and/or pharmacological inhibition of MDM2, and their combination on the p53 pathway in malignant brain tumor cell lines expressing wild-type p53 were investigated by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 alone or in combination with MDM2 on inhibition were examined by dye exclusion and/or colony formation assays. The treatment of malignant brain tumor cell lines with CEP-1347 markedly increased MDM2 protein expression, while blocking CEP-1347-induced MDM2 overexpression by genetic knockdown augmented the effects of CEP-1347 on the p53 pathway and cell growth. Blocking the MDM2–p53 interaction using the small molecule MDM2 inhibitor RG7112, but not MDM2 knockdown, reduced MDM4 expression. Consequently, RG7112 effectively cooperated with CEP-1347 to reduce MDM4 expression, activate the p53 pathway, and inhibit cell growth. The present results suggest the combination of CEP-1347-induced MDM2 overexpression with the selective inhibition of MDM2′s interaction with p53, while preserving its ability to inhibit MDM4 expression, as a novel and rational strategy to effectively reactivate p53 in wild-type p53 cancer cells. Full article
Show Figures

Figure 1

14 pages, 3601 KiB  
Article
The Novel MDM4 Inhibitor CEP-1347 Activates the p53 Pathway and Blocks Malignant Meningioma Growth In Vitro and In Vivo
by Yuta Mitobe, Shuhei Suzuki, Yurika Nakagawa-Saito, Keita Togashi, Asuka Sugai, Yukihiko Sonoda, Chifumi Kitanaka and Masashi Okada
Biomedicines 2023, 11(7), 1967; https://doi.org/10.3390/biomedicines11071967 - 12 Jul 2023
Cited by 6 | Viewed by 2136
Abstract
A significant proportion of meningiomas are clinically aggressive, but there is currently no effective chemotherapy for meningiomas. An increasing number of studies have been conducted to develop targeted therapies, yet none have focused on the p53 pathway as a potential target. In this [...] Read more.
A significant proportion of meningiomas are clinically aggressive, but there is currently no effective chemotherapy for meningiomas. An increasing number of studies have been conducted to develop targeted therapies, yet none have focused on the p53 pathway as a potential target. In this study, we aimed to determine the in vitro and in vivo effects of CEP-1347, a small-molecule inhibitor of MDM4 with known safety in humans. The effects of CEP-1347 and MDM4 knockdown on the p53 pathway in human meningioma cell lines with and without p53 mutation were examined by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 were examined in vitro and in a mouse xenograft model of meningioma. In vitro, CEP-1347 at clinically relevant concentrations inhibited MDM4 expression, activated the p53 pathway in malignant meningioma cells with wild-type p53, and exhibited preferential growth inhibitory effects on cells expressing wild-type p53, which was mostly mimicked by MDM4 knockdown. CEP-1347 effectively inhibited the growth of malignant meningioma xenografts at a dose that was far lower than the maximum dose that could be safely given to humans. Our findings suggest targeting the p53 pathway with CEP-1347 represents a novel and viable approach to treating aggressive meningiomas. Full article
(This article belongs to the Special Issue Clinical Developments of the Tumor Suppressor p53)
Show Figures

