Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,138)

Search Parameters:
Keywords = materials and lubricants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8019 KiB  
Article
Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters
by Shijie Zhang, Shuangshuang Jia, Yuhao Zhao, Jing Wei and Yanyang Zi
Lubricants 2025, 13(8), 352; https://doi.org/10.3390/lubricants13080352 - 5 Aug 2025
Abstract
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and [...] Read more.
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and raceway depends on factors such as contact material, relative sliding velocity, and contact pressure. However, existing traction curve models for CSLBBs typically consider only one or two of these factors, limiting the accuracy and applicability of theoretical predictions. In this study, a novel traction model for CSLBBs is proposed, which incorporates the combined effects of contact material, relative sliding velocity, and contact pressure. Based on this model, a tribo-dynamic framework is developed to investigate the tribological and dynamic behavior of CSLBBs. The model is validated through both theoretical analysis and experimental data. Results show that the inclusion of solid lubricant effects significantly alters the relative sliding and frictional forces between the rolling elements and the raceway. These changes in turn influence the impact dynamics between the rolling elements and the cage, leading to notable variations in the bearing’s vibrational response. The findings may offer valuable insights for the wear resistance and vibration reduction design of CSLBBs. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

29 pages, 2636 KiB  
Review
Review on Tribological and Vibration Aspects in Mechanical Bearings of Electric Vehicles: Effect of Bearing Current, Shaft Voltage, and Electric Discharge Material Spalling Current
by Rohan Lokhande, Sitesh Kumar Mishra, Deepak Ronanki, Piyush Shakya, Vimal Edachery and Lijesh Koottaparambil
Lubricants 2025, 13(8), 349; https://doi.org/10.3390/lubricants13080349 - 5 Aug 2025
Viewed by 69
Abstract
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to [...] Read more.
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to bearing degradation include shaft voltage, bearing current, and electric discharge material spalling current, especially in motors powered by inverters or variable frequency drives. This review explores the tribological and vibrational aspects of bearing currents, analyzing their mechanisms and influence on electric motor performance. It addresses the challenges faced by electric vehicles, such as high-speed operation, elevated temperatures, electrical conductivity, and energy efficiency. This study investigates the origins of bearing currents, damage linked to shaft voltage and electric discharge material spalling current, and the effects of lubricant properties on bearing functionality. Moreover, it covers various methods for measuring shaft voltage and bearing current, as well as strategies to alleviate the adverse impacts of bearing currents. This comprehensive analysis aims to shed light on the detrimental effects of bearing currents on the performance and lifespan of electric motors in electric vehicles, emphasizing the importance of tribological considerations for reliable operation and durability. The aim of this study is to address the engineering problem of bearing failure in inverter-fed EV motors by integrating electrical, tribological, and lubrication perspectives. The novelty lies in proposing a conceptual link between lubricant breakdown and damage morphology to guide mitigation strategies. The study tasks include literature review, analysis of bearing current mechanisms and diagnostics, and identification of technological trends. The findings provide insights into lubricant properties and diagnostic approaches that can support industrial solutions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

19 pages, 29727 KiB  
Review
A Review of Methods for Increasing the Durability of Hot Forging Tools
by Jan Turek and Jacek Cieślik
Materials 2025, 18(15), 3669; https://doi.org/10.3390/ma18153669 - 4 Aug 2025
Viewed by 144
Abstract
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die [...] Read more.
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die geometry, tribological conditions, and lubrication. The review is based on extensive literature data, including recent publications and the authors’ own research, which has been implemented under industrial conditions at the modern forging facility in Forge Plant “Glinik” (Poland). The study introduces original design and technological solutions, such as an innovative concept for manufacturing forging dies from alloy structural steels with welded impressions, replacing traditional hot-work tool steel dies. It also proposes a zonal hardfacing approach, which involves applying welds with different chemical compositions to specific surface zones of the die impressions, selected according to the dominant wear mechanisms in each zone. General guidelines for selecting hardfacing material compositions are also provided. Additionally, the article presents technological processes for die production and regeneration. The importance and application of computer simulations of forging processes are emphasized, particularly in predicting wear mechanisms and intensity, as well as in optimizing tool and forging geometry. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

