Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (286)

Search Parameters:
Keywords = martensitic transformation stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5638 KiB  
Article
Influence of Heat Treatment on Precipitate and Microstructure of 38CrMoAl Steel
by Guofang Xu, Shiheng Liang, Bo Chen, Jiangtao Chen, Yabing Zhang, Xiaotan Zuo, Zihan Li, Bo Song and Wei Liu
Materials 2025, 18(15), 3703; https://doi.org/10.3390/ma18153703 - 6 Aug 2025
Abstract
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was [...] Read more.
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was computationally analyzed via the Thermo-Calc software, while the microstructure, fracture morphology, and precipitate characteristics were systematically investigated using a metallographic microscope (MM), a field-emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). Additionally, the effects of different holding times and cooling rates on the microstructure and precipitates of 38CrMoAl steel were also studied. The results show that the third brittle temperature region of 38CrMoAl steel is 645–1009 °C, and the fracture mechanisms can be classified into three types: (I) in the α single-phase region, the thickness of intergranular proeutectoid ferrite increases with rising temperature, leading to reduced hot ductility; (II) in the γ single-phase region, the average size of precipitates increases while the number density decreases with increasing temperature, thereby improving hot ductility; and (III) in the α + γ two-phase region, the precipitation of proeutectoid ferrite promotes crack propagation and the dense distribution of precipitates at grain boundaries causes stress concentration, further deteriorating hot ductility. Heat treatment experiments indicate that the microstructures of the specimen transformed under water cooling, air cooling, and furnace cooling conditions as follows: martensite + proeutectoid ferrite → bainite + ferrite → ferrite. The average size of precipitates first decreased, then increased, and finally decreased again with increasing holding time, while the number density exhibited the opposite trend. Therefore, when the holding time was the same, reducing the cooling rate could increase the average size of the precipitates and decrease their number density, thereby improving the hot ductility of 38CrMoAl steel. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

21 pages, 6163 KiB  
Article
Residual Stress and Corrosion Performance in L-PBF Ti6Al4V: Unveiling the Optimum Stress Relieving Temperature via Microcapillary Electrochemical Characterisation
by Lorenzo D’Ambrosi, Katya Brunelli, Francesco Cammelli, Reynier I. Revilla and Arshad Yazdanpanah
Metals 2025, 15(8), 855; https://doi.org/10.3390/met15080855 - 30 Jul 2025
Viewed by 294
Abstract
This study aims to determine the optimal low-temperature stress relieving heat treatment that minimizes residual stresses while preserving corrosion resistance in Laser Powder Bed Fusion (L-PBF) processed Ti6Al4V alloy. Specifically, it investigates the effects of stress relieving at 400 °C, 600 °C, and [...] Read more.
This study aims to determine the optimal low-temperature stress relieving heat treatment that minimizes residual stresses while preserving corrosion resistance in Laser Powder Bed Fusion (L-PBF) processed Ti6Al4V alloy. Specifically, it investigates the effects of stress relieving at 400 °C, 600 °C, and 800 °C on microstructure, residual stress, and electrochemical performance. Specimens were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical techniques. A novel microcapillary electrochemical method was employed to precisely assess passive layer stability and corrosion behaviour under simulated oral conditions, including fluoride contamination and tensile loading. Results show that heat treatments up to 600 °C effectively reduce residual stress with minimal impact on corrosion resistance. However, 800 °C treatment leads to a phase transformation from α′ martensite to a dual-phase α + β structure, significantly compromising passive film integrity. The findings establish 600 °C as the optimal stress-relieving temperature for balancing mechanical stability and electrochemical performance in biomedical and aerospace components. Full article
Show Figures

