Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,697)

Search Parameters:
Keywords = material swelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5354 KiB  
Article
Carboxymethyl Polysaccharides/Montmorillonite Biocomposite Films and Their Sorption Properties
by Adrian Krzysztof Antosik, Marcin Bartkowiak, Magdalena Zdanowicz and Katarzyna Wilpiszewska
Polymers 2025, 17(15), 2130; https://doi.org/10.3390/polym17152130 (registering DOI) - 1 Aug 2025
Abstract
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result [...] Read more.
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result of abrasions or tattoos. Carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and potato starch were used as the raw materials for film manufacturing. Citric acid was used as a crosslinking agent and glycerol as a plasticizer. The following parameters were evaluated for the obtained films: solubility in water, swelling behavior, moisture absorption, and mechanical durability (tensile strength, elongation at break, and Young’s modulus). This study revealed that filler concentration has a significant influence on the stability, durability, and moisture absorption parameters of films. The best nanocomposite with a high absorption capacity was a two-component film CMS/CMC containing 5 pph of sodium montmorillonite and can be used as a base material for wound dressing, among other applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

15 pages, 15023 KiB  
Article
Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability
by Yixin Li, Le Kang and Kai Cao
Polymers 2025, 17(15), 2086; https://doi.org/10.3390/polym17152086 - 30 Jul 2025
Viewed by 194
Abstract
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this [...] Read more.
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this problem. However, existing strategies usually produce nonporous composite scaffolds, where the interfiber pores are completely filled with hydrogel. This design can hinder oxygen and nutrient exchange between seeded cells and the culture medium, thereby limiting cell invasion and colonization within the scaffold. In this study, sodium alginate (SA) hydrogel was exclusively grafted onto the surface of the constituent fibers of the melt electrowritten scaffold while preserving the porous structure. The grafted hydrogel amount and pore size were precisely controlled by adjusting the SA concentration and the crosslinking ratio (SA: CaCl2). Experimental results demonstrated that the porous composite scaffolds exhibited superior swelling capacity, degradation ratio, mechanical properties, and biocompatibility. Notably, at an SA concentration of 0.5% and a crosslinking ratio of 2:1, the porous composite scaffold achieved optimal cell adhesion and viability. This study highlights the critical importance of preserving porous structures in composite scaffolds for tissue-engineering applications. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

28 pages, 6648 KiB  
Review
Machine Learning in Gel-Based Additive Manufacturing: From Material Design to Process Optimization
by Zhizhou Zhang, Yaxin Wang and Weiguang Wang
Gels 2025, 11(8), 582; https://doi.org/10.3390/gels11080582 - 28 Jul 2025
Viewed by 370
Abstract
Machine learning is reshaping gel-based additive manufacturing by enabling accelerated material design and predictive process optimization. This review provides a comprehensive overview of recent progress in applying machine learning across gel formulation development, printability prediction, and real-time process control. The integration of algorithms [...] Read more.
Machine learning is reshaping gel-based additive manufacturing by enabling accelerated material design and predictive process optimization. This review provides a comprehensive overview of recent progress in applying machine learning across gel formulation development, printability prediction, and real-time process control. The integration of algorithms such as neural networks, random forests, and support vector machines allows accurate modeling of gel properties, including rheology, elasticity, swelling, and viscoelasticity, from compositional and processing data. Advances in data-driven formulation and closed-loop robotics are moving gel printing from trial and error toward autonomous and efficient material discovery. Despite these advances, challenges remain regarding data sparsity, model robustness, and integration with commercial printing systems. The review results highlight the value of open-source datasets, standardized protocols, and robust validation practices to ensure reproducibility and reliability in both research and clinical environments. Looking ahead, combining multimodal sensing, generative design, and automated experimentation will further accelerate discoveries and enable new possibilities in tissue engineering, biomedical devices, soft robotics, and sustainable materials manufacturing. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

