Comparative Efficacy and Safety Profile of the Combination of Pulmonary Surfactant and Budesonide vs. Surfactant Alone in the Management of Neonatal Respiratory Distress Syndrome: An Updated Meta-Analysis
Abstract
1. Introduction
2. Methodology
2.1. Research Sources
2.2. Search Method and Strategy
2.3. Search Criteria
- Randomized controlled trials that have shown a direct comparison of budesonide in combination with pulmonary surfactant as an intervention with pulmonary surfactant alone as a control group to treat bronchopulmonary dysplasia.
- Less than 28 weeks gestational age of preterm infants with a very low birth weight.
- Premature infants suffering from bronchopulmonary dysplasia.
- Studies revealing the duration of mechanical ventilation.
- The length of hospital stay.
- Bronchopulmonary dysplasia as a primary outcome.
- Secondary outcomes:
- Pneumothorax.
- Interventricular hemorrhage.
- Necrotizing enterocolitis.
- Patent duct arteriosus.
- Retinopathy of prematurity.
- Mortality rate.
- The exclusion criterion encompasses the following:
- Non-randomized controlled trials.
- Other corticosteroids combined with pulmonary surfactant.
- Studies without an abstract.
- Studies with a language barrier.
2.4. Study Selection
2.5. Data Extraction
2.6. Quality Assessment
2.7. Statistical Analysis
3. Results
3.1. Study Selection
3.2. General Information
3.3. Quality Assessment of Included Studies
3.4. Outcome of Combined Therapy on the Duration of Mechanical Ventilation for NRDS Treatment
3.5. Outcome of Combined Therapy on the Rate of BPD Occurrence for NRDS Treatment
3.6. Outcome of Combined Therapy on the Duration of Hospital Admittance for NRDS Treatment
3.7. Secondary Outcome Indicators Among NRDS Patients
4. Discussion
4.1. Summary of Findings
4.2. Comparison with Prior Literature
4.3. Risks and Safety Profile
4.4. Limitations
4.5. Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, I.L.; Chen, H.L. New developments in neonatal respiratory management. Pediatr. Neonatol. 2022, 63, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Rubarth, L.B.; Quinn, J. Respiratory Development and Respiratory Distress Syndrome. Neonatal Netw. 2015, 34, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Hanusrichterova, J.; Mokry, J.; Al-Saiedy, M.R.; Koetzler, R.; Amrein, M.W.; Green, F.H.Y.; Calkovska, A. Factors influencing airway smooth muscle tone: A comprehensive review with a special emphasis on pulmonary surfactant. Am. J. Physiol. Cell Physiol. 2024, 327, C798–C816. [Google Scholar] [CrossRef] [PubMed]
- Abbasalizadeh, F.; Pouya, K.; Zakeri, R.; Asgari-Arbat, R.; Abbasalizadeh, S.; Parnianfard, N. Prenatal Administration of Betamethasone and Neonatal Respiratory Distress Syndrome in Multifetal Pregnancies: A Randomized Controlled Trial. Curr. Clin. Pharmacol. 2020, 15, 164–169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dyer, J. Neonatal Respiratory Distress Syndrome: Tackling A Worldwide Problem. Pharm. Ther. 2019, 44, 12–14. [Google Scholar] [PubMed] [PubMed Central]