Figure 1

22 pages, 5346 KiB  
Article
Numerical Study of Stud Welding Temperature Fields on Steel–Concrete Composite Bridges
by Sicong Wei, Han Su, Xu Han, Heyuan Zhou and Sen Liu
Materials 2025, 18(15), 3491; https://doi.org/10.3390/ma18153491 - 25 Jul 2025
Viewed by 335
Abstract
Non-uniform temperature fields are developed during the welding of studs in steel–concrete composite bridges. Due to uneven thermal expansion and reversible solid-state phase transformations between ferrite/martensite and austenite structures within the materials, residual stresses are induced, which ultimately degrades the mechanical performance of [...] Read more.
Non-uniform temperature fields are developed during the welding of studs in steel–concrete composite bridges. Due to uneven thermal expansion and reversible solid-state phase transformations between ferrite/martensite and austenite structures within the materials, residual stresses are induced, which ultimately degrades the mechanical performance of the structure. For a better understanding of the influence on steel–concrete composite bridges’ structural behavior by residual stress, accurate simulation of the spatio-temporal temperature distribution during stud welding under practical engineering conditions is critical. This study introduces a precise simulation method for temperature evolution during stud welding, in which the Gaussian heat source model was applied. The simulated results were validated by real welding temperature fields measured by the infrared thermography technique. The maximum error between the measured and simulated peak temperatures was 5%, demonstrating good agreement between the measured and simulated temperature distributions. Sensitivity analyses on input current and plate thickness were conducted. The results showed a positive correlation between peak temperature and input current. With lower input current, flatter temperature gradients were observed in both the transverse and thickness directions of the steel plate. Additionally, plate thickness exhibited minimal influence on radial peak temperature, with a maximum observed difference of 130 °C. However, its effect on peak temperature in the thickness direction was significant, yielding a maximum difference of approximately 1000 °C. The thermal influence of group studs was also investigated in this study. The results demonstrated that welding a new stud adjacent to existing ones introduced only minor disturbances to the established temperature field. The maximum peak temperature difference before and after welding was approximately 100 °C. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 6308 KiB  
Article
Effect of Heat Treatment on Microstructure and Mechanical Properties of (TiB + TiC) /Ti-6Al-4V Composites Fabricated by Directed Energy Deposition
by Hai Gu, Guoqing Dai, Jie Jiang, Zulei Liang, Jianhua Sun, Jie Zhang and Bin Li
Metals 2025, 15(7), 806; https://doi.org/10.3390/met15070806 - 18 Jul 2025
Viewed by 267
Abstract
The titanium matrix composites (TMCs) fabricated via Directed Energy Deposition (DED) effectively overcome the issue of coarse columnar grains typically observed in additively manufactured titanium alloys. In this study, systematic annealing heat treatments were applied to in situ (TiB + TiC)/Ti-6Al-4V composites to [...] Read more.
The titanium matrix composites (TMCs) fabricated via Directed Energy Deposition (DED) effectively overcome the issue of coarse columnar grains typically observed in additively manufactured titanium alloys. In this study, systematic annealing heat treatments were applied to in situ (TiB + TiC)/Ti-6Al-4V composites to refine the microstructure and tailor mechanical properties. The results reveal that the plate-like α phase in the as-deposited composites gradually transforms into an equiaxed morphology with increasing annealing temperature and holding time. Notably, when the annealing temperature exceeds 1000 °C, significant coarsening of the TiC phase is observed, while the TiB phase remains morphologically stable. Annealing promotes decomposition of acicular martensite and stress relaxation, leading to a reduction in hardness compared to the as-deposited state. However, the reticulated distribution of the TiB and TiC reinforcement phases contributes to enhanced tensile performance. Specifically, the as-deposited composite achieves a tensile strength of 1109 MPa in the XOY direction, representing a 21.6% improvement over the as-cast counterpart, while maintaining a ductility of 2.47%. These findings demonstrate that post-deposition annealing is an effective strategy to regulate microstructure and achieve a desirable balance between strength and ductility in DED-fabricated titanium matrix composites. Full article
Show Figures

