Experimental Investigation of Phase Transformations in Steel Using X-Ray and Neutron Diffraction
Abstract
1. Introduction
2. Reverse Austenite Transformation During Continuous Heating
3. Ferrite and Pearlite Transformations During Continuous Cooling
4. Pearlite Transformation During Isothermal Holding
5. Bainite Transformation During Isothermal Holding
6. Martensitic Transformation During Quenching
7. Tempering of a Martensitic Steel Containing Retained Austenite
8. Effect of Thermo-Mechanically Controlled Processing (TMCP) on Lattice Parameters During Phase Transformations
9. Concluding Remarks and Future Investigations Expected
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ND | Neutron diffraction |
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
EBSD | Electron backscatter diffraction |
TMCP | Thermo-mechanically controlled processing |
FWHM | Full width at a half maximum |
CMWP | Convolutional multiple whole profile |
References
- Tomota, Y.; Sekido, N.; Harjo, S.; Kawasaki, T.; Gong, W.; Taniyama, A. In situ observation on transformation behavior upon heating in a 1.5Mn-1.5Si-0.2C steel. ISIJ Int. 2017, 57, 2237–2244. [Google Scholar] [CrossRef]
- Wang, Y.; Tomota, Y.; Ohmura, T.; Morooka, S.; Gong, W.; Harjo, S. Real time observation of martensite transformation for a 0.4C low alloyed steel by neutron diffraction. Acta Mater. 2020, 184, 30–40. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Bainite-unanswered questions and why they matter. In Proceedings of the 7th Internal Symposium on Steel Science (ISSS 2024), Kyoto, Japan, 11–14 November 2024; pp. 19–28. [Google Scholar] [CrossRef]
- Babu, S.S.; Specht, E.D.; David, S.A.; Karapetrova, E.; Zschack, P.; Peet, M.; Bhadeshia, H.K.D.H. Time-resolved X-ray diffraction investigation of austenite and transformation to bainite. In Proceedings of the 1st International Symposium on Steel Science (ISSS-2007), Kyoto, Japan, 16–19 May 2007; pp. 93–99. [Google Scholar]
- Stone, H.J.; Peet, M.J.; Bhadeshia, H.K.D.H.; Withers, P.J.; Babu, S.S.; Specht, E.D. Synchrotron X-ray studies of austenite and bainitic ferrite. Proc. R. Soc. A Math. Phys. Eng. Sci. 2008, 464, 1009–1027. [Google Scholar] [CrossRef]
- Koo, M.; Xu, P.G.; Tomota, Y.; Suzuki, H. Bainitic transformation behavior studied by simultaneous neutron diffraction and dilatometric measurement. Scr. Mater. 2009, 61, 797–800. [Google Scholar] [CrossRef]
- Oishi, R.; Yonemura, M.; Nishimaki, Y.; Torii, S.; Hoshikawa, A.; Ishigaki, T.; Morishima, T.; Mori, K.; Kamiyama, T. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods Phys. Sect. A 2009, 600, 94–96. [Google Scholar] [CrossRef]
- Oishi-Tomiyasu, R.; Yonemura, M.; Morishima, T.; Hoshikawa, A.; Torii, S.; Ishigaki, T.; Kamiyama, T. Application of matrix decomposition algorithms for singular matrices to the Pawley method in Z-Rietveld. J. Appl. Crystallogr. 2012, 45, 299–308. [Google Scholar] [CrossRef]
- Tomota, Y.; Gong, W.; Harjo, S.; Shinozaki, T. Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction. Scr. Mater. 2017, 133, 79–82. [Google Scholar] [CrossRef]