20 pages, 2796 KiB  
Systematic Review
Comparative Efficacy and Safety Profile of the Combination of Pulmonary Surfactant and Budesonide vs. Surfactant Alone in the Management of Neonatal Respiratory Distress Syndrome: An Updated Meta-Analysis
by Urooj Fatima, Naveera Naveed, Zahra Riaz, Emaan Khalid, Aemon Qamer, Shehmeen Baig, Roshaan Fatima, Asawir Hussain, Zoya Mustunsar, Ayesha Khan, Sadia Mangan, Mehak Kumari, Soban Ali Qasim, Ali Hasan and Raheel Ahmed
Medicina 2025, 61(8), 1329; https://doi.org/10.3390/medicina61081329 - 23 Jul 2025
Viewed by 263
Abstract
Background and Objectives: Neonatal respiratory distress syndrome (NRDS), resulting from a deficiency of pulmonary surfactant (PS), can cause alveoli to collapse. Glucocorticoids reduce inflammation and are effective in reducing pulmonary swelling. This study aims to assess the effectiveness of the combination of PS [...] Read more.
Background and Objectives: Neonatal respiratory distress syndrome (NRDS), resulting from a deficiency of pulmonary surfactant (PS), can cause alveoli to collapse. Glucocorticoids reduce inflammation and are effective in reducing pulmonary swelling. This study aims to assess the effectiveness of the combination of PS and budesonide in the management of NRDS. Materials and Methods: Publications between 21 May and 24 November were screened through PubMed, Cochrane and Embase. Data analysis was performed on RevMan 5.3 software. Subgroup analysis was performed to evaluate the routes of administrations. Results: The use of budesonide along with pulmonary surfactant for treating NRDS revealed the following results: (1) a reduced duration of invasive mechanical ventilation (standardized mean difference (SMD) = −1.06, 95% confidence interval (CI) = −1.55 to −0.56, p < 0.0001); (2) reduced rate of bronchopulmonary dysplasia (BPD) occurrence (relative risk (RR) = 0.72, 95% CI = 0.60 to 0.86, p = 0.0003); (3) reduced duration for hospital admittance (SMD = −0.38, 95% CI = −0.64 to −0.11, p = 0.005). The occurrence of complications, i.e., sepsis, pneumothorax, retinopathy of prematurity (ROP), necrotizing enterocolitis (NEC), rate of mortality, hyperglycemia and intraventricular hemorrhage (IVH), was not significantly different among the intervention and comparison group except for patent ductus arteriosus (PDA) and pulmonary hemorrhage, with their incidence being higher in the control group (p = 0.002 and p = 0.05, respectively). Conclusions: The combination of pulmonary surfactant and budesonide decreases the occurrence of BPD, duration of mechanical ventilation, length of hospital stay and risk of pulmonary hemorrhage and PDA. It does not increase the risk of complications and death and is clinically safe. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

20 pages, 4701 KiB  
Article
Effect of Rubber Particle Size and Content on the Mechanical Properties of Rubber–Clay Mixtures Solidified by EICP
by Qiang Ma, Meng Li, Chen Zeng, Hang Shu, Lei Xi, Yue Tao and Xuesong Lu
Materials 2025, 18(15), 3429; https://doi.org/10.3390/ma18153429 - 22 Jul 2025
Viewed by 251
Abstract
Using the enzyme-induced carbonate precipitation (EICP) technique to solidify rubber and clay mixtures as lightweight backfill is a feasible way to reduce waste tire impacts and boost rubber recycling in geotech engineering. In this study, a comprehensive laboratory investigation, including triaxial compression, oedometer, [...] Read more.
Using the enzyme-induced carbonate precipitation (EICP) technique to solidify rubber and clay mixtures as lightweight backfill is a feasible way to reduce waste tire impacts and boost rubber recycling in geotech engineering. In this study, a comprehensive laboratory investigation, including triaxial compression, oedometer, permeability, and nuclear magnetic resonance (NMR) tests, was conducted on EICP-reinforced rubber particle solidified clay (hereafter referred to as EICP-RC solidified clay) to evaluate the effects of rubber particle content and size on the mechanical behavior of the improved soil under various solidification conditions and to elucidate the solidification mechanism. The results show that although rubber particles inhibit EICP, they significantly enhance the mechanical properties of the samples. The addition of 5% rubber particles (rubber A) increased cohesion by 11% and the internal friction angle by 18% compared to EICP-treated clay without rubber. Additionally, incorporating smaller-sized tire particles facilitated pore filling, resulting in lower compression and swelling indices and reduced permeability coefficients, making these materials suitable for use behind retaining walls and in embankment construction. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 4097 KiB  
Article
Preparation and Performance Evaluation of Graphene Oxide-Based Self-Healing Gel for Lost Circulation Control
by Wenzhe Li, Pingya Luo and Xudong Wang
Polymers 2025, 17(15), 1999; https://doi.org/10.3390/polym17151999 - 22 Jul 2025
Viewed by 309
Abstract
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete [...] Read more.
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete particles that progressively swell, accumulate, and self-repair in integrated gel masses to effectively seal fracture networks. Self-healing gels effectively overcome the shortcomings of traditional bridging agents including poor adaptability to fractures, uncontrollable gel formation of conventional downhole crosslinking gels, and the low strength of conventional pre-crosslinked gels. This work employs stearyl methacrylate (SMA) as a hydrophobic monomer, acrylamide (AM) and acrylic acid (AA) as hydrophilic monomers, and graphene oxide (GO) as an inorganic dopant to develop a GO-based self-healing organic–inorganic hybrid plugging material (SG gel). The results demonstrate that the incorporation of GO significantly enhances the material’s mechanical and rheological properties, with the SG-1.5 gel exhibiting a rheological strength of 3750 Pa and a tensile fracture stress of 27.1 kPa. GO enhances the crosslinking density of the gel network through physical crosslinking interactions, thereby improving thermal stability and reducing the swelling ratio of the gel. Under conditions of 120 °C and 6 MPa, SG-1.5 gel demonstrated a fluid loss volume of only 34.6 mL in 60–80-mesh sand bed tests. This gel achieves self-healing within fractures through dynamic hydrophobic associations and GO-enabled physical crosslinking interactions, forming a compact plugging layer. It provides an efficient solution for lost circulation control in drilling fluids. Full article
Show Figures