Figure 1

21 pages, 4377 KiB  
Article
Superelasticity in Shape Memory Alloys—Experimental and Numerical Investigations of the Clamping Effect
by Jakub Bryła and Adam Martowicz
Materials 2025, 18(14), 3333; https://doi.org/10.3390/ma18143333 - 15 Jul 2025
Viewed by 440
Abstract
Loading and clamping schemes significantly influence the behavior of shape memory alloys, specifically, the course of their solid-state transformations. This paper presents experimental and numerical findings regarding the nonlinear response of samples of the above-mentioned type of smart materials observed during tensile tests. [...] Read more.
Loading and clamping schemes significantly influence the behavior of shape memory alloys, specifically, the course of their solid-state transformations. This paper presents experimental and numerical findings regarding the nonlinear response of samples of the above-mentioned type of smart materials observed during tensile tests. Hysteretic properties were studied to elucidate the superelastic behavior of the tested and modeled samples. The conducted tensile tests considered two configurations of grips, i.e., the standard one, where the jaws transversely clamp a specimen, and the customized bollard grip solution, which the authors developed to reduce local stress concentration in a specimen. The characteristic impact of the boundary conditions on the solid phase transformation in shape memory alloys, present due to the specific clamping scheme, was studied using a thermal camera and extensometer. Martensitic transformation and the plateau region in the nonlinear stress–strain characteristics were observed. The results of the numerical simulation converged to the experimental outcomes. This study explains the complex nature of the phase changes in shape memory alloys under specific boundary conditions induced by a given clamping scheme. In particular, variation in the martensitic transformation course is identified as resulting from the stress distribution observed in the specimen’s clamping area. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

12 pages, 3788 KiB  
Article
The Combination of Direct Aging and Cryogenic Treatment Effectively Enhances the Mechanical Properties of 18Ni300 by Selective Laser Melting
by Yaling Zhang, Xia Chen, Bo Qu, Yao Tao, Wei Zeng and Bin Chen
Metals 2025, 15(7), 766; https://doi.org/10.3390/met15070766 - 8 Jul 2025
Viewed by 314
Abstract
This study systematically explores the synergistic effects of direct aging treatment (480 °C for 6 h) combined with cryogenic treatment (−196 °C for 8 h) on the mechanical properties and microstructural evolution of 18Ni300 maraging steel fabricated via selective laser melting (SLM). Three [...] Read more.
This study systematically explores the synergistic effects of direct aging treatment (480 °C for 6 h) combined with cryogenic treatment (−196 °C for 8 h) on the mechanical properties and microstructural evolution of 18Ni300 maraging steel fabricated via selective laser melting (SLM). Three conditions were investigated: as-built, direct aging (AT6), and direct aging plus cryogenic treatment (AT6C8). Microstructural characterization was performed using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), while the mechanical properties were evaluated via microhardness and tensile testing. The results show that the AT6C8 sample achieved the highest microhardness (635 HV0.5) and tensile strength (2180 MPa), significantly exceeding the as-built (311 HV0.5, 1182 MPa) and AT6 (580 HV0.5, 2012 MPa) samples. Cryogenic treatment induced a notable phase transformation from retained austenite (γ phase) to martensite (α phase), with the peak relative intensity ratio ranging from 1.42 (AT6) to 1.58 (AT6C8) in the XRD results. TEM observations revealed that cryogenic treatment refined lath martensite from 0.75 μm (AT6) to 0.24 μm (AT6C8) and transformed reversed austenite into thin linear structures at the martensite boundaries. The combination of direct aging and cryogenic treatment effectively enhances the mechanical properties of SLM-fabricated 18Ni300 maraging steel through martensite transformation, microstructural refinement, and increased dislocation density. This approach addresses the challenge of balancing strength improvement and residual stress relaxation. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