Figure 1

15 pages, 464 KiB  
Review
The Development of p53-Targeted Therapies for Human Cancers
by Yier Lu, Meng Wu, Yang Xu and Lili Yu
Cancers 2023, 15(14), 3560; https://doi.org/10.3390/cancers15143560 - 10 Jul 2023
Cited by 17 | Viewed by 5336
Abstract
p53 plays a critical role in tumor suppression and is the most frequently mutated gene in human cancers. Most p53 mutants (mutp53) are missense mutations and are thus expressed in human cancers. In human cancers that retain wtp53, the wtp53 activities are downregulated [...] Read more.
p53 plays a critical role in tumor suppression and is the most frequently mutated gene in human cancers. Most p53 mutants (mutp53) are missense mutations and are thus expressed in human cancers. In human cancers that retain wtp53, the wtp53 activities are downregulated through multiple mechanisms. For example, the overexpression of the negative regulators of p53, MDM2/MDMX, can also efficiently destabilize and inactivate wtp53. Therefore, both wtp53 and mutp53 have become promising and intensively explored therapeutic targets for cancer treatment. Current efforts include the development of small molecule compounds to disrupt the interaction between wtp53 and MDM2/MDMX in human cancers expressing wtp53 and to restore wtp53-like activity to p53 mutants in human cancers expressing mutp53. In addition, a synthetic lethality approach has been applied to identify signaling pathways affected by p53 dysfunction, which, when targeted, can lead to cell death. While an intensive search for p53-targeted cancer therapy has produced potential candidates with encouraging preclinical efficacy data, it remains challenging to develop such drugs with good efficacy and safety profiles. A more in-depth understanding of the mechanisms of action of these p53-targeting drugs will help to overcome these challenges. Full article
(This article belongs to the Special Issue Targeting Therapies for the p53 Protein in Cancer Treatments)
Show Figures

Figure 1

14 pages, 1992 KiB  
Article
Identification of the Stapled α-Helical Peptide ATSP-7041 as a Substrate and Strong Inhibitor of OATP1B1 In Vitro
by Rika Ishikawa, Kosuke Saito, Takashi Misawa, Yosuke Demizu and Yoshiro Saito
Biomolecules 2023, 13(6), 1002; https://doi.org/10.3390/biom13061002 - 16 Jun 2023
Cited by 3 | Viewed by 2534
Abstract
ATSP-7041, a stapled α-helical peptide that inhibits murine double minute-2 (MDM2) and MDMX activities, is a promising modality targeting protein–protein interactions. As peptides of molecular weights over 1000 Da are not usually evaluated, data on the drug–drug interaction (DDI) potential of stapled α-helical [...] Read more.
ATSP-7041, a stapled α-helical peptide that inhibits murine double minute-2 (MDM2) and MDMX activities, is a promising modality targeting protein–protein interactions. As peptides of molecular weights over 1000 Da are not usually evaluated, data on the drug–drug interaction (DDI) potential of stapled α-helical peptides remain scarce. Here, we evaluate the interaction of ATSP-7041 with hepatic cytochrome P450s (CYPs; CYP1A2, CYP2C9, CYP2C19, CYP3A4, and CYP2D6) and transporters (organic anion transporting polypeptides (OATPs; OATP1B1 and OATP1B3), P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP)). ATSP-7041 demonstrated negligible metabolism in human liver S9 fraction and a limited inhibition of CYP activities in yeast microsomes or S9 fractions. On the contrary, a substantial uptake by OATPs in HEK 293 cells, a strong inhibition of OATP activities in the cells, and an inhibition of P-gp and BCRP activities in reversed membrane vesicles were observed for ATSP-7041. A recent report describes that ALRN-6924, an ATSP-7041 analog, inhibited OATP activities in vivo; therefore, we focused on the interaction between ATSP-7041 and OATP1B1 to demonstrate that ATSP-7041, as a higher molecular weight stapled peptide, is a substrate and strong inhibitor of OATP1B1 activity. Our findings demonstrated the possibility of transporter-mediated DDI potential by high molecular weight stapled peptides and the necessity of their evaluation for drug development. Full article
Show Figures

Figure 1

39 pages, 17463 KiB  
Review
Therapeutic Strategies to Activate p53
by Angelo Aguilar and Shaomeng Wang
Pharmaceuticals 2023, 16(1), 24; https://doi.org/10.3390/ph16010024 - 24 Dec 2022
Cited by 20 | Viewed by 7968
Abstract
The p53 protein has appropriately been named the “guardian of the genome”. In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and [...] Read more.
The p53 protein has appropriately been named the “guardian of the genome”. In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and inhibition by its negative regulators MDM2 and/or MDMX. We review herein the progress made on different therapeutic strategies for targeting p53. Full article
(This article belongs to the Special Issue Targeting p53 by Small Molecules: Application in Oncology)
Show Figures