Figure 1

19 pages, 4571 KiB  
Article
Modified Asphalt Prepared by Coating Rubber Powder with Waste Cooking Oil: Performance Evaluation and Mechanism Analysis
by Jianwei Zhang, Meizhu Chen, Yuan Yan, Muyan Han and Yuechao Zhao
Coatings 2025, 15(7), 844; https://doi.org/10.3390/coatings15070844 - 18 Jul 2025
Viewed by 311
Abstract
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for [...] Read more.
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for rubber powder (RP) and as a compatibilizer in rubber powder-modified asphalt (RPMA) on the performance of modified asphalt. Specifically, the microstructure and functional groups of WCO-coated RP were first characterized. Then, RPMAs with different RP dosages were prepared, and the storage stability and rheological properties of RPMAs were thoroughly investigated. Finally, the flue gas emission characteristics of different RPMAs at 30% RP dosing were further analyzed, and the corresponding inhibition mechanisms were proposed. The results showed that the RP coated by WCO was fully solubilized internally, and the WCO formed a uniform and continuous coating film on the RP surface. Comparative analysis revealed that when WCO was used as a swelling agent, the prepared S-RPMA exhibited superior storage stability. At a 30% RP content, the softening point difference value of S-RPMA was only 1.8 °C, and the reduction rate of the segregation index reached 40.91%. Surprisingly, after WCO was used to coat the RP, the average concentrations of VOCs and H2S in S-RPMA30 were reduced to 146.7 mg/m3 and 10.6 ppm, respectively, representing decreases of 20.8% and 22.1% compared with the original RPMA30. These findings demonstrate that using WCO as a swelling agent enhances both the physical stability and environmental performance of RPMA, offering valuable insights for the rational application and optimization of WCO incorporation methods in asphalt modification. It also makes meaningful contributions to the fields of coating science and sustainable materials engineering. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 2606 KiB  
Article
A Collagen Membrane Pretreated with Citrate Promotes Collagen Mineralization and Bone Regeneration
by Qi Zhang, Yewen Zhong, Xinlin He and Sui Mai
J. Funct. Biomater. 2025, 16(7), 261; https://doi.org/10.3390/jfb16070261 - 15 Jul 2025
Viewed by 581
Abstract
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone [...] Read more.
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone healing potential. Methods: C-CMC collagen membranes were prepared by lyophilization. The mineral composition and content were tested through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The micromorphology was observed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning probe microscopy (SPM). Physical and mechanical properties, including the swelling rate, porosity, hydrophilicity, tensile strength, Young’s modulus, degradation, and barrier function, were also evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in vitro to observe their behavior. An in vivo critical-size rat calvarial defect model was used to validate the effects of the membrane on bone regeneration. Results: The C-CMC collagen membrane was successfully synthesized as a collagen–hydroxyapatite complex with intrafibrillar mineralization, exhibiting improved mechanical properties and an optimal swelling rate, porosity, hydrophilicity, and degradation rate. Additionally, the C-CMC collagen membrane promoted BMSC proliferation, adhesion, and osteogenesis while preventing epithelial cell infiltration. In vivo experiments indicated that C-CMC collagen membranes significantly stimulated bone regeneration without causing systemic toxicity. Conclusions: Our findings suggest that the C-CMC collagen membrane possesses satisfactory physical and mechanical properties, along with good biocompatibility and efficacy in bone defect regeneration, making it a potential candidate for a bioactive guided bone regeneration membrane in clinical applications. Full article
Show Figures