14 pages, 1520 KiB  
Article
Thermomechanical Parameters Modelling of Spring Force Elements Made of Shape Memory Alloys
by Olga Łastowska, Vitaliy Polishchuk and Andrii Poznanskyi
Materials 2025, 18(13), 3055; https://doi.org/10.3390/ma18133055 - 27 Jun 2025
Viewed by 359
Abstract
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion [...] Read more.
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion of a scalar internal variable that represents the evolution of the phase transformation within a phenomenological macroscopic model. This approach enables the deformation–force–temperature behaviour of SMA-based spring elements under cyclic loading to be accurately described. A set of constitutive equations was derived to describe reversible and residual strains, along with transformation start and finish conditions. Model parameters were calibrated using experimental data from VSP-1 and TN-1K SMA springs that were subjected to thermal cycling. The validation results show a high correlation between the theoretical predictions and the experimental data, with deviation margins of less than 6.5%. The model was then applied to designing and analysing thermosensitive actuator mechanisms for temperature control systems. This yielded accurate deformation–force characteristics, demonstrating low inertia and high repeatability. This approach enables the efficient prediction and improvement of the performance of SMA-based spring elements in actuators, making it relevant for adaptive systems in marine and aerospace applications. Full article
Show Figures

Figure 1

28 pages, 11508 KiB  
Article
Non-Destructive Integrity Assessment of Austenitic Stainless-Steel Membranes via Magnetic Property Measurements
by Haeng Sung Heo, Jinheung Park, Jehyun You, Shin Hyung Rhee and Myoung-Gyu Lee
Materials 2025, 18(12), 2898; https://doi.org/10.3390/ma18122898 - 19 Jun 2025
Viewed by 438
Abstract
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic [...] Read more.
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic stainless steel (SUS304L), widely used in CCS membranes, quantifying magnetic permeability increase via a Feritscope to evaluate deformation history and damage. To analyze SUS304L SIMT behavior, uniaxial tensile (UT) and equi-biaxial tensile (EBT) tests were conducted, as these stress states predominate in CCS membranes. Microstructural evolution was examined using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD), allowing a quantitative assessment of the transformed martensite volume fraction versus plastic strain. Subsequently, Feritscope measurements under the same conditions were calibrated against the XRD-measured martensite volume fraction for accuracy. Based on testing, this study introduces three complementary Feritscope approaches for evaluating CCS health: outlier detection, quantitative damaged area analysis, and time-series analysis. The methodology integrates data-driven quantitative assessment with conventional qualitative inspection, enhancing safety and maintenance efficiency. Full article
Show Figures

Figure 1

16 pages, 5770 KiB  
Article
Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys
by Li-Wei Tseng and Wei-Cheng Chen
Materials 2025, 18(12), 2842; https://doi.org/10.3390/ma18122842 - 16 Jun 2025
Viewed by 403
Abstract
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission [...] Read more.
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission electron microscope (TEM). The TEM results reveal that the average precipitate size is around 3–5 nm in the 600 °C/24 h samples, 6–8 nm in the 600 °C/48 h samples, and 10–12 nm in the 600 °C/72 h samples. The results indicate that precipitate size increases as aging time increases from 24 to 72 h. EDS analysis results show decreased Fe and increased Ni when the analyzed line crosses the precipitate region. The diffraction pattern results show that the precipitate has an L12 crystal structure. The thermo-magnetization curves of single crystals under the three aging conditions (600 °C/24 h, 600 °C/48 h, and 600 °C/72 h) show that the values of the transformation temperatures increased from 24 to 72 h. Magnetization was saturated at 140 emu/g under the magnetic field of 7 Tesla. When increasing the magnetic field from 0.05 to 7 Tesla, the transformation temperatures rose. The results indicate that magnetic fields can activate martensitic transformation. From the results of the superelasticity test at room temperature, [001]-oriented FeNiCoAlTiNb single crystals aged at 600 °C for 24, 48, and 72 h presented recoverable strains of 3%, 5.1%, and 2.6%, respectively. Digital image correlation (DIC) results of the aged samples show that two martensite variants were activated during the superelasticity test. The two variants form corresponding variant pairs (CVPs) and improve the recoverable strain of superelasticity. Although maximum recoverable strain was obtained for the 600 °C/48 h samples, the samples show poor cyclic stability at room temperature after applying the 6% strain. According to the DIC results, the retained martensite, which is pinned by dislocations, was observed after the test. The irrecoverable strain was attributed to the residual martensite. For the 600 °C/72 h samples, the large size of the precipitates poses an obstacle to dislocation transformation and formation. The dislocations increase the stress hysteresis width and stabilize the martensite, causing poor recoverability. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