Figure 1

23 pages, 1535 KiB  
Review
Deciphering the Role of p53 and TAp73 in Neuroblastoma: From Pathogenesis to Treatment
by Joana Almeida, Inês Mota, Jan Skoda, Emília Sousa, Honorina Cidade and Lucília Saraiva
Cancers 2022, 14(24), 6212; https://doi.org/10.3390/cancers14246212 - 16 Dec 2022
Cited by 7 | Viewed by 4137
Abstract
Neuroblastoma (NB) is an embryonic cancer that develops from neural crest stem cells, being one of the most common malignancies in children. The clinical manifestation of this disease is highly variable, ranging from spontaneous regression to increased aggressiveness, which makes it a major [...] Read more.
Neuroblastoma (NB) is an embryonic cancer that develops from neural crest stem cells, being one of the most common malignancies in children. The clinical manifestation of this disease is highly variable, ranging from spontaneous regression to increased aggressiveness, which makes it a major therapeutic challenge in pediatric oncology. The p53 family proteins p53 and TAp73 play a key role in protecting cells against genomic instability and malignant transformation. However, in NB, their activities are commonly inhibited by interacting proteins such as murine double minute (MDM)2 and MDMX, mutant p53, ΔNp73, Itch, and Aurora kinase A. The interplay between the p53/TAp73 pathway and N-MYC, a known biomarker of poor prognosis and drug resistance in NB, also proves to be decisive in the pathogenesis of this tumor. More recently, a strong crosstalk between microRNAs (miRNAs) and p53/TAp73 has been established, which has been the focused of great attention because of its potential for developing new therapeutic strategies. Collectively, this review provides an updated overview about the critical role of the p53/TAp73 pathway in the pathogenesis of NB, highlighting encouraging clues for the advance of alternative NB targeted therapies. Full article
(This article belongs to the Special Issue p53 Family in Cancer: How Close Are We to the Clinic?)
Show Figures

Graphical abstract

1 pages, 182 KiB  
Abstract
Methoxyphenyl Imidazolines as Potential Activators of p53
by Daniil R. Bazanov, Nikolay V. Pervushin, Natalia A. Lozinskaya and Gelina S. Kopeina
Med. Sci. Forum 2022, 14(1), 100; https://doi.org/10.3390/ECMC2022-13494 - 7 Nov 2022
Viewed by 1288
Abstract
The use of p53-MDM2/X inhibitors is a prospective strategy in anti-cancer therapy for tumors with wild type p53 protein. In our study, new low-molecular-weight inhibitors of the p53-mdm2 interaction have been proposed. The two-step synthesis of the imidazoline core with subsequent modifications for [...] Read more.
The use of p53-MDM2/X inhibitors is a prospective strategy in anti-cancer therapy for tumors with wild type p53 protein. In our study, new low-molecular-weight inhibitors of the p53-mdm2 interaction have been proposed. The two-step synthesis of the imidazoline core with subsequent modifications for the nitrogen atom was carried out. New molecules caused the accumulation of p53 protein levels more than seven times than in comparison with the control. The accumulation of proapoptotic proteins such as p21 and PUMA has also been investigated, and the mechanism of cell death has been shown. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Medicinal Chemistry)
14 pages, 74690 KiB  
Article
Nuclear Beclin 1 Destabilizes Retinoblastoma Protein to Promote Cell Cycle Progression and Colorectal Cancer Growth
by Yang Pan, Zhiqiang Zhao, Juan Li, Jinsong Li, Yue Luo, Weiyuxin Li, Wanbang You, Yujun Zhang, Zhonghan Li, Jian Yang, Zhi-Xiong Jim Xiao and Yang Wang
Cancers 2022, 14(19), 4735; https://doi.org/10.3390/cancers14194735 - 28 Sep 2022
Cited by 11 | Viewed by 3376
Abstract
Autophagy is elevated in colorectal cancer (CRC) and is generally associated with poor prognosis. However, the role of autophagy core-protein Beclin 1 remains controversial in CRC development. Here, we show that the expression of nuclear Beclin 1 protein is upregulated in CRC with [...] Read more.
Autophagy is elevated in colorectal cancer (CRC) and is generally associated with poor prognosis. However, the role of autophagy core-protein Beclin 1 remains controversial in CRC development. Here, we show that the expression of nuclear Beclin 1 protein is upregulated in CRC with a negative correlation to retinoblastoma (RB) protein expression. Silencing of BECN1 upregulates RB resulting in cell cycle G1 arrest and growth inhibition of CRC cells independent of p53. Furthermore, ablation of BECN1 inhibits xenograft tumor growth through elevated RB expression and reduced autophagy, while simultaneous silencing of RB1 restores tumor growth but has little effect on autophagy. Mechanistically, knockdown of BECN1 promotes the complex formation of MDM2 and MDMX, resulting in MDM2-dependent MDMX instability and RB stabilization. Our results demonstrate that nuclear Beclin 1 can promote cell cycle progression through modulation of the MDM2/X-RB pathway and suggest that Beclin 1 promotes CRC development by facilitating both cell cycle progression and autophagy. Full article
Show Figures