Figure 1

26 pages, 3391 KiB  
Article
Poly(hydromethylsiloxane) Networks Functionalized by N-allylaniline
by Anita Wysopal, Maria Owińska, Ewa Stodolak-Zych, Mariusz Gackowski and Magdalena Hasik
Int. J. Mol. Sci. 2025, 26(14), 6700; https://doi.org/10.3390/ijms26146700 - 12 Jul 2025
Viewed by 188
Abstract
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and [...] Read more.
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and post-functionalized by N-allylaniline (Naa). Non-porous networks were obtained by cross-linking PHMS in the bulk and porous—in W/O high-internal-phase emulsion (HIPE). Linear divinyldisiloxane (M2Vi) or cyclic tetravinyltetrasiloxane (D4Vi) were used as cross-linkers. Studies confirmed the expected non-porous and open macroporous microstructure of the initial networks. They also showed that functionalization by Naa was more efficient for the non-porous networks that swelled to lower extents in toluene and contained higher amounts of Si-H groups than the porous ones. In the reactions with benzyl chloride or 1-bromoctane, some amino groups present in these materials were transformed to ammonium groups. It was found that activity against Gram-positive S. aureus and Gram-negative E. coli bacteria depended on the functionalization degree, cross-linking level and the microstructure of the modified materials. Full article
Show Figures

Figure 1

27 pages, 6448 KiB  
Article
Valorization of Olive Tree Pruning and By-Products from the Truck Industry in the Manufacture of Low-Environmental-Impact Particleboard
by Juan José Valenzuela Expósito, Elena Picazo Camilo, Griselda Elisabeth Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(14), 3258; https://doi.org/10.3390/ma18143258 - 10 Jul 2025
Viewed by 422
Abstract
This study presents the development of particleboards made from olive tree pruning (OTP) residues and truck industry by-products (RCM), using PUR resin as a binder. Five formulations with different OTP/RCM ratios were designed and physical, thermal, mechanical, chemical and microstructural properties were evaluated. [...] Read more.
This study presents the development of particleboards made from olive tree pruning (OTP) residues and truck industry by-products (RCM), using PUR resin as a binder. Five formulations with different OTP/RCM ratios were designed and physical, thermal, mechanical, chemical and microstructural properties were evaluated. The results showed that increasing the RCM content improves the dimensional stability, reduces water absorption and swelling and decreases thermal conductivity, reaching 0.061 W/mK. At the mechanical level, MOR, MOE and IB values of 7.11, 630 and 0.134 MPa, respectively, were obtained. A higher OTP content allows a reduction in the density of the particleboard (752.67 kg/m3) due to the granulometry of the material. FTIR and SEM analyses confirmed the good integration of the materials with the resin, highlighting a lower porosity and higher compaction in formulations with a high RCM content. These results demonstrate that the combination of agricultural and industrial by-products is feasible to manufacture a sustainable particleboard with customizable properties, promoting the circular economy and reducing the dependence on virgin raw materials in the construction sector. Full article
(This article belongs to the Special Issue Research on Recycling/Reuse of Polymers and Composites)
Show Figures

