Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,032)

Search Parameters:
Keywords = matrix basis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2707 KB  
Article
Design of a Dual Path Mixed Coupling Wireless Power Transfer Coupler for Improving Transmit Arrays in UAV Charging
by GwanTae Kim and SangWook Park
Appl. Sci. 2026, 16(2), 827; https://doi.org/10.3390/app16020827 - 13 Jan 2026
Abstract
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at [...] Read more.
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at 6.78 MHz without additional lumped matching networks. A four-port equivalent model is developed by classifying the mutual networks into three coupling types and representing them with a transmission-matrix formulation fitted to three-dimensional full-wave simulations. The model is used to identify the main coupling paths and to evaluate the effect of rotation and lateral/diagonal misalignment on power-transfer characteristics. Simulation results at a transfer distance of 70 mm show a maximum transmission coefficient of about 0.82 at 6.78 MHz and high robustness against rotation. When switch-based port selection is applied on the transmit side, blind spots associated with pose variations that cause an abrupt drop in transmission characteristics are significantly reduced, demonstrating that the DPMPT coupler with switch control provides an effective structural basis for enhancing alignment tolerance in mixed coupling wireless power transfer systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
24 pages, 37052 KB  
Article
Prediction of Targets and Mechanisms of Top Ten Core “Food–Medicine Homologous Traditional Chinese Medicines” in Delaying Vascular Aging: An Integrative Computational Study
by Yiling Bai, Qian Liu, Qing Zhou, Pengyang Xiao and Lina Xia
Pharmaceuticals 2026, 19(1), 131; https://doi.org/10.3390/ph19010131 - 12 Jan 2026
Viewed by 35
Abstract
Background and Objectives: Many “food–medicine homologous traditional Chinese medicines (TCMs)” have been shown to delay vascular aging. In this study, we will select “food–medicine homologous TCMs” with the most potential to delay human-origin vascular aging and predict their core targets and mechanisms. [...] Read more.
Background and Objectives: Many “food–medicine homologous traditional Chinese medicines (TCMs)” have been shown to delay vascular aging. In this study, we will select “food–medicine homologous TCMs” with the most potential to delay human-origin vascular aging and predict their core targets and mechanisms. Methods: Human-origin vascular-aging-related genes were screened from the NCBI and Aging Atlas databases. Candidate “food–medicine homologous TCMs” were initially filtered by constructing a protein–protein interaction network, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Key targets were validated in the Gene Expression Omnibus database and further screened by least absolute shrinkage and a selection operator. Finally, molecular docking and molecular dynamics simulations identified core targets. Results: Ten core “food–medicine homologous TCMs” with potential to delay human-derived vascular aging were identified: Crocus Sativus L., Glycyrrhiza uralensis Fisch., Chrysanthemum morifolium Ramat., Astragalus membranaceus (Fisch.) Bunge, Sophora japonica L., Hippophae rhamnoides L., Portulaca oleracea L., Lonicera japonica Thunb., Citrus aurantium L. var. amara Engl., and Morus alba L. Further analysis indicated that β-Carotene within these core “food–medicine homologous TCMs” may represent a potential active component targeting matrix metalloproteinase-1, with its action potentially linked to the interleukin-17 signaling pathway. The present study highlights the new hypothesis that immunosenescence (Th17/IL-17) is involved in vascular aging, suggesting that the top ten core “food–medicine homologous TCMs” may delay vascular aging by regulating immune cell function. Conclusions: The top ten “food–medicine homologous TCMs” provide potential candidates for functional products that delay vascular aging and provide computationally predicted mechanistic insights and a scientific basis for novel therapies. Full article
Show Figures