16 pages, 2624 KiB  
Article
Grain Size Engineering and Tuning of Magnetic Properties in Ultra-Thin NiMnGa Glass-Coated Microwires: Insights from Annealing Effects
by Mohamed Salaheldeen, Valentina Zhukova, Julian Gonzalez and Arcady Zhukov
Crystals 2025, 15(6), 565; https://doi.org/10.3390/cryst15060565 - 16 Jun 2025
Cited by 1 | Viewed by 328
Abstract
We studied the influence of annealing on the magnetic properties and microstructure of ultrathin (metallic nucleus diameter ≈ 5 μm, total diameter ≈ 19 μm) Heusler-type NiMnGa glass-coated microwires prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa microwires exhibit unexpectedly strong magnetic anisotropy, [...] Read more.
We studied the influence of annealing on the magnetic properties and microstructure of ultrathin (metallic nucleus diameter ≈ 5 μm, total diameter ≈ 19 μm) Heusler-type NiMnGa glass-coated microwires prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa microwires exhibit unexpectedly strong magnetic anisotropy, characterized by a coercivity exceeding 3 kOe at room temperature. Furthermore, their Curie temperature (Tc) lies above room temperature. Additionally, a spontaneous exchange bias of approximately 120 Oe is observed in the as-prepared sample at 100 K. Annealing the microwires leads to a decrease in coercivity, spontaneous exchange bias, and Tc values. Notably, the annealing process shifts the Tc of the samples closer to room temperature, making them more suitable for magnetic solid-state refrigeration applications. Moreover, the hysteresis observed in the temperature dependence of magnetization for the samples annealed for 1 h and 2 h, along with the magnetic softening observed at around 260 K, is attributed to a first-order phase transformation. The observed changes are discussed in the context of internal stress relaxation after annealing, the nanocrystalline structure of both the as-prepared and annealed samples, the recrystallization process, and the magnetic ordering of phases identified in the as-prepared sample and those appearing during recrystallization. The glass coating on microwires offers benefits like better flexibility and resistance to damage and corrosion. However, it is important to recognize that this coating can substantially alter the microwires’ magnetic characteristics. Consequently, precise control over the annealing process is vital to obtain the specific martensitic transformation needed. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