13 pages, 4747 KiB  
Article
Biodegradable Polyalphaolefins for Gear Lubrication in Electrical Drives: Aging and Wetting
by Kevin Holderied, Joachim Albrecht, Elisabeth Distler, Katharina Weber and Nahed El Mahallawy
Lubricants 2025, 13(8), 347; https://doi.org/10.3390/lubricants13080347 - 4 Aug 2025
Viewed by 86
Abstract
Electric propulsion requires engines and transmission systems that run at higher speeds compared to combustion engines. For improving sustainability and environmental protection, biodegradable oils are suggested for the lubrication of high-speed gears that require particularly quick wetting of the steel surfaces. Newly developed [...] Read more.
Electric propulsion requires engines and transmission systems that run at higher speeds compared to combustion engines. For improving sustainability and environmental protection, biodegradable oils are suggested for the lubrication of high-speed gears that require particularly quick wetting of the steel surfaces. Newly developed promising candidates include short-chained polyalphaolefins. In the present work, a study on the applicability of such oil is presented and discussed with respect to different aging levels based on biodegradable properties. It focuses on the wettability of metallic surfaces investigated through time-resolved contact angle measurements. Carbon steels with different carbon contents and microstructures are selected as the most commonly used materials for gears. Effects of steel composition, surface roughness and oil oxidation are studied. The results show that in most cases, the application of biodegradable polyalphaolefins is not critical; however, a combination of steels with inhomogeneous microstructure, high surface roughness and aged oil can be critical because of limited wetting. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

23 pages, 15881 KiB  
Article
Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution
by Xin Zheng, Ke Zheng, Jie Gao, Yan Wang, Pengtao An, Yongqiang Ma, Hongjun Hei, Shuaiwu Qu and Shengwang Yu
Materials 2025, 18(15), 3659; https://doi.org/10.3390/ma18153659 - 4 Aug 2025
Viewed by 186
Abstract
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of [...] Read more.
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of chemomechanical abrasive polishing (CMAP) with a slurry containing high-concentration H2O2 and varying mass percentages of SiO2 powder and diamond particles on surface morphology, surface roughness, material removal rate (MRR), and microstrain of PCD disks. The contributions of mechanical action, chemical action, and bubble cavitation to the CMAP process are analyzed. Scanning electron microscopy (SEM) observations indicate that large grains present in PCD are effectively eliminated after CMAP, leading to a notable reduction in surface roughness. The optimal results are obtained with 60 wt% SiO2 powder and 40 wt% diamond particles, achieving a maximum MRR of 1039.78 μm/(MPa·h) (15.5% improvement compared to the mechanical method) and a minimum surface roughness (Sa) of 3.59 μm. Additionally, the microstrain on the PCD disk shows a slight reduction following the CMAP process. The material removal mechanism is primarily attributed to mechanical action (70.8%), with bubble cavitation and chemical action (27.5%) and action of SiO2 (1.7%) playing secondary roles. The incorporation of SiO2 leads to the formation of a lubricating layer, significantly reducing surface damage and decreasing the surface roughness Sa to 1.39 µm. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

16 pages, 7560 KiB  
Article
High-Performance Sodium Alginate Fiber-Reinforced Polyvinyl Alcohol Hydrogel for Artificial Cartilage
by Lingling Cui, Yifan Lu, Jun Wang, Haiqin Ding, Guodong Jia, Zhiwei Li, Guang Ji and Dangsheng Xiong
Coatings 2025, 15(8), 893; https://doi.org/10.3390/coatings15080893 (registering DOI) - 1 Aug 2025
Viewed by 317
Abstract
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were [...] Read more.
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were introduced into polyvinyl alcohol hydrogel network through physical blending and freezing/thawing methods. The prepared composite hydrogels exhibited a three-dimensional porous network structure similar to that of human articular cartilage. The mechanical and tribological properties of hydrogels have been significantly improved, due to the multiple hydrogen bonding interaction between sodium alginate fibers and polyvinyl alcohol. Most importantly, under a load of 2 N, the friction coefficient of the PVA/0.4SA hydrogel can remain stable at 0.02 when lubricated in PBS buffer for 1 h. This work provides a novel design strategy for the development of high-performance polyvinyl alcohol hydrogels. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