Graphical abstract

21 pages, 7900 KB  
Article
Mechanisms and Multi-Field-Coupled Responses of CO2-Enhanced Coalbed Methane Recovery in the Yanchuannan and Jinzhong Blocks Toward Improved Sustainability and Low-Carbon Reservoir Management
by Hequn Gao, Yuchen Tian, Helong Zhang, Yanzhi Liu, Yinan Cui, Xin Li, Yue Gong, Chao Li and Chuncan He
Sustainability 2026, 18(2), 765; https://doi.org/10.3390/su18020765 - 12 Jan 2026
Viewed by 52
Abstract
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite [...] Read more.
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite and kaolinite. These synergistic processes remove pore fillings, enlarge flow channels, and generate new dissolution pores, thereby increasing the total pore volume while making the pore–fracture network more heterogeneous and structurally complex. Such reservoir restructuring provides the intrinsic basis for CO2 injectivity and subsequent CH4 displacement. Both adsorption capacity and volumetric strain exhibit Langmuir-type growth characteristics, and permeability evolution follows a three-stage pattern—rapid decline, slow attenuation, and gradual rebound. A negative exponential relationship between permeability and volumetric strain reveals the competing roles of adsorption swelling, mineral dissolution, and stress redistribution. Swelling dominates early permeability reduction at low pressures, whereas fracture reactivation and dissolution progressively alleviate flow blockage at higher pressures, enabling partial permeability recovery. Injection pressure is identified as the key parameter governing CO2 migration, permeability evolution, sweep efficiency, and the CO2-ECBM enhancement effect. Higher pressures accelerate CO2 adsorption, diffusion, and sweep expansion, strengthening competitive adsorption and improving methane recovery and CO2 storage. However, excessively high pressures enlarge the permeability-reduction zone and may induce formation instability, while insufficient pressures restrict the effective sweep volume. An optimal injection-pressure window is therefore essential to balance injectivity, sweep performance, and long-term storage integrity. Importantly, the enhanced methane production and permanent CO2 storage achieved in this study contribute directly to greenhouse gas reduction and improved sustainability of subsurface energy systems. The multi-field coupling insights also support the development of low-carbon, environmentally responsible CO2-ECBM strategies aligned with global sustainable energy and climate-mitigation goals. The integrated experimental–numerical framework provides quantitative insight into the coupled adsorption–deformation–flow–geochemistry processes in deep coal seams. These findings form a scientific basis for designing safe and efficient CO2-ECBM injection strategies and support future demonstration projects in heterogeneous deep coal reservoirs. Full article
Show Figures

Figure 1

21 pages, 5307 KB  
Article
Observer-Based Adaptive Event-Triggered Fault-Tolerant Control for Bidirectional Consensus of MASs with Sensor Faults
by Shizhong Yang, Hongchao Wei and Shicheng Liu
Mathematics 2026, 14(2), 265; https://doi.org/10.3390/math14020265 - 10 Jan 2026
Viewed by 188
Abstract
The adaptive event-triggered fault-tolerant control problem for bidirectional consensus of multi-agent systems (MASs) subject to sensor faults and external disturbances is investigated. A hierarchical algorithm is first introduced to eliminate the dependence on Laplacian matrix information, thereby reducing computational complexity. Subsequently, a disturbance [...] Read more.
The adaptive event-triggered fault-tolerant control problem for bidirectional consensus of multi-agent systems (MASs) subject to sensor faults and external disturbances is investigated. A hierarchical algorithm is first introduced to eliminate the dependence on Laplacian matrix information, thereby reducing computational complexity. Subsequently, a disturbance observer (DO) and a compensation signal were constructed to accommodate external disturbances, filtering errors, and approximation errors introduced by the radial basis function neural network (RBFNN). Compared with the absence of a disturbance observer, the tracking performance was improved by 15.2%. In addition, a switching event-triggered mechanism is considered, in which the advantages of fixed-time triggering and relative triggering are integrated to balance communication frequency and tracking performance. Finally, the boundedness of all signals under the proposed fault-tolerant control (FTC) scheme is established. It has been clearly demonstrated by the simulation results that the proposed mechanism achieves a 39.8% reduction in triggering frequency relative to the FT scheme, while simultaneously yielding a 5.0% enhancement in tracking performance compared with the RT scheme, thereby highlighting its superior efficiency and effectiveness. Full article
Show Figures