Figure 1

22 pages, 3605 KiB  
Article
MDMX Regulates Transcriptional Activity of p53 and FOXO Proteins to Stimulate Proliferation of Melanoma Cells
by Renier C. Heijkants, Amina F. A. S. Teunisse, Danielle de Jong, Kseniya Glinkina, Hailiang Mei, Szymon M. Kielbasa, Karoly Szuhai and Aart G. Jochemsen
Cancers 2022, 14(18), 4482; https://doi.org/10.3390/cancers14184482 - 15 Sep 2022
Cited by 3 | Viewed by 2698
Abstract
The tumor suppressor protein p53 has an important role in cell-fate determination. In cancer cells, the activity of p53 is frequently repressed by high levels of MDMX and/or MDM2. MDM2 is a ubiquitin ligase whose activity results in ubiquitin- and proteasome-dependent p53 degradation, [...] Read more.
The tumor suppressor protein p53 has an important role in cell-fate determination. In cancer cells, the activity of p53 is frequently repressed by high levels of MDMX and/or MDM2. MDM2 is a ubiquitin ligase whose activity results in ubiquitin- and proteasome-dependent p53 degradation, while MDMX inhibits p53-activated transcription by shielding the p53 transactivation domain. Interestingly, the oncogenic functions of MDMX appear to be more wide-spread than inhibition of p53. The present study aimed to elucidate the MDMX-controlled transcriptome. Therefore, we depleted MDMX with four distinct shRNAs from a high MDMX expressing uveal melanoma cell line and determined the effect on the transcriptome by RNAseq. Biological function analyses indicate the inhibition of the cell cycle regulatory genes and stimulation of cell death activating genes upon MDMX depletion. Although the inhibition of p53 activity clearly contributes to the transcription regulation controlled by MDMX, it appeared that the transcriptional regulation of multiple genes did not only rely on p53 expression. Analysis of gene regulatory networks indicated a role for Forkhead box (FOX) transcription factors. Depletion of FOXO proteins partly prevented the transcriptional changes upon MDMX depletion. Furthermore, depletion of FOXO proteins relatively diminished the growth inhibition upon MDMX knockdown, although the knockdown of the FOXO transcription factors also reduces cell growth. In conclusion, the p53-independent oncogenic functions of MDMX could be partially explained by its regulation of FOXO activity. Full article
(This article belongs to the Special Issue Targeting Therapies for the p53 Protein in Cancer Treatments)
Show Figures

Figure 1

Back to TopTop