1887 KiB  
Proceeding Paper
Experimental Evaluation of Coefficient of Friction for Fretting Regimes
by Shumaila Fatima, Shahid Mehmood, Muhammad Awais Hamza, Atta Ur Rahman, Hafiz Samama Sumair, Soban Ullah, Muhammad Ammar Nasir, Muhammad Ehtisham and Husnain Zulfiqar Ali
Mater. Proc. 2025, 23(1), 9; https://doi.org/10.3390/materproc2025023009 - 31 Jul 2025
Abstract
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially [...] Read more.
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially rose rapidly, stabilizing after about 5 million load cycles, indicating steady-state behavior. The friction ratio (FR) surged early, peaking between 0.7 and 1.0, before declining to stable values, suggesting a shift from adhesive to stable frictional interaction. The minimal slip amplitude confirmed the predominance of the stick regime. Conversely, in oil-lubricated conditions, displacement amplitude stabilized after an initial increase, achieving higher amplitudes than in dry tests. The FR started below 0.2, gradually increasing to a peak around 10,000 load cycles for higher oscillation amplitudes (e.g., 15 µm), reflecting the lubricant’s role in reducing metal-to-metal contact. COF curves in lubricated tests showed smoother transitions and lower peak values compared to dry tests. These findings highlight the lubricant’s effectiveness in minimizing adhesion and enhancing sliding efficiency, offering insights for optimizing material performance in engineering applications. Full article
Show Figures

Figure 1

29 pages, 10070 KiB  
Article
The Influence of MoS2 Coatings on the Subsurface Stress Distribution in Bearing Raceways
by Bing Su, Chunhao Lu and Zeyu Gong
Lubricants 2025, 13(8), 336; https://doi.org/10.3390/lubricants13080336 - 30 Jul 2025
Viewed by 296
Abstract
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there [...] Read more.
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there is no international research regarding the influence of bearing coatings on the subsurface stress distribution in raceways. The Lundberg–Palmgren (L-P) theory states that subsurface stress variations govern bearing lifespan. Therefore, this paper utilizes existing formulas and Python programming to calculate the subsurface stress field of the inner raceway in a MoS2 solid-lubricated angular contact ball bearing. Furthermore, it analyzes the impacts of factors such as coating material properties, slide-to-roll ratio, traction coefficient, and load on its subsurface stress field. The results reveal that for solid-lubricated ball bearings, as the load increases, the maximum subsurface stress shifts closer to the center of the contact area, and the maximum subsurface shear stress becomes more concentrated. As the traction coefficient increases, the stress on the XZ-plane side increases and its position moves closer to the surface, while the opposite trend is observed on the other side. Additionally, the maximum value of the subsurface von Mises stress is approximately 0.64P0, and the maximum value of the orthogonal shear stress component τyz in the subsurface is approximately 0.25P0. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

30 pages, 3838 KiB  
Review
Advances in the Tribological Performance of Graphene Oxide and Its Composites
by Mayur B. Wakchaure and Pradeep L. Menezes
Materials 2025, 18(15), 3587; https://doi.org/10.3390/ma18153587 - 30 Jul 2025
Viewed by 313
Abstract
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The [...] Read more.
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The paper explores GO’s key properties, such as its high surface area, layered morphology, and abundant functional groups. These features contribute to reduced shear resistance, tribofilm formation, and improved load-bearing capacity. A detailed analysis of GO-based composites, including polymer, metal, and ceramic matrices, reveals those small additions of GO (typically 0.1–2 wt%) result in substantial reductions in coefficient of friction and wear rate, with improvements ranging between 30–70%, depending on the application. The tribological mechanisms, including self-lubrication, dispersion, thermal stability, and interface interactions, are discussed to provide insights into performance enhancement. Furthermore, the effects of electrochemical environment, functional group modifications, and external loading conditions on GO’s tribological behavior are examined. Despite these advantages, challenges such as scalability, agglomeration, and material compatibility persist. Overall, the paper demonstrates that GO is a promising additive for advanced tribological systems, while also identifying key limitations and future research directions. Full article
(This article belongs to the Special Issue Tribology in Advanced Materials)
Show Figures