- Najafian, B.; Hossein Khosravi, M. Neonatal Respiratory Distress Syndrome: Things to Consider and Ways to Manage [Internet]. Update on Critical Issues on Infant and Neonatal Care; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Chen, C.M.; Chang, C.H.; Chao, C.H.; Wang, M.H.; Yeh, T.F. Biophysical and chemical stability of surfactant/budesonide and the pulmonary distribution following intra-tracheal administration. Drug Deliv. 2019, 26, 604–611. [Google Scholar] [CrossRef]
- Huang, L.T.; Yeh, T.F.; Kuo, Y.L.; Chen, P.C.; Chen, C.M. Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice. Pediatr. Neonatol. 2015, 56, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Manley, B.J.; Kamlin, C.O.F.; Donath, S.; Huang, L.; Birch, P.; Cheong, J.L.Y.; Dargaville, P.A.; Dawson, J.A.; Doyle, L.W.; Jacobs, S.E.; et al. Intratracheal budesonide mixed with surfactant to increase survival free of bronchopulmonary dysplasia in extremely preterm infants: Study protocol for the international, multicenter, randomized PLUSS trial. Trials 2023, 24, 320. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kothe, T.B.; Sadiq, F.H.; Burleyson, N.; Williams, H.L.; Anderson, C.; Hillman, N.H. Surfactant and budesonide for respiratory distress syndrome: An observational study. Pediatr. Res. 2020, 87, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.F.; Chen, C.M.; Wu, S.Y.; Husan, Z.; Li, T.C.; Hsieh, W.S.; Tsai, C.H.; Lin, H.C. Intratracheal Administration of Budesonide/Surfactant to Prevent Bronchopulmonary Dysplasia. Am. J. Respir. Crit. Care Med. 2016, 193, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, T.S.; Bhatia, R.; Wattenberg, L.W. Drug solubilization in lung surfactant. J. Control. Release 2000, 65, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Gunes, A.O.; Bozkaya, A. Endotracheal Surfactant and Budesonide Combination Therapy in Neonatal Acute Respiratory Distress Syndrome due to Late-Onset Sepsis. Arch. Iran. Med. 2024, 27, 573–579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, M.J.; Gunn, D.; Antenatal Corticosteroid Therapy for Reduction of Neonatal Morbidity and Mortality from Preterm Delivery. UpToDate Web Site. Available online: https://www.uptodate.com/contents/antenatal-corticosteroid-therapy-for-reduction-of-neonatal-respiratory-morbidity-and-mortality-from-preterm-delivery (accessed on 23 February 2015).
- Sweet, D.G.; Carnielli, V.P.; Greisen, G.; Hallman, M.; Klebermass-Schrehof, K.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 2023, 120, 3–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomized trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, S.Q. Clinical Study of Budesonide Combined with Pulmonary Surfactant in the Treatment of Neonatal Respiratory Distress Syndrome; Guangdong Medical University: Guangzhou, China, 2019. [Google Scholar]
- Yang, B.; Lei, H.L.; Ren, Y.; Li, L.; Wang, H.; Huang, D. Pulmonary surfactant in combination with intratracheal budesonide instillation for treatment of respiratory distress syndrome in preterm infants: A randomized controlled trial. Chin. J. Neonatol. 2021, 36, 33–37. [Google Scholar]
- Pan, J.; Chen, M.W.; Ni, W.Q.; Fang, T.; Zhang, H.; Chen, Y.; Pan, J.H. Clinical efficacy of pulmonary surfactant combined with budesonide for preventing bronchopulmonary dysplasia in very low birth weight infants. Chin. J. Contemp. Pediatr. 2017, 19, 137–141. [Google Scholar]