14 pages, 6281 KiB  
Article
Martensitic Transformation Mechanism In Situ Observation for the Simulated Coarse-Grained Heat-Affected Zone of DP1180 Steel
by Wenjuan Li, Jinfeng Wang, Wenchao Su, Zhiyuan Wei, Jiaxin Wu, Xiaofei Xu and Jiaan Wei
Materials 2025, 18(12), 2721; https://doi.org/10.3390/ma18122721 - 10 Jun 2025
Viewed by 443
Abstract
The martensitic transformation mechanism in the heat-affected zone of DP1180 steel plays a decisive role in the strength of welded joints. In this work, the nucleation and growth kinetics of martensite laths in the coarse grain heat-affected zone (CGHAZ) are analyzed by a [...] Read more.
The martensitic transformation mechanism in the heat-affected zone of DP1180 steel plays a decisive role in the strength of welded joints. In this work, the nucleation and growth kinetics of martensite laths in the coarse grain heat-affected zone (CGHAZ) are analyzed by a high-temperature laser scanning confocal microscope (LSCM). The grain distribution and stress distribution of the samples after in situ observation are analyzed by electron backscatter diffraction (EBSD). The results reveal that austenite grain growth is realized by continuous grain boundary annexation and grain boundary migration of small grains by large grains during the heating process. Seven growth modes of CGHAZ martensitic laths under laser welding conditions are proposed. Additionally, the end growth of martensitic laths is mostly attributed to the collision with grain boundaries or other laths to form a complex interlocking structure. The results of this study could provide important data support for the development of dual-phase steel materials and improvement of welding quality. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 14180 KiB  
Article
Effect of Cr Content on Microstructure and Mechanical Properties of Heat Affected Zone in Supercritical Carbon Dioxide Transport Pipeline Steel
by Rui Hong, Xiaodan Zhu, Shubiao Yin, Nengsheng Liu, Shujun Jia, Yuxi Cao, Yuqin Qin and Qilin Ma
Materials 2025, 18(11), 2607; https://doi.org/10.3390/ma18112607 - 3 Jun 2025
Viewed by 451
Abstract
This study systematically investigates the influence mechanism of the element Cr on the mechanical properties of the heat-affected zone in pipeline steels for supercritical CO2 transportation. Microstructural evolution in the heat affected-zone was characterized through thermal simulation tests, Charpy impact testing (−10 [...] Read more.
This study systematically investigates the influence mechanism of the element Cr on the mechanical properties of the heat-affected zone in pipeline steels for supercritical CO2 transportation. Microstructural evolution in the heat affected-zone was characterized through thermal simulation tests, Charpy impact testing (−10 °C), and microhardness measurements, complemented by multiscale microscopic analyses (optical microscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy). The results demonstrate that Cr addition enhances the base metal’s resistance to supercritical CO2 corrosion but reduces its low-temperature impact toughness from 277 J to 235 J at −10 °C. Notably, the intercritical heat-affected zone exhibits severe embrittlement, with impact energy plummeting from 235 J (base metal) to 77 J. Microstructural analysis reveals that Cr interacts with carbon to form stable carbonitride particles, which reduce the free carbon concentration and diffusion coefficient in austenite, thereby inducing heterogeneous austenitization. Undissolved carbonitrides pin grain boundaries, creating carbon concentration gradients. During rapid cooling, these localized carbon-enriched microregions preferentially transform into core–shell-structured M-A constituent, characterized by a micro-twin containing retained austenite core encapsulated by high hardness lath martensite. The synergistic interaction between micro-twins and interfacial thermal mismatch stress induces localized stress concentration, triggering microcrack nucleation and subsequent toughness degradation. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

20 pages, 8428 KiB  
Review
Experimental Investigation of Phase Transformations in Steel Using X-Ray and Neutron Diffraction
by Yo Tomota, Stefanus Harjo, Pingguang Xu, Satoshi Morooka, Wu Gong and Yanxu Wang
Metals 2025, 15(6), 610; https://doi.org/10.3390/met15060610 - 28 May 2025
Viewed by 485
Abstract
The lattice parameters of both the product phase and the matrix phase have determined using in situ X-ray and neutron diffraction measurements during forward and reverse transformations in steels. The lattice parameters are well known to be influenced by various factors, including temperature, [...] Read more.
The lattice parameters of both the product phase and the matrix phase have determined using in situ X-ray and neutron diffraction measurements during forward and reverse transformations in steels. The lattice parameters are well known to be influenced by various factors, including temperature, internal stresses induced by transformation strains, partitioning of alloying elements, crystal defects, and magnetic strains. Therefore, it is crucial to accurately disentangle the contributions of these factors to the observed changes in lattice parameters. This review examines the evaluation of internal strain (stress) associated with ferrite, pearlite, bainite, martensite, and reverse austenite transformations, with a particular emphasis on the distinction between diffusional and displacive transformations. Additionally, the effects of plastic deformation of austenite on the bainite or martensite transformation are discussed. In this context, the roles of dislocations and vacancies are highlighted as key areas for further investigation. Full article
Show Figures