Figure 1

15 pages, 4423 KiB  
Article
Effect of B Element Doping on High-Temperature Tribological Properties of WS2-Based Composite Coatings
by Songmin Zhang, Xiaopeng Zhang, Haichao Cai, Zixuan Huang, Yujun Xue, Lulu Pei and Bowei Kang
Lubricants 2025, 13(8), 332; https://doi.org/10.3390/lubricants13080332 - 30 Jul 2025
Viewed by 210
Abstract
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, [...] Read more.
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, thereby limiting its engineering applications. By doping with B elements, B/WS2 was successfully prepared as a composite coating. The results demonstrate that the fabricated coating exhibits excellent high-temperature tribological performance in atmospheric environments. The mechanism through which B doping improves the high-temperature friction and wear properties of the WS2 composite coating was revealed through high-temperature friction and wear tests. With the incorporation of B elements, the average friction coefficient of the coating was 0.071, and the wear rate was 7.63 × 10−7 mm3·N−1·m−1, with the wear mechanisms identified as abrasive wear and spalling. Due to high-temperature oxidation, thermal decomposition effects, and the formation of WB4 during sputtering, the wear resistance and anti-plastic deformation capability of the coating were further improved. Compared to room-temperature test conditions, the B/WS2 composite coating at different high temperatures exhibited superior friction coefficients and wear rates. Notably, at 150 °C, the average friction coefficient was as low as 0.015, and the wear forms were abrasive wear and adhesive wear. Full article
Show Figures

Figure 1

25 pages, 2151 KiB  
Article
A Possibility of Tribological Investigation of Physicochemical Processes in a Friction Pair Operating Under Selective Transfer Conditions
by Filip Ilie, Daniel Constantin Cotici and Andrei-Florin Hristache
Lubricants 2025, 13(8), 331; https://doi.org/10.3390/lubricants13080331 - 30 Jul 2025
Viewed by 236
Abstract
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed [...] Read more.
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed method allows for the study of tribochemical transformations of glycerin and the friction pair materials during the work process with selective transfer. The analysis of the experimental results allows for the establishment of the conditions for a stable and stationary selective transfer during the operation of the bronze/steel pair, by friction, at which the friction coefficient (COF) values and wear are low. This was achieved by implementing continuous lubrication with fresh glycerin in the contact area, choosing the optimal flow rate, and maintaining an optimal ratio between glycerin and the chemical transformation products, within well-established limits, to avoid undesirable consequences. Acrolein, as a product of chemical transformation (resulting from the catalytic dehydration of glycerin), is the most important for the initiation and stability of the selective transfer, and as the main reaction product, also represents a pathway of regeneration. Thus, it was found that the friction relative moments and the acrolein concentration presented conclusive/specific results at loads of 4–15 MPa and a sliding speed of 0.3 m/s. The optimum lubricant entry speed is 15–30 mg/min, for a minimum COF and reduced wear (about 0.028–0.03 at relatively high operating temperatures (45 and 60 °C)), and at low temperatures (30 °C) the minimum COF is about 0.038, but the lubricant inlet entry speed increases considerably, by around 1000 mg/min. Therefore, this paper aims to demonstrate the possibility of moving to another stage of practical use of a friction pair (with greatly improved tribological properties) that operates with selective transfer, much different from the ones still present, using a lubricant with special properties (glycerin). The research method used (polarization) highlights the physicochemical properties, tribochemical transformations of the lubricant, and the friction pair materials present in the contact area, for the understanding, maintenance, and stability of selective transfer, based on experiments, as a novelty compared to other studies. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 699
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 6014 KiB  
Article
Research on Synergistic Enhancement of UHPC Cold Region Repair Performance by Steel Fibers and Early-Strength Agent
by Ming Xie, Zhangdong Wang, Li’e Yin and Hao Li
Buildings 2025, 15(15), 2630; https://doi.org/10.3390/buildings15152630 - 25 Jul 2025
Viewed by 278
Abstract
This study looked at the performance requirements of repair materials for concrete structures in cold regions, systematically analyzing the effects of steel fiber dosage (0.7–2.1%), early-strength agent PRIORITY dosage (6–10%), and their coupling effects on the workability, interfacial bond strength, and freeze–thaw resistance [...] Read more.
This study looked at the performance requirements of repair materials for concrete structures in cold regions, systematically analyzing the effects of steel fiber dosage (0.7–2.1%), early-strength agent PRIORITY dosage (6–10%), and their coupling effects on the workability, interfacial bond strength, and freeze–thaw resistance of rapid-hardening ultra-high-performance concrete (UHPC). Through fluidity testing, bond interface failure analysis, freeze–thaw cycle testing, and pore analysis, the mechanism of steel fibers and early-strength agent on the multi-dimensional performance of fast-hardening UHPC was revealed. The results showed that when the steel fiber dosage exceeded 1.4%, the flowability was significantly reduced, while a PRIORITY dosage of 8% improved the flowability by 20.5% by enhancing the paste lubricity. Single addition of steel fibers decreased the interfacial bond strength, but compound addition of 8% PRIORITY offset the negative impact by optimizing the filling effect of hydration products. Under freeze–thaw cycles, excessive steel fibers (2.1%) exacerbated the mass loss (1.67%), whereas a PRIORITY dosage of 8% increased the retention rate of relative dynamic elastic modulus by 10–15%. Pore analysis shows that the synergistic effect of 1.4% steel fiber and 8% PRIORITY can reduce the number of pores, optimize the pore distribution, and make the structure denser. The study determined that the optimal compound mixing ratio was 1.4% steel fibers and 8% PRIORITY. This combination ensures construction fluidity while significantly improving the interfacial bond durability and freeze–thaw resistance, providing a theoretical basis for the design of concrete repair materials in cold regions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