- Deng, L.J.; Peng, H.B.; Gong, X.Q. Efficacy of intratracheal instillation of budesonide using surfactant as a vehicle to treatment respiratory distress syndrome of preterm infants. Med. Sci. J. Cent. S. China 2018, 46, 97–100. [Google Scholar]
- Su, J.; Yang, Y.; Yang, L.; Ding, L.; Zhong, G.; Liu, L.; Wu, B. The clinical study of budesonide combined with pulmonary surfactant to prevent bronchopulmonary dysplasia in premature infants. Int. J. Pediatr. 2019, 46, 61–65. [Google Scholar]
- Zhou, X.P.; Zhou, J.; Hu, B.; Wang, X.H. Effects of Budesonide Combined with Pulmonary Surfactant on ShortTerm Efficacy, Blood Oxygenation Index and Risk of Bronchopulmonary Dysplasia in Premature Infants with Severe Respiratory Distress Syndrome. J. Pediatr. Pharm. 2019, 25, 27–30. [Google Scholar]
- Ping, L.L.; Zhang, S.Y.; Zhai, S.F. The effect of dual bronchial drug infusion program on the clinical prognosis of preterm infants with severe respiratory distress syndrome. Chin. J. Postgrad. Med. 2019, 42, 154–157. [Google Scholar]
- Wang, Y.Z.; Zhang, D.F. Effect of budesonide inhalation combined with pulmonary surfactant on newborns with RDS. Mod. Med. J. 2018, 46, 1243–1246. [Google Scholar]
- Wang, Y.S.; Yang, M.; Han, P.; Dai, Q.M.; Cui, C.Y. Effect of Budesonide suspension oxygenation atomization inhalation on prevention and treatment of bronchopulmonary dysplasia in premature infants. J. Clin. Exp. Med. 2019, 19, 2121–2124. [Google Scholar]
- Safa, F.B.; Noorishadkam, M.; Lookzadeh, M.H.; Mirjalili, S.R.; Ekraminasab, S. Budesonide and surfactant combination for treatment of respiratory distress syndrome in preterm neonates and evaluation outcomes. J. Clin. Neonatol. 2023, 12, 135–141. [Google Scholar] [CrossRef]
- Armanian, A.M.; Iranpour, R.; Lotfi, A.; Amini, R.; Ghasemi Kahrizsangi, N.; Jamshad, A.; Shiranilapari, P.; Feizi, A. Intratracheal administration of budesonide-instilled surfactant for prevention of bronchopulmonary dysplasia: A randomized controlled clinical trial. Iran. J. Neonatol. 2023, 14, 1–7. [Google Scholar] [CrossRef]
- Marzban, A.; Mokhtari, S.; Tavakkolian, P.; Mansouri, R.; Jafari, N.; Maleki, A. The impact of combined administration of surfactant and intratracheal budesonide compared to surfactant alone on bronchopulmonary dysplasia (BPD) and mortality rate in preterm infants with respiratory distress syndrome: A single-blind randomized clinical trial. BMC Pediatr. 2024, 24, 262. [Google Scholar] [CrossRef]
- Liu, M.M.; Ji, L.; Dong, M.Y.; Zhu, X.F.; Wang, H.J. Efficacy and safety of intratracheal administration of budesonide combined with pulmonary surfactant in preventing bronchopulmonary dysplasia: A prospective randomized controlled trial. Zhongguo Dang Dai Er Ke Za Zhi 2022, 24, 78–84, (In English and Chinese). [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gharehbaghi, M.M.; Ganji, S.; Mahallei, M. A Randomized Clinical Trial of Intratracheal Administration of Surfactant and Budesonide Combination in Comparison to Surfactant for Prevention of Bronchopulmonary Dysplasia. Oman Med. J. 2021, 36, e289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yi, Z.; Tan, Y.; Liu, Y.; Jiang, L.; Luo, L.; Wang, L.; Lei, W.; Tan, J.; Yan, R. A systematic review and meta-analysis of pulmonary surfactant combined with budesonide in the treatment of neonatal respiratory distress syndrome. Transl. Pediatr. 