Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,116)

Search Parameters:
Keywords = material appearance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4661 KiB  
Article
Somatic Embryogenesis in Native Peruvian Fine-Flavor Cocoa Genotypes
by Karol Rubio, Santos Leiva, Manuel Oliva, Jorge R. Diaz-Valderrama and Juan Carlos Guerrero-Abad
Int. J. Plant Biol. 2025, 16(3), 84; https://doi.org/10.3390/ijpb16030084 (registering DOI) - 1 Aug 2025
Abstract
Cacao genotypes propagation through plant tissue culture represents a strategic approach for establishing a core collection of elite plants to be used as a donor material source, necessary for increasing new planting areas of cacao. This study aimed to evaluate somatic embryo regeneration [...] Read more.
Cacao genotypes propagation through plant tissue culture represents a strategic approach for establishing a core collection of elite plants to be used as a donor material source, necessary for increasing new planting areas of cacao. This study aimed to evaluate somatic embryo regeneration in ten native fine-aroma cacao genotypes (INDES-06, INDES-11, INDES-14, INDES-32, INDES-52, INDES-53, INDES-63, INDES-64, INDES-66, INDES-70) from the INDES-CES germplasm collection, under in vitro conditions using culture medium supplemented with different concentrations of Thidiazuron (0, 10, and 20 nM). Our results showed an average of 20 and 100% of callogenesis in all genotypes evaluated, but the callus development did not appear after early stages of its induction; however, primary somatic embryos were observed after 42 days after TDZ treatment in the INDES-52, INDES-53, INDES-64, INDES-66, INDES-70 genotypes. The INDES-52 genotype was more responsive to under 20 nM of TDZ, generating an average of 17 embryos per explant. This study contributes to the adaptation and establishment of a protocol for somatic embryo regeneration of fine-flavor cacao genotypes. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

11 pages, 1935 KiB  
Article
Segmental Renal Infarction Associated with Accessory Renal Arteries After Para-Aortic Lymphadenectomy in Gynecologic Malignancies
by Ayumi Kozai, Shintaro Yanazume, Fumitaka Ejima, Shuichi Tatarano, Yusuke Kobayashi, Rintaro Kubo, Shinichi Togami, Takashi Yoshiura and Hiroaki Kobayashi
Medicina 2025, 61(8), 1395; https://doi.org/10.3390/medicina61081395 - 1 Aug 2025
Abstract
Background and Objectives: The causes and clinical outcomes of renal perfusion abnormalities occurring after para-aortic lymphadenectomy (PANDx) for gynecologic malignancies are unknown. We investigated the potential involvement of accessory renal artery (ARA) obstruction in their development by reassessing perioperative contrast-enhanced computed tomography [...] Read more.
Background and Objectives: The causes and clinical outcomes of renal perfusion abnormalities occurring after para-aortic lymphadenectomy (PANDx) for gynecologic malignancies are unknown. We investigated the potential involvement of accessory renal artery (ARA) obstruction in their development by reassessing perioperative contrast-enhanced computed tomography (CECT). Materials and Methods: This retrospective study investigated a clinical database to identify urinary contrast defects using CECT in all patients who had undergone PANDx between January 2020 and December 2024. The perfusion defects in the kidney detected by CECT were extracted by a gynecologic oncologist and evaluated by a radiologist and urologist for suspected obstruction of ARAs. Results: Postoperative renal contrast defects were observed in 3.8% (6/157) of patients. Renal parenchymal fibrosis, cortical atrophy, and parenchymal thinning were observed as universal findings in all patients showing renal contrast defects. In five of the six cases, ARAs supplying the infarcted renal segments were identified on preoperative CECT, and arterial obstruction was confirmed on postoperative imaging. The remaining case was considered to be latent pyelonephritis. All five patients underwent laparotomy, and preoperative CECT failed to detect ARAs. The median resected para-aortic lymph node was 23 nodes (range: 15–33) in five patients, showing no statistically significant difference compared to patients without perfusion abnormalities (p = 0.19). Postoperative serum creatinine levels remained stable. Conclusions: ARA obstruction appears to be a risk factor for segmental renal infarction after para-aortic lymphadenectomy in gynecological malignancies; however, the clinical impact on urinary function may be limited. Awareness of this potential complication is essential for gynecologic oncologists performing PANDx. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