41 pages, 16361 KiB  
Review
Progress on Sustainable Cryogenic Machining of Hard-to-Cut Material and Greener Processing Techniques: A Combined Machinability and Sustainability Perspective
by Shafahat Ali, Said Abdallah, Salman Pervaiz and Ibrahim Deiab
Lubricants 2025, 13(8), 322; https://doi.org/10.3390/lubricants13080322 - 23 Jul 2025
Viewed by 331
Abstract
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to [...] Read more.
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to maintain strength at high operating temperatures. Due to these characteristics, such materials are employed in applications such as aerospace, marine, energy generation, and structural. The purpose of this article is to investigate the machinability of these alloys under various cutting conditions. The purpose of this article is to compare cryogenic cooling and cryogenic processing from the perspective of machinability and sustainability in the manufacturing process. Compared to conventional machining, hybrid techniques, which mix cryogenic and minimal quantity lubricant, led to significantly reduced cutting forces of 40–50%, cutting temperatures and surface finishes by approximately 20–30% and more than 40%, respectively. A carbon footprint is determined by several factors including power consumption, energy requirements, and carbon dioxide emissions. As a result of the cryogenic technology, the energy consumption, power consumption, and CO2 emissions were reduced by 40%, 28%, and 35%. Full article
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Consumables Usage and Carbon Dioxide Emissions in Logging Operations
by Dariusz Pszenny and Tadeusz Moskalik
Forests 2025, 16(7), 1197; https://doi.org/10.3390/f16071197 - 20 Jul 2025
Viewed by 261
Abstract
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John [...] Read more.
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John Deere-Deere & Co., Moline, USA, and Komatsu Forest AB, Umeå, Sweden) were analyzed to compare their operational efficiency and constructional influences on overall operating costs. Due to differences in engine emission standards, approximate greenhouse gas emissions were estimated. The results indicate that harvesters equipped with Stage V engines have lower fuel consumption, while large forwarders use more consumables than small ones per hour and cubic meter of harvested and extracted timber. A strong positive correlation was observed between total machine time and fuel consumption (r = 0.81), as well as between machine time and total volume of timber harvested (r = 0.72). Older and larger machines showed about 40% higher combustion per unit of wood processed. Newer machines meeting higher emission standards (Stage V) generally achieved lower CO2 and other GHG emissions compared to older models. Machines with Stage V engines emitted about 2.07 kg CO2 per processing of 1 m3 of wood, while machines with older engine types emitted as much as 4.35 kg CO2 per 1 m3—roughly half as much. These differences are even more pronounced in the context of nitrogen oxide (NOx) emissions: the estimated NOx emissions for the older engine types were as high as ~85 g per m3, while those for Stage V engines were only about 5 g per m3 of harvested wood. Continuing the study would need to expand the number of machines analyzed, as well as acquire more detailed performance data on individual operators. A tool that could make this possible would be fleet monitoring services offered by the manufacturers of the surveyed harvesters and forwards, such as Smart Forestry or Timber Manager. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

Back to TopTop