2022, 11, 526–536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meng, S.S.; Chang, W.; Lu, Z.H.; Xie, J.F.; Qiu, H.B.; Yang, Y.; Guo, F.M. Effect of surfactant administration on outcomes of adult patients in acute respiratory distress syndrome: A meta-analysis of randomized controlled trials. BMC Pulm. Med. 2019, 19, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrette, A.M.; Roberts, J.K.; Chapin, C.; Egan, E.A.; Segal, M.R.; Oses-Prieto, J.A.; Chand, S.; Burlingame, A.L.; Ballard, P.L. Antiinflammatory Effects of Budesonide in Human Fetal Lung. Am. J. Respir. Cell Mol. Biol. 2016, 55, 623–632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gharehbaghi, M.M.; Mhallei, M.; Ganji, S.; Yasrebinia, S. The efficacy of intratracheal administration of surfactant and budesonide combination in the prevention of bronchopulmonary dysplasia. J. Res. Med. Sci. 2021, 26, 31. [Google Scholar] [CrossRef]
- Yeh, T.F.; Lin, H.C.; Chang, C.H.; Wu, T.S.; Su, B.H.; Li, T.C.; Pyati, S.; Tsai, C.H. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: A pilot study. Pediatrics 2008, 121, e1310–e1318. [Google Scholar] [CrossRef]
- Venkataraman, R.; Kamaluddeen, M.; Hasan, S.U.; Robertson, H.L.; Lodha, A. Intratracheal Administration of Budesonide-Surfactant in Prevention of Bronchopulmonary Dysplasia in Very Low Birth Weight Infants: A Systematic Review and Meta-Analysis. Pediatr. Pulmonol. 2017, 52, 968–975. [Google Scholar] [CrossRef]
- Tang, W.; Chen, S.; Shi, D.; Ai, T.; Zhang, L.; Huang, Y.; Fan, Y.; Du, Y. Effectiveness and safety of early combined utilization of budesonide and surfactant by airway for bronchopulmonary dysplasia prevention in premature infants with RDS: A meta-analysis. Pediatr. Pulmonol. 2022, 57, 455–469. [Google Scholar] [CrossRef]
- Bassler, D.; Shinwell, E.S.; Hallman, M.; Jarreau, P.-H.; Plavka, R.; Carnielli, V.; Meisner, C.; Engel, C.; Koch, A.; Kreutzer, K.; et al. Long-Term Effects of Inhaled Budesonide for Bronchopulmonary Dysplasia. N. Engl. J. Med. 2018, 378, 148–157. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Author and Publication Year | T/C(n) | Gestational Weeks | Weight of Birth (g) | Intervention | |||
---|---|---|---|---|---|---|---|
Trial Group | Control | Trial Group | Control | Usage s Dosage (Trial) | Usage s Dosage (Control) | ||
Yeh [11], 2016 | 131/134 | 26.5 ± 2.2 | 26.8 ± 2.2 | 882 ± 246 | 635 ± 283 | PS (poractant alfa injection 100 mg/kg) with budesonide (0.25 mg/kg), tracheally | PS (poractant alfa injection 100 mg/kg) tracheally |
Siqi Chen [17], 2016 | 52/50 | 30.84 ± 1.78 | 31.03 ± 1.66 | 1556.54 ± 350.44 | 1586.40 ± 462.71 | PS (poractant alfa injection 100 mg/kg, 150–200 mg/kg) with budesonide (0.25 mg/kg), tracheally | PS (poractant alfa injection 150–200 mg/kg) tracheally |
