Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,208)

Search Parameters:
Keywords = markers of exposure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6929 KiB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 (registering DOI) - 1 Aug 2025
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Figure 1

24 pages, 2572 KiB  
Article
Hair Levels of Lead, Cadmium, Selenium, and Their Associations with Neurotoxicity and Hematological Biomarkers in Children from the Mojana Region, Colombia
by Jenny Palomares-Bolaños, Jesus Olivero-Verbel and Karina Caballero-Gallardo
Molecules 2025, 30(15), 3227; https://doi.org/10.3390/molecules30153227 (registering DOI) - 1 Aug 2025
Abstract
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing [...] Read more.
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing their relationship with neurotoxicity and hematological markers. The mean Pb concentrations at the study sites were 1.98 µg/g (Magangue) > 1.51 µg/g (Achi) > 1.24 µg/g (Arjona). A similar pattern was observed for Cd concentrations for Magangue (0.39 µg/g) > Achi (0.36 µg/g) > Arjona (0.14 µg/g). In contrast, Se concentrations followed a different trend for Arjona (0.29 µg/g) > Magangue (0.21 µg/g) > Achi (0.16 µg/g). The proportion of Se/Pb molar ratios > 1 was higher in Arjona (3.8%) than in Magangue (0.9%) and Achi (2.0%). For Se/Cd ratios, values > 1 were also more frequent in Arjona (70.7%), exceeding 20% in the other two locations. Significant differences were found among locations in red and white blood cell parameters and platelet indices. Neurotransmitter-related biomarkers, including serotonin, monoamine oxidase A (MAO-A), and acetylcholinesterase levels, also varied by location. Principal component analysis showed that Pb and Cd had high loadings on the same component as PLT, WBC, and RDW, and while Se loaded together with HGB, PDW, MCHC, MCH, and MCV, suggesting distinct hematological patterns associated with each element. Multiple linear regression analysis demonstrated a statistically significant inverse association between hair Pb levels and serotonin concentrations. Although MAO-A and Cd showed negative β coefficients, these associations were not statistically significant after adjustment. These findings highlight the potential impact of toxic element exposure on key hematological and neurochemical parameters in children, suggesting early biological alterations that may compromise health and neurodevelopment. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

19 pages, 4690 KiB  
Article
Immune-Redox Biomarker Responses to Short- and Long-Term Exposure to Naturally Emitted Compounds from Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa): In Vivo Study
by Hui Ma, Jiyoon Yang, Chang-Deuk Eom, Johny Bajgai, Md. Habibur Rahman, Thu Thao Pham, Haiyang Zhang, Won-Joung Hwang, Seong Hoon Goh, Bomi Kim, Cheol-Su Kim, Keon-Ho Kim and Kyu-Jae Lee
Toxics 2025, 13(8), 650; https://doi.org/10.3390/toxics13080650 (registering DOI) - 31 Jul 2025
Abstract
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert [...] Read more.
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert diverse health effects ranging from mild respiratory irritation to severe outcomes, such as formaldehyde-induced carcinogenicity. The temporal dynamics of VOC emissions were investigated, and the toxicological and physiological effects of the VOCs emitted by two types of natural wood, Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa), were evaluated. Using female C57BL/6 mice as an animal model, the exposure setups included phytoncides, formaldehyde, and intact wood samples over short- and long-term durations. The exposure effects were assessed using oxidative stress markers, antioxidant enzyme activity, hepatic and renal biomarkers, and inflammatory cytokine profiles. Long-term exposure to Korean Red Pine and Japanese Cypress wood VOCs did not induce significant pathological changes. Japanese Cypress exhibited more distinct benefits, including enhanced oxidative stress mitigation, reduced systemic toxicity, and lower pro-inflammatory cytokine levels compared to the negative control group, attributable to its more favorable VOC emission profile. These findings highlight the potential health and environmental benefits of natural wood VOCs and offer valuable insights for optimizing timber use, improving indoor air quality, and informing public health policies. Full article
Show Figures