Figure 1

20 pages, 1109 KB  
Review
Exercise-Based Mechanotherapy: From Biomechanical Principles and Mechanotransduction to Precision Regenerative Rehabilitation
by Guang-Zhen Jin
Int. J. Mol. Sci. 2026, 27(2), 694; https://doi.org/10.3390/ijms27020694 - 9 Jan 2026
Viewed by 98
Abstract
Mechanical loading generated during physical activity and exercise is a fundamental determinant of musculoskeletal development, adaptation, and regeneration. Exercise-based mechanotherapy, encompassing structured movement, resistance training, stretching, and device-assisted loading, has evolved from empirical rehabilitation toward mechanism-driven and precision-oriented therapeutic strategies. At the macroscopic [...] Read more.
Mechanical loading generated during physical activity and exercise is a fundamental determinant of musculoskeletal development, adaptation, and regeneration. Exercise-based mechanotherapy, encompassing structured movement, resistance training, stretching, and device-assisted loading, has evolved from empirical rehabilitation toward mechanism-driven and precision-oriented therapeutic strategies. At the macroscopic level, biomechanical principles governing load distribution, stress–strain relationships, and tissue-specific adaptation provide the physiological basis for exercise-induced tissue remodeling. At the molecular level, mechanical cues are transduced into biochemical signals through conserved mechanotransduction pathways, including integrin–FAK–RhoA/ROCK signaling, mechanosensitive ion channels such as Piezo, YAP/TAZ-mediated transcriptional regulation, and cytoskeleton–nucleoskeleton coupling. These mechanisms orchestrate extracellular matrix (ECM) remodeling, cellular metabolism, and regenerative responses across bone, cartilage, muscle, and tendon. Recent advances in mechanotherapy leverage these biological insights to promote musculoskeletal tissue repair and regeneration, while emerging engineering innovations, including mechanoresponsive biomaterials, 4D-printed dynamic scaffolds, and artificial intelligence-enabled wearable systems, enable mechanical loading to be quantified, programmable, and increasingly standardized for individualized application. Together, these developments position exercise-informed precision mechanotherapy as a central strategy for prescription-based regenerative rehabilitation and long-term musculoskeletal health. Full article
Show Figures

Graphical abstract

22 pages, 16654 KB  
Article
Study on the Mechanism of Nano-SiO2 Affecting the Strength of Cement Paste Backfill
by Dexian Li, Haiyong Cheng, Deng Liu, Shunchuan Wu, Hong Li and Xin Zhang
Buildings 2026, 16(2), 285; https://doi.org/10.3390/buildings16020285 - 9 Jan 2026
Viewed by 78
Abstract
The strength of cement paste backfill (CPB) is crucial for ensuring the safe and efficient operation of the horizontal layered approach backfill mining method. To effectively improve CPB strength, a series of experiments were carried out to systematically examine the effects of nano-SiO [...] Read more.
The strength of cement paste backfill (CPB) is crucial for ensuring the safe and efficient operation of the horizontal layered approach backfill mining method. To effectively improve CPB strength, a series of experiments were carried out to systematically examine the effects of nano-SiO2 (NS) on the mechanical properties, hydration process, setting time, and microstructure of CPB. The results show that at a content of 1.5%, NS fully utilizes its pozzolanic, filling, and nucleation effects, accelerating cement hydration, filling internal pores, and thereby increasing matrix density and CPB strength. Conversely, at 2.5%, severe agglomeration of NS into large-sized aggregates weakens these three effects of NS, increases specimen porosity, reduces matrix density, and consequently impairs the mechanical properties of CPB. This study clarifies the mechanism by which an appropriate amount of NS improves CPB mechanical properties, as well as the intrinsic reasons for the performance degradation caused by NS overdosage. The findings provide a theoretical basis and experimental support for the rational application of NS in mine backfill. Full article
Show Figures

Figure 1

14 pages, 645 KB  
Article
Leucine Mitigates Porcine Epidemic Diarrhea Virus-Induced Colonic Damage in Piglets via Suppression of Viral Replication and Restoration of Intestinal Homeostasis
by Muzi Li, Lingling Gan, Jiaxing Wang, Zongyun Li, Zhonghua Li, Lei Wang, Di Zhao, Tao Wu, Dan Yi, Yanyan Zhang and Yongqing Hou
Agriculture 2026, 16(2), 161; https://doi.org/10.3390/agriculture16020161 - 9 Jan 2026
Viewed by 138
Abstract
The preventive effect of leucine (Leu) against colonic damage in piglets infected with porcine epidemic diarrhea virus (PEDV) was examined in this study. Three groups (n = 6) were randomly assigned to eighteen 7-day-old Du-roc × Landrace × Large piglets (body weight [...] Read more.
The preventive effect of leucine (Leu) against colonic damage in piglets infected with porcine epidemic diarrhea virus (PEDV) was examined in this study. Three groups (n = 6) were randomly assigned to eighteen 7-day-old Du-roc × Landrace × Large piglets (body weight [BW] = 2.58 ± 0.05 kg): Control, PEDV-infected (PEDV), and Leu-supplemented + PEDV-infected (Leu + PEDV). Following a three-day period of acclimatization, the Leu + PEDV group was given Leu (400 mg/kg BW) orally every day. On day eight, the PEDV and Leu + PEDV groups were challenged with PEDV, while the Control group was given Dulbecco’s Modified Eagle’s Medium. Colonic tissues were collected on day 11. PEDV infection induced severe colonic damage by an increase in crypt, disrupting intestinal homeostasis, including impaired barrier integrity (matrix metalloproteinase-7 and matrix metalloproteinase-13 upregulation), mucus disorganization (mucin 5AC elevation), oxidative stress (reduced catalase activity and increased malondialdehyde levels), inflammation, electrolyte imbalance and enhanced viral replication. Leu supplementation reversed these injuries by alleviating oxidative stress, suppressing inflammation, inhibiting viral replication and stabilizing ion homeostasis. This study provides a scientific basis for Leu as a nutritional intervention to alleviate PEDV-induced colonic damage in piglets. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