23 pages, 752 KiB  
Perspective
Quantum Artificial Intelligence: Some Strategies and Perspectives
by Marco Baioletti, Fabrizio Fagiolo, Corrado Loglisci, Vito Nicola Losavio, Angelo Oddi, Riccardo Rasconi and Pier Luigi Gentili
AI 2025, 6(8), 175; https://doi.org/10.3390/ai6080175 - 1 Aug 2025
Abstract
In the twenty-first century, humanity is compelled to face global challenges. Such challenges involve complex systems. However, science has some cognitive and predictive limits in dealing with complex systems. Some of these limits are related to computational complexity and the recognition of variable [...] Read more.
In the twenty-first century, humanity is compelled to face global challenges. Such challenges involve complex systems. However, science has some cognitive and predictive limits in dealing with complex systems. Some of these limits are related to computational complexity and the recognition of variable patterns. To overcome these limits, artificial intelligence (AI) and quantum computing (QC) appear to be helpful. Even more promising is quantum AI (QAI), which emerged from the combination of AI and QC. The combination of AI and QC produces reciprocal, synergistic effects. This work describes some of these effects. It shows that QC offers new materials for implementing AI and innovative algorithms for solving optimisation problems and enhancing machine learning algorithms. Additionally, it demonstrates how AI algorithms can help overcome many of the experimental challenges associated with implementing QC. It also outlines several perspectives for the future development of quantum artificial intelligence. Full article
(This article belongs to the Topic Recent Advances in Chemical Artificial Intelligence)
Show Figures

Graphical abstract

16 pages, 2968 KiB  
Article
The Effect of Collagen Membrane Fixation with Pins on Buccal Bone Regeneration in Immediate Dental Implant Sites: A Preclinical Study in Dogs
by Yuma Hazama, Takahisa Iida, Niklaus P. Lang, Fernando M. Muñoz Guzon, Giovanna Iezzi, Daniele Botticelli and Shunsuke Baba
J. Funct. Biomater. 2025, 16(8), 281; https://doi.org/10.3390/jfb16080281 (registering DOI) - 31 Jul 2025
Abstract
Background: The role of collagen membrane fixation during guided bone regeneration (GBR) remains debatable, particularly in post-extraction sockets with buccal defects and concomitant immediate implant placement. This study evaluated whether or not fixation with titanium pins improved regenerative outcomes. Methods: Six [...] Read more.
Background: The role of collagen membrane fixation during guided bone regeneration (GBR) remains debatable, particularly in post-extraction sockets with buccal defects and concomitant immediate implant placement. This study evaluated whether or not fixation with titanium pins improved regenerative outcomes. Methods: Six adult Beagle dogs received bilateral extractions of the fourth mandibular premolars. An implant was immediately placed in both the distal alveoli, and standardized buccal bone defects (5 mm height, 3–2 mm width) were prepared. All defects were filled with a slowly resorbing equine xenograft and covered by a resorbable pericardium membrane. At the test sites, the membrane was apically fixed with pins, while no fixation was applied to the control sites. After 3 months of healing, histomorphometric analyses were performed. Results: The vertical bone gain of the buccal crest was 3.2 mm in the test sites (pin group) and 2.9 mm in the control sites (no-pin) (p > 0.754). No significant difference was found in terms of bone-to-implant contact (BIC). However, residual graft particles were located significantly more coronally in the pin group compared to the no-pin group (p = 0.021). Morphometric analyses revealed similar new bone formation within the groups, but with higher amounts of residual xenograft and soft tissue in the pin group. Conclusions: Membrane fixation did not significantly enhance vertical bone gain, and although the slightly higher regeneration in the pin group (3.2 mm vs. 2.9 mm) may hold clinical relevance in esthetically sensitive areas and osseointegration, it appeared to limit coronal migration of the grafting material. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
16 pages, 4964 KiB  
Article
Setting Up a “Green” Extraction Protocol for Bioactive Compounds in Buckwheat Husk
by Anna R. Speranza, Francesca G. Ghidotti, Alberto Barbiroli, Alessio Scarafoni, Sara Limbo and Stefania Iametti
Int. J. Mol. Sci. 2025, 26(15), 7407; https://doi.org/10.3390/ijms26157407 (registering DOI) - 31 Jul 2025
Abstract
Buckwheat, a gluten-free pseudocereal, is rich in dietary fiber, minerals, high-quality proteins, vitamins, and essential amino acids. Buckwheat husk, a by-product of dehulling, contains high levels of bioactive compounds such as polyphenols and dietary fibers. This study compares green extraction methods (ultrasound-assisted extraction, [...] Read more.
Buckwheat, a gluten-free pseudocereal, is rich in dietary fiber, minerals, high-quality proteins, vitamins, and essential amino acids. Buckwheat husk, a by-product of dehulling, contains high levels of bioactive compounds such as polyphenols and dietary fibers. This study compares green extraction methods (ultrasound-assisted extraction, UAE; and microwave-assisted extraction, MAE) for recovering polyphenols from buckwheat husk. MAE improved polyphenol yield by 43.6% compared to conventional acidified methanol extraction. Structural and chemical analyses of the residual husk material using SEM, FTIR, and fiber analysis revealed that MAE alters husk properties, enhancing polyphenol accessibility. Thus, MAE appears an efficient and sustainable alternative to acid- and solvent-based extraction techniques. Extracts obtained via “green” methods retained strong antioxidant activity and showed significant modulation of inflammatory markers in human Caco-2 cells, highlighting the potential use of “green” buckwheat husk extracts for food and pharma applications. This work supports the valorization of buckwheat husk within a circular economy framework, promoting buckwheat husk as a valuable raw material for bioactive compound recovery in diverse applications. Full article
Show Figures