Figure 1

17 pages, 4438 KiB  
Article
Coordinated Regulation of Mechanical Behavior and Residual Stress of 9Cr-3W-3Co Steel Based on Jominy Test
by Hongru Lyu, Lin Zhu, Qingxian Ma, Jie Huo, Jiamian Liu and Zhuolin Wang
Materials 2025, 18(11), 2508; https://doi.org/10.3390/ma18112508 - 26 May 2025
Viewed by 400
Abstract
Heat-resistant steel 9Cr-3W-3Co is one of the most important materials of advanced ultra-supercritical units. Investigating the quenching performance of 9Cr-3W-3Co material and optimizing its post-quenching microstructural mechanical properties and residual stress distribution are crucial for ensuring the service performance of large forgings. In [...] Read more.
Heat-resistant steel 9Cr-3W-3Co is one of the most important materials of advanced ultra-supercritical units. Investigating the quenching performance of 9Cr-3W-3Co material and optimizing its post-quenching microstructural mechanical properties and residual stress distribution are crucial for ensuring the service performance of large forgings. In this paper, the relevant research was carried out based on the combination of numerical simulation and the Jominy end-quenching test. The microstructure evolution and mechanical properties formation mechanism under different austenitizing temperatures were studied first. Furthermore, considering the residual stress distribution, the heat treatment parameters were optimized. The results showed that the martensite, grain refinement, and carbide distribution of the material were the key factors affecting the hardness after the quenching process. When the austenitizing temperature was 950 °C, a hardness of more than 35 HRC can be obtained within a 50 mm depth after quenching. Meanwhile, on the basis of balancing thermal stress and phase transformation stress, the maximum residual stress decreased by 11.8% compared with that obtained at a 1000 °C austenitizing temperature, dropping to 608 MPa. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

19 pages, 10410 KiB  
Article
Influence of Cu on the Mechanical and Shape Memory Properties of TiNi Alloys
by Luzhou Dong, Weifang Mann and Bo He
Materials 2025, 18(10), 2407; https://doi.org/10.3390/ma18102407 - 21 May 2025
Viewed by 469
Abstract
The significant phase transformation hysteresis in TiNi alloys limits their performance. To address this, copper (Cu) was added as an alloying element to reduce hysteresis. This study synthesized three compositions of Ti50Ni50−xCux (x = 0, 5, 7 [...] Read more.
The significant phase transformation hysteresis in TiNi alloys limits their performance. To address this, copper (Cu) was added as an alloying element to reduce hysteresis. This study synthesized three compositions of Ti50Ni50−xCux (x = 0, 5, 7 at.%) shape memory alloys (SMAs) via vacuum arc melting to optimize the Cu content. The alloys were homogenized through hot rolling to maintain stable mechanical and shape memory properties. The hot-rolled Ti50Ni45Cu5 alloy demonstrated excellent shape memory behavior, achieving 100% thermal recovery after one cycle at 4% and 6% strain and 99.2% recovery after six cycles at 4% strain. It also exhibited outstanding mechanical performance, with a tensile strength of 900 MPa and 40% elongation. Microscopic analysis using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) revealed that Cu preferentially segregates at grain boundaries, suppressing the formation of the Ti2(Ni,Cu) phase. This moderate segregation, combined with hot rolling, promotes the reprecipitation and uniform distribution of phases, reducing the likelihood of premature fracture caused by stress concentration during deformation. The moderate thickness and uniformly distributed martensite, as well as the Type II twins with strong deformation ability, significantly improved the shape memory properties of Ti50Ni45Cu5. This study provides valuable insights into the microscopic mechanisms influenced by Cu in TiNi alloys and proposes a novel strategy for controlling precipitate phases through adjustments in alloy composition and optimized processing conditions. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

Back to TopTop