Bo Yang [18], 2021 | 67/101 | 30.6 ± 1.6 | 30.8 ± 1.7 | 1535 ± 351 | 1540 ± 340 | PS (phospholipid of bovine 88.2 ± 37.3 mg/kg) with budesonide (0.25 mg/kg), tracheally | PS (phospholipid of bovine 88.5 ± 44.6 mg/kg) tracheally |
Jing Pan [19], 2017 | 15/15 | 26.5 ± 1.8 | 30.0 ± 1.7 | 1260 ± 240 | 1360 ± 370 | PS (phospholipid of bovine 70 mg/kg) with budesonide (0.25 mg/kg), tracheally | PS (phospholipid of bovine 70 mg/kg) tracheally |
Lijing Deng [20], 2018 | 18/28 | <37 | <37 | <1500 | <1500 | PS (poractant alfa injection 150 mg/kg) with budesonide (0.25 mg/kg), tracheally | PS (poractant alfa injection 150 mg/kg) tracheally |
Jingzhen Su [21], 2016 | 48/50 | 26.68 ± 1.55 | 26.16 ± 1.45 | 1351.35 ± 337.77 | 1211.8 ± 267.78 | PS (poractant alfa injection 200 mg/kg) with budesonide (0.25 mg/kg), tracheally | PS (poractant alfa injection 200 mg/kg) tracheally |
Yiping Zhou [22], 2016 | 55/55 | 26.37 ± 1.22 | 26.43 ± 1.25 | 1287.14 ± 206.25 | 1256.84 ± 204.81 | PS (poractant alfa injection 150 mg/kg) with budesonide (0.25 mg/kg), tracheally | PS (poractant alfa injection 150 mg/kg) tracheally |
Lili Ping [23], 2016 | 64/64 | 26.1 ± 1.24 | 28.63 ± 1.2 | 1264.63 ± 207.12 | 1260.33 ± 205.87 | PS (poractant alfa injection 150 mg/kg) with budesonide (0.25 mg/kg), tracheally | PS (poractant alfa injection 150 mg/kg) tracheally |
Yazhou Wang [24], 2018 | 72/72 | 31.42 ± 4.27 | 31.51 ± 4.16 | 1634.54 ± 282.26 | 1672.54 ± 275.34 | PS (poractant alfa injection 100 mg/kg) tracheally with budesonide (0.25 mg/kg), aerosol inhalation, 3 days | PS (poractant alfa injection 100 mg/kg) tracheally |
Yaoshuang Wang [25], 2016 | 28/28 | 26.51 ± 0.23 | 26.46 ± 0.27 | 1320 ± 150 | 1260 ± 210 | PS (phospholipid of bovine 70 mg/kg) tracheally, with budesonide (0.5 mg + 2 mL normal saline aerosol inhalation, 3 days | PS (phospholipid of bovine 70 mg/kg) tracheally |
Fatemeh Baghal [26], 2023 | 35/35 | 29.94 ± 2.11 | 29.34 ± 2.19 | 1186 ± 224.14 | 1139.86 ± 230.28 | PS 2.5 cc/kg of curosurf solution (3 cc/240 mg curosurf) with budesonide 250 µ/kg of palmicort from a vial of 0.25 mg/ml | PS 2.5 cc/kg of curosurf solution (3 cc/240 mg curosurf) |
Amir Mohammad [27], 2023 | 95/95 | 28.94 ± 1.57 | 29.01 ± 1.57 | 1134.97 ± 237.61 | 1190 ± 289.33 | PS 200 mg/kg for the initial dose and 100 mg/kg for subsequent doses with budesonide instilled once at a dose of 0.25 mg/kg | PS 200 mg/kg for the initial dose and 100 mg/kg for subsequent doses |
Brett J. Manley [9], 2024 | 524/535 | 25.7 | 25.6 | 768 (634–900) | 740 (624–910) | PS (poractant alfa) 200 mg/kg for first dose(100 mg/kg for second dose, if used) with 1 or 2 doses of budesonide 0.25 mg/kg | PS poractant alfa) 200 mg/kg for first dose (100 mg/kg for second dose, if used) |
Asghar Marzban [28], 2024 | 67/67 | 31.66 ± 2.84 | 31 ± 2.96 | 1584.55 ± 505.02 | 1465.45 ± 520.88 | PS intratracheal curosurf at a dose of 2.5 cc/kg with intratracheal administration of budesonide at a dose of 0.25 mg or 1 cc/kg | PS intratracheal curosurf surfactant alone at a dose of 2.5 cc/kg |
Ji ling [29], 2022 | 60/62 | 29.6 ± 1.3 | 29.3 ± 1.4 | 1199 ± 137 | 1175 ± 175 | PS first dose 200 mg/kg with budesonide 0.25 mg/kg mixed and intratracheal instillation added each time | PS alone, first dose 200 mg/kg |