Figure 1

28 pages, 6188 KiB  
Article
Mechanical Behavior of Topology-Optimized Lattice Structures Fabricated by Additive Manufacturing
by Weidong Song, Litao Zhao, Junwei Liu, Shanshan Liu, Guoji Yu, Bin Qin and Lijun Xiao
Materials 2025, 18(15), 3614; https://doi.org/10.3390/ma18153614 (registering DOI) - 31 Jul 2025
Abstract
Lattice-based metamaterials have attracted much attention due to their excellent mechanical properties. Nevertheless, designing lattice materials with desired properties is still challenging, as their mesoscopic topology is extremely complex. Herein, the bidirectional evolutionary structural optimization (BESO) method is adopted to design lattice structures [...] Read more.
Lattice-based metamaterials have attracted much attention due to their excellent mechanical properties. Nevertheless, designing lattice materials with desired properties is still challenging, as their mesoscopic topology is extremely complex. Herein, the bidirectional evolutionary structural optimization (BESO) method is adopted to design lattice structures with maximum bulk modulus and elastic isotropy. Various lattice configurations are generated by controlling the filter radius during the optimization processes. Afterwards, the optimized lattices are fabricated using Stereo Lithography Appearance (SLA) printing technology. Experiments and numerical simulations are conducted to reveal the mechanical behavior of the topology-optimized lattices under quasi-static compression, which are compared with the traditional octet-truss (OT) and body-centered cubic (BCC) lattice structures. The results demonstrate that the topology-optimized lattices exhibited superior mechanical properties, including modulus, yield strength, and specific energy absorption, over traditional OT and BCC lattices. Moreover, apart from the elastic modulus, the yield stress and post-yield stress of the topology-optimized lattice structures with elastically isotropic constraints also present lower dependence on the loading direction. Accordingly, the topology optimization method can be employed for designing novel lattice structures with high performance. Full article
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 (registering DOI) - 31 Jul 2025
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

