Metal–Organic Framework-Based Membranes with High Selectivity for Non-Aqueous Redox Flow Battery
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Membrane Preparation
2.3. Permeability Test
2.4. Swelling Ratio Test
2.5. Electrochemical Test
2.6. Other Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, C.; Zhang, L.; Zhou, Y.; Yu, G. Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47, 69–103. [Google Scholar] [CrossRef]
- Chen, H.; Cong, G.; Lu, Y.-C. Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. J. Energy Chem. 2018, 27, 1304–1325. [Google Scholar] [CrossRef]
- Bang, H.; Kim, D.; Hwang, S.; Won, J. Surface-modified porous membranes with electrospun Nafion/PVA fibres for non-aqueous redox flow battery. J. Membr. Sci. 2016, 514, 186–194. [Google Scholar] [CrossRef]
- Muthuraman, G.; Boyeol, L.M. Il-Shik, Na-β-alumina as a separator in the development of all-vanadium non-aqueous tubular redox flow batteries: An electrochemical and charging-discharging examination using a prototype tubular redox flow cell. J. Electrochem. Soc. 2018, 165, A1920–A1924. [Google Scholar] [CrossRef]
- Zhang, C.; Niu, Z.; Ding, Y.; Zhang, L.; Zhou, Y.; Guo, X.; Zhang, X.; Zhao, Y.; Yu, G. Highly concentrated phthalimide-based anolytes for organic redox flow batteries with enhanced reversibility. Chem 2018, 4, 2814–2825. [Google Scholar] [CrossRef]
- Takechi, K.; Kato, Y.; Hase, Y. A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries. Adv. Mater. 2015, 27, 2501–2506. [Google Scholar] [CrossRef]
- Jia, C.; Pan, F.; Zhu, Y.; Huang, Q.; Lu, L.; Wang, Q. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Sci. Adv. 2015, 1, e1500886. [Google Scholar] [CrossRef]
- Pan, F.; Yang, J.; Huang, Q.; Wang, X.; Huang, H.; Wang, Q. Redox targeting of Anatase TiO2 for redox flow lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1400567. [Google Scholar] [CrossRef]
- Doris, S.; Ward, A.; Baskin, A.; Frischmann, P.; Gavvalapalli, N.; Chénard, E.; Sevov, C.; Prendergast, D.; Moore, J.; Helms, B. Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries. Angew. Chem. Int. Ed. Engl. 2017, 56, 1595–1599. [Google Scholar] [CrossRef]
- Shin, S.-H.; Kim, Y.; Yun, S.-H.; Maurya, S.; Moon, S.-H. Influence of membrane structure on the operating current densities of non-aqueous redox flow batteries: Organic-inorganic composite membranes based on a semi-interpenetrating polymer network. J. Power Sources 2015, 296, 245–254. [Google Scholar] [CrossRef]
- Lou, X.; Ye, J.; Xia, L.; Chang, S.; Zhao, X.; Wu, C.; Ding, M. Highly efficient and low cost SPEEK/TiO2 nanocomposite membrane for vanadium redox flow battery. J. Nanosci. Nanotechnol. 2019, 19, 2247–2252. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, C.; Yuan, J.; Zhen, Y.; Li, Y. Two-dimensional vermiculite nanosheets-modified porous membrane for non-aqueous redox flow batteries. J. Power Sources 2021, 500, 229987. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, C.; Liu, T.; Zhen, Y.; Pan, Z.; Li, Y. Two-dimensional metal-organic framework nanosheets-modified porous separator for non-aqueous redox flow batteries. J. Membr. Sci. 2020, 612, 118463. [Google Scholar] [CrossRef]
- Zhou, X.; Xue, R.; Zhong, Y.; Zhang, Y.; Jiang, F. Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries. J. Membr. Sci. 2020, 595, 117614. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Ma, Q.; Huang, Y.; Zhang, X.; Ping, J.; Zhang, Z.; Lu, Q.; Yu, Y.; Xu, H.; et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Han, W.; An, Q.-F.; Yong, K.-T.; Yin, M.-J. Defect engineering of MOF-based membrane for gas separation. Adv. Funct. Mater. 2023, 33, 2303447. [Google Scholar] [CrossRef]
- Lee, G.; Yoo, D.; Ahmed, I.; Lee, H.; Jhung, S. Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chem. Eng. J. 2023, 451, 138538. [Google Scholar] [CrossRef]