Figure 1

18 pages, 2436 KiB  
Article
Integrated Cytotoxicity and Metabolomics Analysis Reveals Cell-Type-Specific Responses to Co-Exposure of T-2 and HT-2 Toxins
by Weihua He, Zuoyin Zhu, Jingru Xu, Chengbao Huang, Jianhua Wang, Qinggong Wang, Xiaohu Zhai and Junhua Yang
Toxins 2025, 17(8), 381; https://doi.org/10.3390/toxins17080381 (registering DOI) - 30 Jul 2025
Abstract
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four [...] Read more.
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four porcine cell types: intestinal porcine epithelial cells (IPEC-J2), porcine Leydig cells (PLCs), porcine ear fibroblasts (PEFs), and porcine hepatocytes (PHs). Cell viability assays revealed a dose-dependent reduction in viability across all cell lines, with relative sensitivities in the order: IPEC-J2 > PLCs > PEFs > PHs. Synergistic cytotoxicity was observed at low concentrations, while antagonistic interactions emerged at higher doses. Untargeted metabolomic profiling identified consistent and significant metabolic perturbations in four different porcine cell lines under co-exposure conditions. Notably, combined treatment with T-2 and HT-2 resulted in a uniform downregulation of LysoPC (22:6), LysoPC (20:5), and LysoPC (20:4), implicating disruption of membrane phospholipid integrity. Additionally, glycerophospholipid metabolism was the most significantly affected pathway across all cell lines. Ether lipid metabolism was markedly altered in PLCs and PEFs, whereas PHs displayed a unique metabolic response characterized by dysregulation of tryptophan metabolism. This study identified markers of synergistic toxicity and common alterations in metabolic pathways across four homologous porcine cell types under the combined exposure to T-2 and HT-2 toxins. These findings enhance the current understanding of the molecular mechanisms underlying mycotoxin-induced the synergistic toxicity. Full article
Show Figures

Graphical abstract

39 pages, 498 KiB  
Review
Oxidative Stress and Neurotoxicity Biomarkers in Fish Toxicology
by Grzegorz Formicki, Zofia Goc, Bartosz Bojarski and Małgorzata Witeska
Antioxidants 2025, 14(8), 939; https://doi.org/10.3390/antiox14080939 (registering DOI) - 30 Jul 2025
Abstract
Exposure to xenobiotics causes pathophysiological changes in fish, including oxidative stress and neurotoxicity. Here, we describe the biochemical mechanisms underlying oxidative stress (i.e., redox imbalance) and the biochemical markers commonly used to assess its level. Neurotoxicity biomarkers used in fish include behavioral, histological, [...] Read more.
Exposure to xenobiotics causes pathophysiological changes in fish, including oxidative stress and neurotoxicity. Here, we describe the biochemical mechanisms underlying oxidative stress (i.e., redox imbalance) and the biochemical markers commonly used to assess its level. Neurotoxicity biomarkers used in fish include behavioral, histological, molecular, neurotransmitter-related, and enzymatic parameters, among which acetylcholinesterase (AChE) activity is the most commonly measured. We therefore also review the changes in AChE activity in fish exposed to common xenobiotics. In most cases, AChE activity decreased in a concentration- and time-dependent manner, although some studies reported no change or even an increase. We emphasize the relevance of all the parameters discussed in the context of fish toxicology studies. Full article
(This article belongs to the Special Issue Reactive Oxygen Species Signalling and Oxidative Stress in Fish)
8 pages, 374 KiB  
Communication
Analyzing 8-Oxoguanine in Exhaled Breath Condensate: A Novel Within-Subject Laboratory Experimental Study on Waterpipe Smokers
by Natasha Shaukat, Tarana Ferdous, Simanta Roy, Sharika Ferdous, Sreshtha Chowdhury, Leonardo Maya, Anthony Paul DeCaprio, Wasim Maziak and Taghrid Asfar
Antioxidants 2025, 14(8), 929; https://doi.org/10.3390/antiox14080929 - 29 Jul 2025
Viewed by 124
Abstract
Introduction: This study aimed to analyze exhaled breath condensate (EBC) for 8-oxoguanine (8-oxoGua), an oxidative stress biomarker among waterpipe (WP) smokers. Methods: In a within-subject pre-post exposure design, thirty waterpipe smokers completed two 45 min laboratory sessions. EBC was analyzed for 8-oxoGua before [...] Read more.
Introduction: This study aimed to analyze exhaled breath condensate (EBC) for 8-oxoguanine (8-oxoGua), an oxidative stress biomarker among waterpipe (WP) smokers. Methods: In a within-subject pre-post exposure design, thirty waterpipe smokers completed two 45 min laboratory sessions. EBC was analyzed for 8-oxoGua before and after WP smoking. Median differences between time points (pre vs. post) were assessed using the Wilcoxon sign rank test, with significance defined as p < 0.05. Results: The analysis included 59 WP smoking sessions. Participants had a median age of 24 years (IQR: 21–25), with 62.1% being female. Most had a bachelor’s degree or less (62.1%), and over half were students (55.2%), while 34.5% were employed. The average age for first WP use was 18.6 years, with participants reporting a median of three WP smoking sessions per month. Results indicate a median increase in 8-oxoGua among participants from 5.4 ng/mL (IQR: 8.8) before the smoking session to 7.6 ng/mL after (IQR: 15.7; p < 0.001). Conclusions: This study is the first to examine 8-oxoGua in EBC. Findings provide strong evidence of WP smoking’s contribution to oxidative stress in the airways. It justifies the use of EBC to study the exposure to markers of oxidative stress with emerging tobacco use methods such as the waterpipe. Full article
(This article belongs to the Special Issue Cigarette Smoke and Oxidative Stress)
Show Figures