13 pages, 2195 KB  
Case Report
First Whole-Genome Sequencing Analysis of Tracheobronchopathia Osteochondroplastica with Critical Vocal Cord Involvement: Proposing a Novel Pathophysiological Model
by Yeonhee Park, Joo-Eun Lee, Mi Jung Lim, Hyeong Seok Kang and Chaeuk Chung
Diagnostics 2026, 16(2), 210; https://doi.org/10.3390/diagnostics16020210 - 9 Jan 2026
Viewed by 120
Abstract
Background: Tracheobronchopathia osteochondroplastica (TO) is a rare benign disorder characterized by submucosal cartilaginous and osseous nodules of the tracheobronchial tree, typically sparing the posterior membranous wall. Involvement of the vocal cords is exceedingly rare and may result in critical airway obstruction. The [...] Read more.
Background: Tracheobronchopathia osteochondroplastica (TO) is a rare benign disorder characterized by submucosal cartilaginous and osseous nodules of the tracheobronchial tree, typically sparing the posterior membranous wall. Involvement of the vocal cords is exceedingly rare and may result in critical airway obstruction. The underlying genetic and molecular mechanisms of TO remain largely unexplored. Case presentation: We report a rare case of TO extending from the vocal cords to the bronchi in a 76-year-old man who initially presented with pneumonia and later developed acute respiratory failure due to severe airway narrowing, necessitating emergency tracheostomy. Bronchoscopy and computed tomography revealed diffuse calcified nodules involving the anterior and lateral airway walls, including the subglottic region. Histopathology demonstrated chronic inflammatory cell infiltration with squamous metaplasia. To explore the molecular basis of this condition, whole-genome sequencing (WGS) was performed using peripheral blood samples—the first such application in TO. WGS identified 766 germline mutations (including 27 high-impact variants) and 66 structural variations. Candidate genes were implicated in coagulation and inflammation (KNG1), arachidonic acid metabolism and extracellular matrix remodeling (PLA2G4D), ciliary dysfunction and mineralization (TMEM67), vascular calcification (CDKN2B-AS1), smooth muscle function (MYLK4), abnormal calcification (TRPV2, SPRY2, BAZ1B), fibrotic signaling (AHNAK2), and mucosal barrier integrity (MUC12/MUC19). Notably, despite systemic germline mutations, calcification was restricted to the airway. Conclusions: This case highlights that TO with vocal cord involvement can progress beyond a benign course to cause life-threatening airway obstruction. Integrating clinical, histological, and genomic findings, we propose a novel pathophysiological model in which systemic genetic susceptibility interacts with local immune cell infiltration and fibroblast-driven extracellular matrix remodeling, resulting in airway-restricted dystrophic calcification. This first genomic characterization of TO provides new insights into its pathogenesis and suggests that multi-omics approaches may enable future precision medicine strategies for this rare airway disease. Full article
(This article belongs to the Special Issue Respiratory Diseases: Diagnosis and Management)
Show Figures