9 pages, 159 KiB  
Article
The Mask and the Giant: Shakespearean Acting and Reputation Management
by Darren Tunstall
Humanities 2025, 14(8), 159; https://doi.org/10.3390/h14080159 - 31 Jul 2025
Abstract
I use Shakespeare to teach acting to students. A key to my work is impression management: what Shakespeare called reputation. I view the management of reputation as a route into Shakespearean character, which I present to students as a mask attuned to sacred [...] Read more.
I use Shakespeare to teach acting to students. A key to my work is impression management: what Shakespeare called reputation. I view the management of reputation as a route into Shakespearean character, which I present to students as a mask attuned to sacred values. The physical basis from which the actor can discover the mask is what Hamlet calls ‘smoothness’, which I explain with an acting exercise. We discover the force of sacred values by noticing the ubiquity of keywords in the text such as honor, virtue, reason, shame and faith. By holding characters to the fire of their sacred values, I shift the actor’s attention from an individualist idea of authentic representation towards a sense of character as a battleground of mind-shaping. The resulting performance work is scaled up to a more expansive and energized degree than the actor may be used to delivering in a social media-saturated environment in which what is often prioritized is a quasi-confessional self-revelation. The revelation of an inner life then emerges through a committed exploration of antithetical relations, a strategy basic both to mask work and to Shakespeare’s poetics. The actor finds their personal connection to the material by facing the contradiction between the objective standards of behavior demanded of the character and the character’s attempt to control their status, that is, how they are seen. The final value of the performance work is that the actor learns how to manage their reputation so that they come to appear like a giant who is seen from a distance. Full article
25 pages, 1355 KiB  
Article
A Novel Radiology-Adapted Logistic Model for Non-Invasive Risk Stratification of Pigmented Superficial Skin Lesions: A Methodological Pilot Study
by Betül Tiryaki Baştuğ, Hatice Gencer Başol, Buket Dursun Çoban, Sinan Topuz and Özlem Türelik
Diagnostics 2025, 15(15), 1921; https://doi.org/10.3390/diagnostics15151921 (registering DOI) - 30 Jul 2025
Abstract
Background: Pigmented superficial skin lesions pose a persistent diagnostic challenge due to overlapping clinical and dermoscopic appearances between benign and malignant entities. While histopathology remains the gold standard, there is growing interest in non-invasive imaging models that can preoperatively stratify malignancy risk. This [...] Read more.
Background: Pigmented superficial skin lesions pose a persistent diagnostic challenge due to overlapping clinical and dermoscopic appearances between benign and malignant entities. While histopathology remains the gold standard, there is growing interest in non-invasive imaging models that can preoperatively stratify malignancy risk. This methodological pilot study was designed to explore the feasibility and initial diagnostic performance of a novel radiology-adapted logistic regression approach. To develop and preliminarily evaluate a new logistic model integrating both structural (lesion size, depth) and vascular (Doppler patterns) ultrasonographic features for non-invasive risk stratification of pigmented superficial skin lesions. Material and Methods: In this prospective single-center pilot investigation, 44 patients underwent standardized high-frequency grayscale and Doppler ultrasound prior to excisional biopsy. Lesion size, depth, and vascularity patterns were systematically recorded. Three logistic regression models were constructed: (1) based on lesion size and depth, (2) based on vascularity patterns alone, and (3) combining all parameters. Model performance was assessed via ROC curve analysis. Intra-observer reliability was determined by repeated measurements on a random subset. Results: The lesion size and depth model yielded an AUC of 0.79, underscoring the role of structural features. The vascularity-only model showed an AUC of 0.76. The combined model demonstrated superior discriminative ability, with an AUC of approximately 0.85. Intra-observer analysis confirmed excellent repeatability (κ > 0.80; ICC > 0.85). Conclusions: This pilot study introduces a novel logistic framework that combines grayscale and Doppler ultrasound parameters to enhance non-invasive malignancy risk assessment in pigmented superficial skin lesions. These encouraging initial results warrant larger multicenter studies to validate and refine this promising approach. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Management of Skin Diseases)
Show Figures