- Shinozaki, T.; Tomota, Y.; Fukino, T.; Suzuki, T. Microstructure evoution during reverse transformation of austenite from tempered martensite in low alloy steel. ISIJ Int. 1917, 57, 533–539. [Google Scholar] [CrossRef]
- Tomota, Y.; Wang, Y.X.; Ohmura, T.; Sekido, N.; Harjo, S.; Kawasaki, T.; Gong, W.; Taniyama, A. In situ neutron diffraction study on ferrite and pearlite transformations for a 1.5Mn-1.5Si-0.2C steel. ISIJ Int. 2018, 58, 2125–2132. [Google Scholar] [CrossRef]
- Onink, M.; Brakman, C.M.; Tichelaar, F.D.; Mittemeijer, E.J.; der Zwaag, S.V.; Root, J.H.; Konyer, N.B. The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature. Scr. Metall. Materiallia 1993, 29, 1011–1016. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; David, S.A.; Vitek, J.M.; Reed, R.W.; Technol, M.S. Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel. Mater. Sci. Technol. 1991, 7, 686–698. [Google Scholar] [CrossRef]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Phys. Soc. A 1957, 241, 376–396. [Google Scholar]
- Mori, T.; Tanaka, K. Average stress in martix and average elastic energy of ma- terials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Tomota, Y.; Kuroki, K.; Mori, T.; Tamura, I. Tensile Deformation of Two-Ductile-PhaseAlloys -Flow Curves of α-γ Fe-Cr-Ni Alloys. Mater. Sci. Eng. 1976, 24, 858. [Google Scholar] [CrossRef]
- Wang, Y.; Tomota, Y.; Ohmura, T.; Gong, W.; Harjo, S. Evolution of austenite lattice parameter during isothermal transformation in 0.4 C low alloyed steels. Materialia 2023, 27, 101685. [Google Scholar] [CrossRef]
- Chalermkarnnon, P.; Araki, H.; Shirai, Y. Excess vacancies induced by disorder-order phase transformation in Ni3Fe. Mater. Trans. 2002, 43, 1486–1488. [Google Scholar] [CrossRef]
- Shirai, Y. Behavior of vacancies in aluminum watched by positrons. J. Jpn. Inst. Light Met. 2006, 56, 629–634. (In Japanese) [Google Scholar] [CrossRef]
- Miyamoto, G.; Shibata, A.; Maki, T.; Furuhara, T. Precise measurement of strain accommodation in austenite matrix surrounding martensite in ferrous alloys by electron backscatter diffraction analysis. Acta Mater. 2009, 57, 1120–1131. [Google Scholar] [CrossRef]
- Gong, W.; Tomota, Y.; Su, Y.H.; Harjo, S. Effect of Prior Martensite on Bainite Transformation in Nanobainite Steel. Acta Mater. 2015, 85, 243–249. [Google Scholar] [CrossRef]
- Tanaka, Y.; Shimizu, K. Anomalous changes in austenite and martensite lattice parameter of Fe-Mn-C alloys. Trans. JIM 1980, 21, 42–51. [Google Scholar] [CrossRef]
- Hayakawa, M.; Oka, M. On the change in the austenite lattice parameter due to the martensitic transformation in an Fe-32Ni alloy. Acta Metall. 1983, 31, 955–959. [Google Scholar] [CrossRef]
- Ullakko, K.; Gavriljuk, V.G. Effects of choerent interfaces in the freshly formed iron-nickel-carbon martensites. Acta Metall. Mater. 1992, 40, 2471–2482. [Google Scholar] [CrossRef]
- Harjo, S.; Suzuki, T.; Tomota, Y.; Kamiyama, T.; Torii, S. In situ neturon diffraction during martensitic transformation bysubzero cooling in an Fe-33Ni alloy. J. Phys. Soc. Jpn. 2001, 70, 537–539. [Google Scholar]