Figure 1

15 pages, 2245 KB  
Article
Study on the Tensile Properties and Influencing Factors of Superelastic SMAF-Reinforced PP/PVA-ECC Materials
by Yan Cao, Xiaolong Qi and Zhao Yang
Materials 2026, 19(2), 263; https://doi.org/10.3390/ma19020263 - 8 Jan 2026
Viewed by 139
Abstract
To develop a cost-effective shape memory alloy fiber-reinforced engineered cementitious composite (SMAF-ECC) with excellent mechanical properties, polypropylene (PP) fibers were used to partially replace polyvinyl alcohol (PVA) fibers to prepare the ECC matrix, and superelastic shape memory alloy fibers (SMAFs) were incorporated to [...] Read more.
To develop a cost-effective shape memory alloy fiber-reinforced engineered cementitious composite (SMAF-ECC) with excellent mechanical properties, polypropylene (PP) fibers were used to partially replace polyvinyl alcohol (PVA) fibers to prepare the ECC matrix, and superelastic shape memory alloy fibers (SMAFs) were incorporated to fabricate a novel SMAF-ECC. Uniaxial tensile tests were systematically performed to characterize the tensile mechanical properties of the composites, focusing on the effects of SMAF volume content and diameter. The results indicate that the optimal base ECC mix proportion is 0.8 vol.% PP fibers and 1.2 vol.% PVA fibers, achieving an ultimate tensile strain of 4.88% (only a 4.69% reduction compared to pure PVA-ECC) while significantly reducing material cost without sacrificing superior ductility. SMAF volume content and diameter notably influence the tensile performance of SMAF-ECC, with the specimen containing 0.2 mm diameter SMAFs at 0.2 vol.% exhibiting the best performance: initial cracking stress, ultimate tensile stress, and ultimate tensile strain are enhanced by 16.79%, 20.85%, and 2.87%, respectively, compared to pure ECC. This study provides a theoretical basis and parametric guidance for the engineering popularization and application of cost-effective SMAF-ECCs. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 1389 KB  
Article
Seismic Fragility Analysis of CFST Frame-Shear Wall Structures Based on the IDA Method
by Chunli Zhang, Yunfei Qi, Meng Cao and Yue Li
Buildings 2026, 16(2), 258; https://doi.org/10.3390/buildings16020258 - 7 Jan 2026
Viewed by 130
Abstract
To improve the seismic performance of buildings and reduce earthquake-related disaster risks, this study employs the MIDAS finite element analysis platform to establish a numerical model of a 15-story concrete-filled steel tube frame-shear wall structure. Recorded natural ground motion data are used as [...] Read more.
To improve the seismic performance of buildings and reduce earthquake-related disaster risks, this study employs the MIDAS finite element analysis platform to establish a numerical model of a 15-story concrete-filled steel tube frame-shear wall structure. Recorded natural ground motion data are used as the primary input, and a main shock-aftershock sequence is constructed using an attenuation-based method. On this basis, a seismic fragility analysis framework is adopted to derive structural fragility curves, which are subsequently assembled into a comprehensive seismic fragility matrix. The results indicate that, under identical main shock-aftershock sequences, aftershock effects increase the collapse probability of the unretrofitted structure by approximately 17–37%. Furthermore, when buckling-restrained braces are introduced, the structural strength at the same damage state increases by about 8% under the action of the main shock alone and by nearly 24% when both the main shock and aftershocks are considered. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures—2nd Edition)
Show Figures

Figure 1

29 pages, 808 KB  
Review
Spectrogram Features for Audio and Speech Analysis
by Ian McLoughlin, Lam Pham, Yan Song, Xiaoxiao Miao, Huy Phan, Pengfei Cai, Qing Gu, Jiang Nan, Haoyu Song and Donny Soh
Appl. Sci. 2026, 16(2), 572; https://doi.org/10.3390/app16020572 - 6 Jan 2026
Viewed by 280
Abstract
Spectrogram-based representations have grown to dominate the feature space for deep learning audio analysis systems, and are often adopted for speech analysis also. Initially, the primary motivation behind spectrogram-based representations was their ability to present sound as a two-dimensional signal in the time–frequency [...] Read more.
Spectrogram-based representations have grown to dominate the feature space for deep learning audio analysis systems, and are often adopted for speech analysis also. Initially, the primary motivation behind spectrogram-based representations was their ability to present sound as a two-dimensional signal in the time–frequency plane, which not only provides an interpretable physical basis for analysing sound, but also unlocks the use of a range of machine learning techniques such as convolutional neural networks, which had been developed for image processing. A spectrogram is a matrix characterised by the resolution and span of its dimensions, as well as by the representation and scaling of each element. Many possibilities for these three characteristics have been explored by researchers across numerous application areas, with different settings showing affinity for various tasks. This paper reviews the use of spectrogram-based representations and surveys the state-of-the-art to question how front-end feature representation choice allies with back-end classifier architecture for different tasks. Full article
(This article belongs to the Special Issue AI in Audio Analysis: Spectrogram-Based Recognition)
Show Figures