Figure 1

10 pages, 269 KiB  
Article
Similarities and Differences Between Patients Diagnosed with ANCA-Associated Vasculitis Who Are Positive and Negative for ANCA: University Clinic Practice and Expertise
by Giedre Dereseviciene, Jolanta Dadoniene and Dalia Miltiniene
Medicina 2025, 61(8), 1369; https://doi.org/10.3390/medicina61081369 - 29 Jul 2025
Viewed by 82
Abstract
Background and objective. Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) affects small- to medium-sized vessels and is characterized by the production of ANCAs. The ANCA-negative term is used if the patient otherwise fulfills the definition for AAV but has negative results on serologic testing [...] Read more.
Background and objective. Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) affects small- to medium-sized vessels and is characterized by the production of ANCAs. The ANCA-negative term is used if the patient otherwise fulfills the definition for AAV but has negative results on serologic testing for ANCAs. The objective of this study was to compare ANCA-positive and -negative vasculitis patients and to evaluate the main differences possibly related to the presence of ANCAs. Material and methods. A cross-sectional study of 73 patients treated at the tertiary Rheumatology Centre of University Hospital from the 1 January, 2001, to the 31August, 2023, with diagnoses of AAV was carried out. Clinical characteristics and laboratory data were collected at the onset or at the first year of the disease. Results. Forty-eight (65.8%) patients were ANCA-positive, while twenty-five (34.3%) were ANCA-negative. Distribution by gender was similar in both groups, with a female–male ratio of 2:1. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were elevated for all AAV patients, but values were higher in the ANCA-positive patients’ group. The median hemoglobin was 106 g/L in the seropositive group and 127 g/L in the seronegative group. A higher prevalence of kidney involvement (60.4%) with elevated serum creatinine level (93.5 µmol/L) was observed in the ANCA-positive group compared with 24% and 70 µmol/l in the ANCA-negative group (p < 0.05). Neurological involvement was more frequently found in the ANCA-positive patient group, too: 29.2% compared to 20%. Among patients with ANCA-negative vasculitis, 88% had pulmonary; 92% ear, nose, throat (ENT); 48% joint; and 28% skin presentation. In comparison, involvement of these organs was less common in the ANCA-positive patients’ group, at 79.2%, 60.4%, 31.3%, and 25 %, respectively. Conclusions. ANCA-positive patients appear to be in a more difficult clinical situation in terms of organ involvement and laboratory changes. Full article
(This article belongs to the Special Issue Recent Advances in Autoimmune Rheumatic Diseases: 2nd Edition)
21 pages, 3748 KiB  
Article
Synthesis of Jicama (Pachyrhizus erosus) Starch Particles by Electrospraying: Effect of the Hydrolysis Degree
by Fatima Sarahi Serrano-Villa, Eduardo Morales-Sánchez, José Alfredo Téllez-Morales, Verónica Cuellar-Sánchez, Reynold R. Farrera-Rebollo and Georgina Calderón-Domínguez
Polymers 2025, 17(15), 2069; https://doi.org/10.3390/polym17152069 - 29 Jul 2025
Viewed by 249
Abstract
Electrohydrodynamic atomization (EHDA) has significant advantages for microencapsulating compounds in various structures using biopolymers, where more research using pure starch is required. Concerning this, jicama starch and its hydrolysates have not yet been tested, despite their unique characteristics, which come from an alternative [...] Read more.
Electrohydrodynamic atomization (EHDA) has significant advantages for microencapsulating compounds in various structures using biopolymers, where more research using pure starch is required. Concerning this, jicama starch and its hydrolysates have not yet been tested, despite their unique characteristics, which come from an alternative low-value-added crop source. Rapid acid hydrolysis of jicama starch with H2SO4 resulted in dextrins with a degree of hydrolysis (DE) from 0.4 to 19% within 1–12 h, and syrup solids at 24 h (DE = 42%). This process modifies the water retention capacity of jicama starch, gel viscosity, surface tension, and electrical conductivity. Hydrolyzed starch particles obtained by electrospraying (10 kV, L = 10 cm, Q = 2 mL/h) showed Feret diameters and roundness significantly influenced (p ≤ 0.05) by the degree of hydrolysis rather than the concentration of solids. It was found that hydrolyzed jicama starch with a DE < 6.3% can be used as the sole wall material to form particles by electrospraying, as they facilitate the formation of stable and rounded like-microspheres particles; this was not feasible above this threshold. The results suggest that the jicama starch’s ability to be used as a wall material in the electrospray synthesis of particles or microspheres appears to be determined by the degree of hydrolysis. Full article
Show Figures