Figure 1

21 pages, 2362 KiB  
Article
Stabilization of Expansive Clay Using Volcanic Ash
by Svetlana Melentijević, Aitor López Marcos, Roberto Ponce and Sol López-Andrés
Geosciences 2025, 15(7), 261; https://doi.org/10.3390/geosciences15070261 - 8 Jul 2025
Cited by 2 | Viewed by 353
Abstract
Considering the increasing requirements for the recovery of different natural and industrial waste materials, the application of volcanic ash as an alternative sustainable binder to traditionally employed lime and cement is proposed for soil stabilization for geotechnical engineering purposes, thus providing a reduction [...] Read more.
Considering the increasing requirements for the recovery of different natural and industrial waste materials, the application of volcanic ash as an alternative sustainable binder to traditionally employed lime and cement is proposed for soil stabilization for geotechnical engineering purposes, thus providing a reduction in carbon emissions. Soil stabilization was performed on natural clays with very high swelling potential, i.e. those classified as inadequate for reuse as a building material for geotechnical purposes. A mineralogical and chemical characterization of raw materials was carried out prior to the performance of different geotechnical laboratory tests, i.e., testing Atterberg limits, compaction, swelling potential, compressibility and resistance parameters over naturally remolded clay and soil mixtures with different binders. The swelling potential was reduced with an increase in the amount of applied binder, necessitating the addition of 10, 20, and 30% of volcanic ash compared to 3% lime, 3% cement and 5% lime, respectively, for a similar reduction in swelling potential. An investigation of the resistance parameters for soil mixture specimens that provided a suitable reduction in swelling potential for their reuse was performed, and a comparison to the parameters of naturally remolded clay was made. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

15 pages, 2891 KiB  
Article
Polysaccharide Hydrogels with Waste Wool Fibre as Matrix for Potential Use as CRF Fertiliser
by Ewa Szczepanik, Edyta Molik and Kinga Pielichowska
Molecules 2025, 30(13), 2885; https://doi.org/10.3390/molecules30132885 - 7 Jul 2025
Viewed by 273
Abstract
At a time of climate change, farmers face difficulties in providing food for a growing population. This results in the overuse of water and fertilisers. The aim of the research was to test the possibility of introducing waste sheep wool fibres into a [...] Read more.
At a time of climate change, farmers face difficulties in providing food for a growing population. This results in the overuse of water and fertilisers. The aim of the research was to test the possibility of introducing waste sheep wool fibres into a hydrogel to obtain a stable material that could improve water retention and could serve as a fertiliser material matrix. Wool fibres and hydrogel were chosen because of their ability to store water and their degradability. An evaluation of the swelling degree of different alginate-based hydrogel matrices was performed to select the matrix. The stability and water bonding of hydrogels with different wool fibre content were analysed and evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The microstructure and the effect of fibres on the uniformity of the hydrogel were assessed using SEM and optical microscopy. The degree of water retention in the soil was also evaluated. The results showed that it is possible to incorporate wool fibres into the hydrogel matrix and the wool fibres make the composite porous, which allows water penetration into the material much more easily. This research has shown the possibility of using waste wool fibres as an active ingredient in sustainable fertiliser materials. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Figure 1

11 pages, 3750 KiB  
Article
Metal–Organic Framework-Based Membranes with High Selectivity for Non-Aqueous Redox Flow Battery
by Lifang Zhu, Donghan Xu, Yongdan Li and Cuijuan Zhang
Processes 2025, 13(7), 2127; https://doi.org/10.3390/pr13072127 - 4 Jul 2025
Viewed by 338
Abstract
The advancement of non-aqueous redox flow batteries (NARFBs) remains significantly constrained by the absence of membranes with sufficient ionic selectivity and chemical compatibility. Herein, we fabricated flexible membranes incorporating metal–organic framework (MOF) via a solution casting approach. The rigid framework structure of the [...] Read more.
The advancement of non-aqueous redox flow batteries (NARFBs) remains significantly constrained by the absence of membranes with sufficient ionic selectivity and chemical compatibility. Herein, we fabricated flexible membranes incorporating metal–organic framework (MOF) via a solution casting approach. The rigid framework structure of the MOF effectively suppresses membrane swelling in organic solvents. The appropriate structural pore of MOF enables a size-sieving effect toward redox-active materials and supporting electrolyte, thereby reducing material crossover and enhancing the ionic selectivity of the composite membranes. The batteries with the designed composite membranes exhibit a Coulombic efficiency of higher than 99% and significantly improved cycling stability at 10 mA cm−2. The membrane design strategy, employing MOF materials with a structural pore size between the molecular size of the supporting electrolyte and active materials, is universal for NARFB. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Graphical abstract