- Lee, D.; Yu, X.; Sikma, R.; Li, M.; Cohen, S.; Cai, G.; Chen, Z. Holistic design consideration of metal-organic framework-based composite membranes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 34742–34749. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, L.; Zhang, C.; Ding, Y.; Guo, X.; He, G.; Yu, G. Gradient-distributed metal-organic framework-based porous membranes for nonaqueous redox flow batteries. Adv. Energy Mater. 2018, 8, 1802533. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, C.; Qiu, Q.; Pan, Z.-Z.; Fan, L.; Zhao, Y.; Li, Y. Highly selective metal-organic framework-based (MOF-5) separator for non-aqueous redox flow battery. Chem. Eng. J. 2022, 433, 133564. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, C.; Li, Y. Molecular engineering the naphthalimide compounds as high-capacity anolyte for nonaqueous redox flow batteries. Chem. Eng. J. 2022, 439, 135766. [Google Scholar] [CrossRef]
- Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15, 1794–1801. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, X.; Li, Z.; Lin, Y. Synthesis, characterization and gas transport properties of MOF-5 membranes. J. Membr. Sci. 2011, 382, 82–90. [Google Scholar] [CrossRef]
- Kalaj, M.; Denny, M.; Bentz, K.; Palomba, J.; Cohen, S. Nylon-MOF composites through postsynthetic polymerization. Angew. Chem. Int. Ed. 2019, 58, 2336–2340. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Zhang, D.; Qu, K.; Lu, Y.; Wang, Y.; Huang, K.; Wang, Z.; Jin, W.; Xu, Z. Zr-MOF-enabled controllable ion sieving and proton conductivity in flow battery membrane. Adv. Funct. Mater. 2021, 31, 2104629. [Google Scholar] [CrossRef]
- Ue, M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J. Electrochem.Soc. 1994, 141, 3336. [Google Scholar] [CrossRef]
- Han, K.; Rajput, N.; Wei, X.; Wang, W.; Hu, J.; Persson, K.; Mueller, K. Diffusional motion of redox centers in carbonate electrolytes. J. Chem. Phys. 2014, 141, 104509. [Google Scholar] [CrossRef]
- Yuan, J.; Shi, X.; Qiu, Q.; Yao, P.; Xia, Y.; Zhao, Y.; Li, Y. Ion selective bifunctional metal-organic framework-based membrane for lithium metal-based nonaqueous redox flow battery. ACS Appl. Energy Mater. 2022, 6, 416–423. [Google Scholar] [CrossRef]
- Kim, D.; Song, J.; Won, J. Structural effects of anion exchange composite membranes in non-aqueous redox flow batteries. J. Membr. Sci. 2018, 564, 523–531. [Google Scholar] [CrossRef]
- Jung, J.; Won, J.; Hwang, S. Highly selective composite membranes using ladder-like structured polysilsesquioxane for a non-aqueous redox flow battery. J. Membr. Sci. 2020, 595, 117520. [Google Scholar] [CrossRef]
- Akhmetov, N.; Waris, Z.; Ryazantsev, S.; Lipovskikh, S.; Gvozdik, N.; Pogosova, M.; Stevenson, K. Towards durable Li-hybrid flow batteries: Composite membrane development, cell performance, and perspective. J. Mater. Chem. A 2023, 11, 19656–19668. [Google Scholar] [CrossRef]
- Kwon, G.; Lee, S.; Hwang, J.; Shim, H.-S.; Lee, B.; Lee, M.H.; Ko, Y.; Jung, S.-K.; Ku, K.; Hong, J.; et al. Multi-redox molecule for high-energy redox flow batteries. Joule 2018, 2, 1771–1782. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Xu, D.; Li, Y.; Zhang, C. Metal–Organic Framework-Based Membranes with High Selectivity for Non-Aqueous Redox Flow Battery. Processes 2025, 13, 2127. https://doi.org/10.3390/pr13072127
Zhu L, Xu D, Li Y, Zhang C. Metal–Organic Framework-Based Membranes with High Selectivity for Non-Aqueous Redox Flow Battery. Processes. 2025; 13(7):2127. https://doi.org/10.3390/pr13072127
Chicago/Turabian StyleZhu, Lifang, Donghan Xu, Yongdan Li, and Cuijuan Zhang. 2025. "Metal–Organic Framework-Based Membranes with High Selectivity for Non-Aqueous Redox Flow Battery" Processes 13, no. 7: 2127. https://doi.org/10.3390/pr13072127
APA StyleZhu, L., Xu, D., Li, Y., & Zhang, C. (2025). Metal–Organic Framework-Based Membranes with High Selectivity for Non-Aqueous Redox Flow Battery. Processes, 13(7), 2127. https://doi.org/10.3390/pr13072127