Graphical abstract

12 pages, 1087 KiB  
Article
Surveillance of Digoxin Concentrations in Critically Ill Individuals with Heart Failure
by Marek Grochla, Marcin Basiak, Ewa Sztohryn, Anna Szczepańska-Gumulak, Maciej Chylak, Bogusław Okopień and Piotr Knapik
Medicina 2025, 61(8), 1365; https://doi.org/10.3390/medicina61081365 - 28 Jul 2025
Viewed by 94
Abstract
Background and Objectives: Digoxin is a pharmacological agent of natural origin that is still occasionally administered in the intensive care unit (ICU). The objective of this study was to assess the efficacy of routine therapeutic drug monitoring (TDM) of digoxin in ICU patients [...] Read more.
Background and Objectives: Digoxin is a pharmacological agent of natural origin that is still occasionally administered in the intensive care unit (ICU). The objective of this study was to assess the efficacy of routine therapeutic drug monitoring (TDM) of digoxin in ICU patients with heart failure. Materials and Methods: This retrospective, single-center study was conducted using data from the ICU database of the Silesian Center for Heart Diseases in Zabrze, Poland. A total of 980 ICU admissions between January 2018 and July 2023 were screened, and 103 patients met the inclusion criteria. Patients were excluded if they had not received digoxin during hospitalization, had only one digoxin level measurement, or did not meet the established criteria for heart failure. Results: Women required significantly lower doses of digoxin compared to men (0.171 ± 0.053 mg vs. 0.224 ± 0.080 mg; p < 0.001). Patients who died had significantly higher serum digoxin concentrations than survivors (1.33 ± 0.59 ng/mL vs. 1.03 ± 0.43 ng/mL; p = 0.003). Similarly, patients with liver failure had higher digoxin levels compared to those without liver dysfunction (1.31 ± 0.58 ng/mL vs. 1.06 ± 0.46 ng/mL; p = 0.016). A weak negative correlation was found between age and the administered dose (r = −0.20; p = 0.048), and a weak positive correlation was observed between serum digoxin concentration and NT-proBNP levels (r = 0.23; p = 0.048). Conclusions: Among ICU patients with multi-organ failure, those with concomitant liver dysfunction tended to reach higher serum digoxin concentrations. Routine therapeutic drug monitoring of digoxin in ICU patients appears beneficial and may help to optimize dosing and reduce adverse effects. Full article
(This article belongs to the Special Issue New Insights into Heart Failure)
Show Figures