Figure 1

19 pages, 5396 KB  
Article
Analysis of Land-Use/Land-Cover Change and Driving Factors in the Manas River Basin, China, from 2000 to 2020
by Pengfei Li, Xinlin He, Ning Su, Guang Yang and Muhammad Arsalan Farid
Sustainability 2026, 18(1), 526; https://doi.org/10.3390/su18010526 - 5 Jan 2026
Viewed by 210
Abstract
This study examined land-use/land-cover (LULC) change in the Manas River Basin from 2000 to 2020 due to rapid socioeconomic development. It aims to provide a scientific basis for protecting the ecological security of the river basin and achieving sustainable development of the land. [...] Read more.
This study examined land-use/land-cover (LULC) change in the Manas River Basin from 2000 to 2020 due to rapid socioeconomic development. It aims to provide a scientific basis for protecting the ecological security of the river basin and achieving sustainable development of the land. The LULC data of 2000, 2010, and 2020 were utilized to establish the LULC transition matrix and calculate the LULC dynamics to analyze the dynamic evolution of LULC in the basin from 2000 to 2020. The PLUS model was constructed to explore the driving mechanism of the conversion between various land types in the basin. The key findings include the following. (1) From 2000 to 2010, grassland experienced the most significant reduction (3222.08 km2), whereas farmland expanded the most (3126.77 km2). (2) The most rapid expansion occurred in farmland (6.24%) and built-up areas (2.25%) in the 2000–2010 and 2010–2020 periods, respectively. Conversely, forest land showed the most rapid decrease, with −6.07% from 2000 to 2010, and −0.86% from 2010 to 2020. (3) The degree of influence of each driving factor on different LULC types (contribution degree) obtained by constructing the PLUS model shows that, during the twenty years, population was the predominant factor affecting farmland changes and built-up areas, with contribution degrees of 0.17 and 0.26, respectively. Temperature was the primary influencer of forest-land changes, with a contribution degree of 0.17, and elevation significantly impacted grassland changes, with a contribution degree of 0.21. This study provides crucial insights into the interaction between LULC dynamics and environmental and demographic factors in the Manas River Basin. Full article
Show Figures

Figure 1

19 pages, 8835 KB  
Article
Hydrological Seasonality Drives DOM–Bacteria Interactions in the Rushan River Basin
by Shanshan Zheng, Fan Feng, Dongping Liu, Feng Qian, Xiaolin Xie, Huibin Yu and Yonghui Song
Microorganisms 2026, 14(1), 110; https://doi.org/10.3390/microorganisms14010110 - 5 Jan 2026
Viewed by 314
Abstract
To unravel hydrological controls on dissolved organic matter (DOM)–microbe interactions in river ecosystems, this study integrated 3D excitation–emission matrix spectroscopy (3D-EEMs), parallel factor analysis (PARAFAC), and 16S rRNA sequencing to characterize seasonal DOM dynamics and microbial assembly in China’s Rushan River Basin. PARAFAC [...] Read more.
To unravel hydrological controls on dissolved organic matter (DOM)–microbe interactions in river ecosystems, this study integrated 3D excitation–emission matrix spectroscopy (3D-EEMs), parallel factor analysis (PARAFAC), and 16S rRNA sequencing to characterize seasonal DOM dynamics and microbial assembly in China’s Rushan River Basin. PARAFAC resolved contrasting DOM signatures between dry (four protein-like, two humic-like components) and wet seasons (three protein-like, three humic-like components). Dry-season DOM was dominated by tyrosine-like substances (58.03%), reflecting microbial degradation and phytoplankton activity, while wet-season DOM showed elevated tryptophan-like components (34.38%) and terrestrial fulvic acids (17.14%), which may be related to rain-driven external inputs. The α -diversity of the microbiota is relatively high in the wet season, mainly consisting of Proteobacteria (34.06–68.10%) and Actinobacteriota (9.15–20.76%). In the dry season community, there are Bacteroidota (14.71–38.45%) and Verrucomicrobiota (6.13–14.32%). The structural equation model (SEM) semi-quantified the comprehensive pathways by which microorganisms inhibit unstable proteins and enhance humification. These results reveal the synergistic regulatory role of hydrological seasonality on DOM and microorganisms, and provide a basis for adaptive water quality management. Full article
Show Figures