10 pages, 4098 KiB  
Communication
Optimized Microbial Scaffolds Immobilized with Pleurotus ostreatus and Aspergillus oryzae on Foaming Bacterial Cellulose
by Pei-Ching Chan, Wei-Lun Ku, Yung-Kun Chuang, Yu-Chieh Chou, Chen-Che Hsieh, Yung-Kai Lin, Shella Permatasari Santoso and Shin-Ping Lin
Materials 2025, 18(13), 3151; https://doi.org/10.3390/ma18133151 - 3 Jul 2025
Viewed by 311
Abstract
In this study, we explored the development and characterization of fungus-immobilized foamed bacterial cellulose (FBC) scaffolds using Pleurotus ostreatus and Aspergillus oryzae. FBC, a porous biomaterial with high structural integrity and resistance to enzymatic degradation, served as a three-dimensional matrix for fungal [...] Read more.
In this study, we explored the development and characterization of fungus-immobilized foamed bacterial cellulose (FBC) scaffolds using Pleurotus ostreatus and Aspergillus oryzae. FBC, a porous biomaterial with high structural integrity and resistance to enzymatic degradation, served as a three-dimensional matrix for fungal cultivation. The results indicated effective fungal immobilization, with the 1% A. oryzae-immobilized FBC group (FBC/1A) achieving the highest production yield. The water content (97%) and swelling behavior (95.9%) analyses revealed that P. ostreatus-immobilized FBC maintained high hydration levels and rehydration capacities, whereas A. oryzae immobilization led to slightly reduced water retention. Morphological assessments via SEM confirmed the presence of fungal-derived fibers integrated with native cellulose structures, suggesting successful immobilization. A thermogravimetric analysis demonstrated enhanced thermal stability in fungus-immobilized FBC, particularly in the A. oryzae group, while FTIR spectra suggested possible structural alterations induced by fungal activity. Collectively, these findings support the potential of fungal-immobilized FBC as a robust, biodegradable material with promising applications in biotechnology and sustainable material development. Full article
Show Figures

Figure 1

20 pages, 3956 KiB  
Article
Application of Fermented Wheat, Acorns, and Sorghum in Processing of Couscous: Effect on Culinary Quality, Pasting Properties, and Microstructure
by Rayene Belmouloud, Hayat Bourekoua, Loucif Chemache, Marcin Mitrus, Leila Benatallah, Renata Różyło and Agnieszka Wójtowicz
Appl. Sci. 2025, 15(13), 7418; https://doi.org/10.3390/app15137418 - 2 Jul 2025
Viewed by 306
Abstract
This study explores the application of three fermented plant materials—wheat, acorns, and sorghum—in couscous preparation, as well as their impact on its properties. A survey was conducted in some localities in Algeria. The aim is to reproduce the diagrams for the manufacture of [...] Read more.
This study explores the application of three fermented plant materials—wheat, acorns, and sorghum—in couscous preparation, as well as their impact on its properties. A survey was conducted in some localities in Algeria. The aim is to reproduce the diagrams for the manufacture of different types of couscous incorporated with fermented materials and to evaluate the pasting properties, culinary qualities, and microstructure of each type of couscous produced. The survey identified four couscous formulations made with durum wheat semolina: couscous 1 (4% sorghum, 4% wheat, 8% acorns), couscous 2 (8% acorns), couscous 3 (0.8% sorghum, 6% acorns), and couscous 4 (4% wheat, 4% acorns). A comparative study of the four types of couscous showed significant differences in their physicochemical and microstructural properties. Formulations C3 and C4 showed the best functional performance among all the couscous samples studied. In terms of the swelling index, measured at 25 °C and 95 °C, C3 reached 131.11% and 165.55%, respectively, while C4 recorded 124.9% and 157.0%. Furthermore, these two formulations had the highest viscosity values: initial viscosity of 25 mPas (C3) and 27 mPas (C4), maximum viscosity of 31 mPas (C3) and 30 mPas (C4), and final viscosity of 49 mPas (C3) and 46 mPas (C4). Analysis of the cooking loss revealed higher values for couscous 1 and 2. The microstructure of couscous 2 revealed the presence of native starch particles, open porosity, and a state of partial gelatinization. The study revealed that formulations C3 and C4 significantly (p < 0.05) impact couscous structure by enhancing functionality while preserving quality. It also maintained ancestral knowledge and offered valuable insights for future industrial applications. Full article
Show Figures

Figure 1

Back to TopTop