Figure 1

27 pages, 5430 KiB  
Article
Gene Monitoring in Obesity-Induced Metabolic Dysfunction in Rats: Preclinical Data on Breast Neoplasia Initiation
by Francisco Claro, Joseane Morari, Camila de Angelis, Emerielle Cristine Vanzela, Wandir Antonio Schiozer, Lício Velloso and Luis Otavio Zanatta Sarian
Int. J. Mol. Sci. 2025, 26(15), 7296; https://doi.org/10.3390/ijms26157296 - 28 Jul 2025
Viewed by 220
Abstract
Obesity and metabolic dysfunction are established risk factors for luminal breast cancer, yet current preclinical models inadequately recapitulate the complex metabolic and immune interactions driving tumorigenesis. To develop and characterize an immunocompetent rat model of luminal breast cancer induced by chronic exposure to [...] Read more.
Obesity and metabolic dysfunction are established risk factors for luminal breast cancer, yet current preclinical models inadequately recapitulate the complex metabolic and immune interactions driving tumorigenesis. To develop and characterize an immunocompetent rat model of luminal breast cancer induced by chronic exposure to a cafeteria diet mimicking Western obesogenic nutrition, female rats were fed a cafeteria diet or standard chow from weaning. Metabolic parameters, plasma biomarkers (including leptin, insulin, IGF-1, adiponectin, and estrone), mammary gland histology, tumor incidence, and gene expression profiles were longitudinally evaluated. Gene expression was assessed by PCR arrays and qPCR. A subgroup underwent dietary reversal to assess the reversibility of molecular alterations. Cafeteria diet induced significant obesity (mean weight 426.76 g vs. 263.09 g controls, p < 0.001) and increased leptin levels without altering insulin, IGF-1, or inflammatory markers. Histological analysis showed increased ductal ectasia and benign lesions, with earlier fibroadenoma and luminal carcinoma development in diet-fed rats. Tumors exhibited luminal phenotype, low Ki67, and elevated PAI-1 expression. Gene expression alterations were time point specific and revealed early downregulation of ID1 and COX2, followed by upregulation of MMP2, THBS1, TWIST1, and PAI-1. Short-term dietary reversal normalized several gene expression changes. Overall tumor incidence was modest (~12%), reflecting early tumor-promoting microenvironmental changes rather than aggressive carcinogenesis. This immunocompetent cafeteria diet rat model recapitulates key metabolic, histological, and molecular features of obesity-associated luminal breast cancer and offers a valuable platform for studying early tumorigenic mechanisms and prevention strategies without carcinogen-induced confounders. Full article
(This article belongs to the Special Issue Genomic Research in Carcinogenesis, Cancer Progression and Recurrence)
Show Figures