- Nakada, N.; Ishibashi, Y.; Tsuchiyama, T.; Takaki, S. Self-stabilization of untransformed austenite by hydrostatic pressure via martensitic transformation. Acta Mater. 2016, 110, 95102. [Google Scholar] [CrossRef]
- Villa, M.; Pantleon, K.; Somers, M.A.J. Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering. Acta Mater. 2014, 65, 383–392. [Google Scholar] [CrossRef]
- Villa, M.; Niessen, F.; Somers, M.A.J. In situ investigation of the evolution of lattice strain and stresses in austenite and martensite during quenching and tempering of steel. Metall. Mater. Trans. A 2018, 49, 28–40. [Google Scholar] [CrossRef]
- Gong, W.; Harjo, S.; Tomota, Y.; Morooka, S.; Kawasaki, T.; Shibata, A.; Tsuji, N. Lattice parameters of austenite and martensite during transformation for 18Ni alloy investigated through in-situ neutron diffraction. Acta Mater. 2023, 250, 118860. [Google Scholar] [CrossRef]
- Ungár, T.; Cubicza, J.; Ribárik, G.; Borbély, A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Cryst. 2001, 34, 298–310. [Google Scholar] [CrossRef]
- Ribárik, G.; Ungár, T. Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis. Mater. Sci. Eng. A 2010, 528, 112–121. [Google Scholar] [CrossRef]
- Yamashita, T.; Harjo, S.; Kawasaki, T.; Morooka, S.; Gong, W.; Fujii, H.Y. Tomota: Martensitic Transformation Behavior of Fe-Ni-C Alloys monitored by In-situ Neutron Diffraction during Cryogenic Cooling. ISIJ Int. 2023, 64, 192–201. [Google Scholar] [CrossRef]
- Hutching, M.; Withers, P.J.; Holden, T.M.; Lorentzen, T. Introduction to the Characterization of Residual Stress by Neutron Diffraction; Taylor & Francis: Abingdon-on-Thames, UK, 2004; pp. 203–262. [Google Scholar]
- Tomota, Y.; Luk, P.; Neov, D.; Harjo, S.; Abe, Y.R. In situ neutron diffraction during tensile deformation of a ferrite-cementite steel. Acta Mater. 2003, 51, 805–817. [Google Scholar] [CrossRef]
- Harjo, S.; Tomota, Y.; Ono, M. Measurements of thermal residual elastic strains in ferrite–austenite Fe–Cr–Ni alloys by neutron and X-ray diffractions. Acta Mater. 1998, 47, 353–362. [Google Scholar] [CrossRef]
- Ledbetter, H.M.; Reed, R.P. Elastic properties of metals and alloys, I. Iron, nickel, and iron-nickel alloys. J. Phys. Chem. Ref. Data 1973, 2, 531–618. [Google Scholar] [CrossRef]
- Shi, Z.; Tomota, Y.; Harjo, S.; Chi, B.; Pu, J.; Jian, L. In-situ Neutron Diffraction Study on Tempering Behavior of Lath Martensite. Mater. Charact. 2015, 107, 29–32. [Google Scholar] [CrossRef]
- Xu, P.G.; Tomota, Y.; Lukas, P.; Muransky, O.; Adachi, Y. Austenite-to-Ferrite Transformation and Phase Strain Evolution in Low Alloy Steels during Thermomchanically Controlled Process Studied by In Situ Neutron Diffraction. Mater. Sci. Eng. A 2006, 434–435, 46–53. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Godfrey, E.; Kockelmann, W.; Paradowska, A.; Bull, M.J.; Korsunsky, A.M.; Abbey, B.; Xu, P.; Tomota, Y.; Liljedahl, D.; et al. High-tech composites to ancient metals. Mater. Today 2009, 12, 78–84. [Google Scholar] [CrossRef]
- Xu, P.G.; Tomota, Y.; Arakaki, Y.; Harjo, S.; Sueyoshi, H. Evaluation of austenite volume fraction in TRIP steel using neutron diffraction. Mater. Charact. 2017, 127, 104–110. [Google Scholar] [CrossRef]