Figure 1

13 pages, 4630 KiB  
Article
Electrospun Polymeric Composite Fibers Containing Te-Doped Bioactive Glass Powders
by Marta Miola, Elisa Piatti, Francesco Iorio, Aldo R. Boccaccini and Enrica Verné
Polymers 2025, 17(15), 2057; https://doi.org/10.3390/polym17152057 - 28 Jul 2025
Viewed by 192
Abstract
In this work, the electrospinning technique was used to prepare novel polymeric composite fibers containing Te-doped bioactive glass powders. Bioactive glass powders containing tellurium (STe5 glass) were chosen as fillers for the composites, owing to their bioactive, antibacterial, and antioxidant properties. The biopolymer [...] Read more.
In this work, the electrospinning technique was used to prepare novel polymeric composite fibers containing Te-doped bioactive glass powders. Bioactive glass powders containing tellurium (STe5 glass) were chosen as fillers for the composites, owing to their bioactive, antibacterial, and antioxidant properties. The biopolymer poly (ϵ-caprolactone) (PCL) and acetic acid (AA) were used as raw materials for the preparation of the polymeric matrix. FESEM analysis confirmed a good incorporation of the glass powders in the polymeric fibers, of up to 20% by weight. Wettability, mechanical, in vitro stability and preliminary antibacterial tests were also performed. The results showed that the treatment in AA did not affect the bioactivity of the glass powders, the presence of STe5 powders in PCL enhanced the wettability of the fibers, and mechanical properties improved by increasing the amount of STe5 powders, as well as the antibacterial effect. Therefore, the obtained materials appear promising for developing multifunctional composite materials for applications in tissue engineering. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 2504 KiB  
Article
The Effect of the Interaction of Intense Low-Energy Radiation with a Zinc-Oxide-Based Material
by Ihor Virt, Piotr Potera, Nazar Barchuk and Mykola Chekailo
Crystals 2025, 15(8), 685; https://doi.org/10.3390/cryst15080685 - 28 Jul 2025
Viewed by 125
Abstract
Laser annealing of oxide functional thin films makes them compatible with substrates of various types, especially flexible materials. The effects of optical annealing on Ni-doped ZnO thin films were the subject of investigation and analysis in this study. Using pulsed laser deposition, we [...] Read more.
Laser annealing of oxide functional thin films makes them compatible with substrates of various types, especially flexible materials. The effects of optical annealing on Ni-doped ZnO thin films were the subject of investigation and analysis in this study. Using pulsed laser deposition, we deposited polycrystalline ZnNiO films on sapphire and silicon substrates. The deposited film was annealed by laser heating. A continuous CO2 laser was used for this purpose. The uniformly distributed long-wavelength radiation of the CO2 laser can penetrate deeper from the surface of the thin film compared to short-wavelength lasers such as UV and IR lasers. After growth, optical post-annealing processes were applied to improve the conductive properties of the films. The crystallinity and surface morphology of the grown films and annealed films were analyzed using SEM, and their electrical parameters were evaluated using van der Pauw effect measurements. We used electrical conductivity measurements and investigated the photovoltaic properties of the ZnNiO film. After CO2 laser annealing, changes in both the crystalline structure and surface appearance of ZnO were evident. Subsequent to laser annealing, the crystallinity of ZnO showed both change and degradation. High-power CO2 laser annealing changed the structure to a mixed grain size. Surface nanostructuring occurred. This was confirmed by SEM morphological studies. After irradiation, the electrical conductivity of the films increased from 0.06 Sm/cm to 0.31 Sm/cm. The lifetime of non-equilibrium charge carriers decreased from 2.0·10−9 s to 1.2·10−9 s. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

24 pages, 56885 KiB  
Article
Bio-Crafting Architecture: Experiences of Growing Mycelium in Minimal Surface Molds
by Anca-Simona Horvath, Alina Elena Voinea and Radu Adrian Arieșan
Sustainability 2025, 17(15), 6835; https://doi.org/10.3390/su17156835 - 28 Jul 2025
Viewed by 253
Abstract
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the [...] Read more.
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the one hand, this study investigated mycelium growth in 3D-printed minimal surface shapes using a wood-based filament, and on the other hand, it examined how both designers and the general public experience interacting with mycelium. Using a material-driven design research method, a workshop with architecture students was conducted where various triply periodic minimal surfaces were designed and 3D printed. These shapes were used as molds and impregnated with mycelium, and the growth of mycelium was analyzed visually and photographically. Data on the experiences of the 30 workshop participants of working with mycelium was collected through a survey and analyzed qualitatively. After exhibiting results of the workshop in a public-facing exhibition, semi-structured interviews with members of the general public about their perceptions of mycelium were conducted. Three-dimensionally printed minimal surfaces with wood-based filaments can function as structural cores for mycelium-based composites, and the density of the minimal surface appears to influence mycelium growth, which binds to wood-based filaments. Students exhibited stronger feelings for living materials compared to non-living ones, displaying both biophilia and, to a lesser extent, biophobia. Introducing hands-on workshops with living and experimental materials in design studio settings can help future generations of designers develop sensibilities for, and a critical approach towards, the impact of their design decisions on the environment and sustainability. The study also contributes empirical data on how members of the general public perceive mycelium as a material for design. Full article
Show Figures

Figure 1

Back to TopTop