Figure 1

18 pages, 278 KiB  
Review
Biomarkers over Time: From Visual Contrast Sensitivity to Transcriptomics in Differentiating Chronic Inflammatory Response Syndrome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
by Ming Dooley
Int. J. Mol. Sci. 2025, 26(15), 7284; https://doi.org/10.3390/ijms26157284 - 28 Jul 2025
Viewed by 245
Abstract
Chronic inflammatory response syndrome (CIRS) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are debilitating multisystem illnesses that share overlapping symptoms and molecular patterns, including immune dysregulation, mitochondrial impairment, and vascular dysfunction. This review provides a chronological synthesis of biomarker development in CIRS, tracing its [...] Read more.
Chronic inflammatory response syndrome (CIRS) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are debilitating multisystem illnesses that share overlapping symptoms and molecular patterns, including immune dysregulation, mitochondrial impairment, and vascular dysfunction. This review provides a chronological synthesis of biomarker development in CIRS, tracing its evolution from early functional tests such as visual contrast sensitivity (VCS) to advanced transcriptomic profiling. Drawing on peer-reviewed studies spanning two decades, we examine the layered integration of neuroendocrine, immunologic, metabolic, and genomic markers that collectively support a multisystem model of innate immune activation specific to environmentally acquired illness. Particular focus is given to the Gene Expression: Inflammation Explained (GENIE) platform’s use of transcriptomics to classify disease stages and distinguish CIRS from other fatiguing conditions. While ME/CFS research continues to explore overlapping pathophysiologic features, it has yet to establish a unified diagnostic model with validated biomarkers or exposure-linked mechanisms. As a result, many patients labeled with ME/CFS may, in fact, represent unrecognized CIRS cases. This review underscores the importance of structured biomarker timelines in improving differential diagnosis and guiding treatment in complex chronic illness and highlights the reproducibility of the CIRS framework in contrast to the diagnostic ambiguity surrounding ME/CFS. Full article
23 pages, 3864 KiB  
Article
Seeing Is Craving: Neural Dynamics of Appetitive Processing During Food-Cue Video Watching and Its Impact on Obesity
by Jinfeng Han, Kaixiang Zhuang, Debo Dong, Shaorui Wang, Feng Zhou, Yan Jiang and Hong Chen
Nutrients 2025, 17(15), 2449; https://doi.org/10.3390/nu17152449 - 27 Jul 2025
Viewed by 240
Abstract
Background/Objectives: Digital food-related videos significantly influence cravings, appetite, and weight outcomes; however, the dynamic neural mechanisms underlying appetite fluctuations during naturalistic viewing remain unclear. This study aimed to identify neural activity patterns associated with moment-to-moment appetite changes during naturalistic food-cue video viewing [...] Read more.
Background/Objectives: Digital food-related videos significantly influence cravings, appetite, and weight outcomes; however, the dynamic neural mechanisms underlying appetite fluctuations during naturalistic viewing remain unclear. This study aimed to identify neural activity patterns associated with moment-to-moment appetite changes during naturalistic food-cue video viewing and to examine their relationships with cravings and weight-related outcomes. Methods: Functional magnetic resonance imaging (fMRI) data were collected from 58 healthy female participants as they viewed naturalistic food-cue videos. Participants concurrently provided continuous ratings of their appetite levels throughout video viewing. Hidden Markov Modeling (HMM), combined with machine learning regression techniques, was employed to identify distinct neural states reflecting dynamic appetite fluctuations. Findings were independently validated using a shorter-duration food-cue video viewing task. Results: Distinct neural states characterized by heightened activation in default mode and frontoparietal networks consistently corresponded with increases in appetite ratings. Importantly, the higher expression of these appetite-related neural states correlated positively with participants’ Body Mass Index (BMI) and post-viewing food cravings. Furthermore, these neural states mediated the relationship between BMI and food craving levels. Longitudinal analyses revealed that the expression levels of appetite-related neural states predicted participants’ BMI trajectories over a subsequent six-month period. Participants experiencing BMI increases exhibited a significantly greater expression of these neural states compared to those whose BMI remained stable. Conclusions: Our findings elucidate how digital food cues dynamically modulate neural processes associated with appetite. These neural markers may serve as early indicators of obesity risk, offering valuable insights into the psychological and neurobiological mechanisms linking everyday media exposure to food cravings and weight management. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