- Shi, Z.; Tomota, Y.; Harjo, S.; Su, Y.H.; Chi, B.; Jian, L. Effect of non-isothermal deformation of austenite on ferrite transformation behavior studied by in-situ neutron diffraction. Mater. Sci. Eng. A 2015, 631, 153–159. [Google Scholar] [CrossRef]
- Gong, W.; Tomota, Y.; Adachi, Y.; Paradowska, A.M.; Kelleher, J.F.; Zhang, S.Y. Effect of Ausforming Temperature on Bainite Transformation, Microstructure and Variant Selection in a Nano-Bainite Steel. Acta Mater. 2013, 61, 4142–4154. [Google Scholar] [CrossRef]
- Yada, H.; Li, C.M.; Yamagata, H. Dynamic γ→α transformation during hot deformation in iron-nickel-carbon alloys. ISIJ Int. 2000, 40, 200–206. [Google Scholar] [CrossRef]
- Shibata, A.; Takeda, Y.; Park, N.; Zhao, L.J.; Harjo, S.; Kawasaki, T.; Gong, W.; Tsuji, N. Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing. Scr. Mater. 2019, 165, 44–49. [Google Scholar] [CrossRef]
- Li, L.; Miyamoto, G.; Zhang, Y.; Li, M.; Morooka, S.; Oikawa, K.; Tomota, Y.; Furuhara, T. Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy. J. Mater. Sci. Technol. 2023, 184, 221–234. [Google Scholar] [CrossRef]
- Xu, P.G.; Tomota, Y.; Oliver, E.C. Dynamic Recrystallization and Dynamic Precipitation Behavior of a Fe-17Ni-0.2C Martensite Steel Studied by In Situ Neutron Diffraction. ISIJ Int. 2008, 48, 1618–1625. [Google Scholar] [CrossRef]
- Tomota, Y. Crystallographic characterization of steel microstructure using neutron diffraction. Sci. Technol. Adv. Mater. 2020, 20, 1189–1206. [Google Scholar] [CrossRef]
- Larsen, C.B.; Samothrakitis, S.; Worcek, R.; Polatidis, E.; Capek, J.; Upadhyay, M.V.; Tovar, M.; Schmidt, S.; Strobl, M. Exploring grain-resolubed strain tensors and non-uniform lattice deformations with Laue 3DNDT. Acta Mater. 2025, 289, 120869. [Google Scholar] [CrossRef]
- Hayashi, Y.; Kimura, H. Scanning Three-Dimensional X-ray Diffraction Microscopy for Carbon Steels. Quantum Beam Sci. 2023, 7, 23. [Google Scholar] [CrossRef]
- Yan, J.; Dong, W.; Shi, P.; Li, T.; Liu, W.; Wang, Y.; Wand, X.; Zhu, Y.; Ren, Y. Synchrotron x-ray study on heterostructued materials. JOM 2023, 75, 1423–1434. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomota, Y.; Harjo, S.; Xu, P.; Morooka, S.; Gong, W.; Wang, Y. Experimental Investigation of Phase Transformations in Steel Using X-Ray and Neutron Diffraction. Metals 2025, 15, 610. https://doi.org/10.3390/met15060610
Tomota Y, Harjo S, Xu P, Morooka S, Gong W, Wang Y. Experimental Investigation of Phase Transformations in Steel Using X-Ray and Neutron Diffraction. Metals. 2025; 15(6):610. https://doi.org/10.3390/met15060610
Chicago/Turabian StyleTomota, Yo, Stefanus Harjo, Pingguang Xu, Satoshi Morooka, Wu Gong, and Yanxu Wang. 2025. "Experimental Investigation of Phase Transformations in Steel Using X-Ray and Neutron Diffraction" Metals 15, no. 6: 610. https://doi.org/10.3390/met15060610
APA StyleTomota, Y., Harjo, S., Xu, P., Morooka, S., Gong, W., & Wang, Y. (2025). Experimental Investigation of Phase Transformations in Steel Using X-Ray and Neutron Diffraction. Metals, 15(6), 610. https://doi.org/10.3390/met15060610