Manizheh M. Gharehbaghi [30], 2021 | 64/64 | 28.2 ± 1.7 | 28.4 ± 1.5 | 1055 ± 192 | 1089 ± 168 | Intratracheal instillation of a mixed suspension of budesonide (pulmicort nebulizing suspension, AstraZeneca AB, Sodertalje, Sweden) 0.25 mg/kg and curosurf 200 mg/kg/ dose mixed in a single syringe | Intratracheal curosurf (Poractant alpha, Chiesi Farmaceutici, Italy) 200 mg/kg/dose (2.5 mL/kg/dose) after premedication with fentanyl 1–2 mic/kg |
Outcome Indicators | Articles | Heterogeneity | Experimental Group | Control Group | RR (95% CI) | p |
---|---|---|---|---|---|---|
Mortality | 6 | p = 0.23 I2 = 27% | 155/1128 | 182/1146 | 0.87 (0.71, 1.06) | 0.16 |
Hyperglycemia | 4 | p = 0.91 I2 = 0% | 370/746 | 363/759 | 1.04 (0.95, 1.14) | 0.41 |
Pulmonary Hemorrhage | 3 | p = 0.93 I2 = 0% | 49/655 | 71/666 | 0.70 (0.50, 0.99) | 0.05 |
IVH | 5 | p = 0.13 I2 = 43% | 171/770 | 177/780 | 1.00 (0.76, 1.31) | 1.00 |
ROP | 7 | p = 0.30, I2 = 17% | 390/1138 | 396/1144 | 0.98 (0.89, 1.09) | 0.77 |
NEC | 6 | p = 0.62, I2 = 0% | 118/1225 | 125/1245 | 0.96 (0.75, 1.21) | 0.71 |
PDA | 6 | p = 0.59, I2 = 0% | 297/1009 | 365/1025 | 0.83 (0.73, 0.94) | 0.002 |
Sepsis | 6 | p = 0.09, I2 = 48% | 241/1125 | 262/1145 | 0.93 (0.72, 1.21) | 0.60 |
Pneumothorax | 5 | p = 0.16, I2 = 39% | 49/785 | 45/796 | 0.97 (0.48, 1.96) | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, U.; Naveed, N.; Riaz, Z.; Khalid, E.; Qamer, A.; Baig, S.; Fatima, R.; Hussain, A.; Mustunsar, Z.; Khan, A.; et al. Comparative Efficacy and Safety Profile of the Combination of Pulmonary Surfactant and Budesonide vs. Surfactant Alone in the Management of Neonatal Respiratory Distress Syndrome: An Updated Meta-Analysis. Medicina 2025, 61, 1329. https://doi.org/10.3390/medicina61081329
Fatima U, Naveed N, Riaz Z, Khalid E, Qamer A, Baig S, Fatima R, Hussain A, Mustunsar Z, Khan A, et al. Comparative Efficacy and Safety Profile of the Combination of Pulmonary Surfactant and Budesonide vs. Surfactant Alone in the Management of Neonatal Respiratory Distress Syndrome: An Updated Meta-Analysis. Medicina. 2025; 61(8):1329. https://doi.org/10.3390/medicina61081329
Chicago/Turabian StyleFatima, Urooj, Naveera Naveed, Zahra Riaz, Emaan Khalid, Aemon Qamer, Shehmeen Baig, Roshaan Fatima, Asawir Hussain, Zoya Mustunsar, Ayesha Khan, and et al. 2025. "Comparative Efficacy and Safety Profile of the Combination of Pulmonary Surfactant and Budesonide vs. Surfactant Alone in the Management of Neonatal Respiratory Distress Syndrome: An Updated Meta-Analysis" Medicina 61, no. 8: 1329. https://doi.org/10.3390/medicina61081329
APA StyleFatima, U., Naveed, N., Riaz, Z., Khalid, E., Qamer, A., Baig, S., Fatima, R., Hussain, A., Mustunsar, Z., Khan, A., Mangan, S., Kumari, M., Ali Qasim, S., Hasan, A., & Ahmed, R. (2025). Comparative Efficacy and Safety Profile of the Combination of Pulmonary Surfactant and Budesonide vs. Surfactant Alone in the Management of Neonatal Respiratory Distress Syndrome: An Updated Meta-Analysis. Medicina, 61(8), 1329. https://doi.org/10.3390/medicina61081329