Figure 1

31 pages, 8135 KB  
Article
A High-Performance Stochastic Framework for Landslide Uncertainty Analysis Using the Material Point Method and Random Field Theory
by Qinyang Sang, Yonglin Xiong and Zhigang Liu
Symmetry 2026, 18(1), 88; https://doi.org/10.3390/sym18010088 - 4 Jan 2026
Viewed by 238
Abstract
This study proposes a novel high-performance computational framework to address the computational challenges in probabilistic large-deformation landslide analysis. By integrating a GPU-accelerated material point method (MPM) solver with a parallelized covariance matrix decomposition (CMD) algorithm for decomposing symmetric matrices, the framework achieves exceptional [...] Read more.
This study proposes a novel high-performance computational framework to address the computational challenges in probabilistic large-deformation landslide analysis. By integrating a GPU-accelerated material point method (MPM) solver with a parallelized covariance matrix decomposition (CMD) algorithm for decomposing symmetric matrices, the framework achieves exceptional efficiency, demonstrating speedups of up to 532× (MPM solver) and 120× (random field generation) compared to traditional serial methods. Leveraging this efficiency, extensive Monte Carlo simulations (MCSs) were conducted to quantify the effects of spatial variability in soil properties on landslide behaviors. Quantitative results indicate that runout and influence distances follow normal distributions, while sliding mass volume exhibits log-normal characteristics. Crucially, deterministic analysis was found to systematically underestimate the hazard; the probabilistic mean sliding volume significantly exceeded the deterministic value, with 73–80% of stochastic realizations producing larger failures. Furthermore, sensitivity analyses reveal that increasing the coefficient of variation (COV) and the cross-correlation coefficient (from −0.5 to 0.5) leads to a monotonic increase in both the mean and standard deviation of large-deformation metrics. These findings confirm that positive parameter correlation amplifies failure risk, providing a rigorous physics-based basis for conservative landslide hazard assessment. Full article
Show Figures

Figure 1

15 pages, 6923 KB  
Article
Assessment of Tumor Margin and Heterogeneity of Colorectal Cancer Using Imaging Mass Spectrometry and Image Segmentation
by Bojan Trogrlić, Ana Bednjanić, Borna Kovačić, Zrinka Požgain, Dario Mandić, Magdalena Kratofil, Jasmina Rajc, Željko Debeljak and Ilijan Tomaš
Cancers 2026, 18(1), 169; https://doi.org/10.3390/cancers18010169 - 3 Jan 2026
Viewed by 213
Abstract
Background/Objectives: There is an increasing need for methods that provide improved insight into the molecular basis of colorectal cancer (CRC) and thus a better understanding of its morphological heterogeneity. The objectives of this study were to evaluate the use of imaging mass [...] Read more.
Background/Objectives: There is an increasing need for methods that provide improved insight into the molecular basis of colorectal cancer (CRC) and thus a better understanding of its morphological heterogeneity. The objectives of this study were to evaluate the use of imaging mass spectrometry (IMS) to examine tumor margins and gain insight into the molecular heterogeneity of CRC. Methods: An observational study involving 10 cases was conducted. Native tissue samples were collected during the subject’s surgery, and consecutively taken tissue sections were immediately prepared for light microscopic and IMS analysis. IMS was performed across the 200–1000 Da mass range, divided into four sub-ranges, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) in both negative and positive modes of ionization. For tumor margin and tissue heterogeneity assessment, image segmentation was used. Segmented MS images were analyzed against the respective light microscopy images of hematoxylin-eosin-stained tissue sections. Results: Quantitative analysis of the sample collection indicated that IMS enabled correct recognition of tumor margin in the 800–1000 Da range using binary segmentation. Denary image segmentation depicted tissue heterogeneity in greater detail. The strongest m/z signals specific to tumor, peritumor, and margins were identified and tentatively annotated: aside from dCTP, all other compounds were patient-specific, indicating interindividual variations in the molecular composition of CRC. Conclusions: IMS provides new insights into the morphological and biochemical properties of CRC: binary segmented MS images can clearly depict the tumor margin in the 800–1000 Da range, while denary segmented MS images depict intra- and inter-individual molecular heterogeneity of CRC. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

Back to TopTop