17 pages, 1525 KiB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Viewed by 303
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

15 pages, 1019 KiB  
Article
A Preliminary Approach to Oral Low-Dose Ketamine Self-Administration in Mice (Mus musculus)
by Cláudia A. Rocha, Luís Sampaio, Luís M. Félix, Sandra M. Monteiro, Luís Antunes and Carlos Venâncio
Curr. Issues Mol. Biol. 2025, 47(8), 592; https://doi.org/10.3390/cimb47080592 - 27 Jul 2025
Viewed by 158
Abstract
With ketamine gaining attention as a therapeutic drug, oral administration offers an effective alternative to traditional parenteral routes. However, a significant gap remains in understanding its use via voluntary ingestion. This preliminary study aimed to explore the feasibility of oral ketamine self-administration in [...] Read more.
With ketamine gaining attention as a therapeutic drug, oral administration offers an effective alternative to traditional parenteral routes. However, a significant gap remains in understanding its use via voluntary ingestion. This preliminary study aimed to explore the feasibility of oral ketamine self-administration in mice (Mus musculus), while investigating the effects of low concentrations on the brain, liver, and kidney. Adult mice were divided into three groups and received ketamine in their drinking water for 16 days at 0 (control), 5 (K5), or 10 mg/L (K10). A transient decrease in water consumption was observed in both sexes in the K10 group; however, only females in this group showed differences in ketamine intake between groups on some days. Oxidative stress markers measured in the brain, liver, and kidney only revealed higher catalase activity in the brains of females. No significant alterations were observed in liver and kidney function in either sex, nor in inflammation, apoptosis, or DNA damage in kidney tissues. Overall, these findings support the viability of voluntary oral ketamine administration and accentuate the need to refine the proposed model, not only to prevent water consumption inhibition but also to extend the exposure period, explore potential sex-related differences in ketamine intake, and further confirm the safety of oral ketamine administration. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

15 pages, 6637 KiB  
Article
Toxic Effects of Povidone-Iodine on Macrobrachium rosenbergii: Concentration-Dependent Responses in Oxidative Stress, Immunosuppression, and Recovery Potential
by Tianhui Jiao, Yakun Wang, Jie Wei, Sikai Xu, Qiaoyan Zhou, Xidong Mu and Lingyun Yu
Animals 2025, 15(15), 2196; https://doi.org/10.3390/ani15152196 - 25 Jul 2025
Viewed by 197
Abstract
Povidone-iodine (PVP-I), a widely used aquaculture disinfectant, remains poorly understood in terms of sublethal toxicity and damage reversibility. This study employed Macrobrachium rosenbergii as the model organism to evaluate the acute toxicity and sublethal effects of PVP-I through a 4-day exposure experiment followed [...] Read more.
Povidone-iodine (PVP-I), a widely used aquaculture disinfectant, remains poorly understood in terms of sublethal toxicity and damage reversibility. This study employed Macrobrachium rosenbergii as the model organism to evaluate the acute toxicity and sublethal effects of PVP-I through a 4-day exposure experiment followed by a 7-day depuration period. Acute toxicity tests enabled the determination of 24–96 h median lethal concentrations (LC50), with the 96 h LC50 being 5.67 mg/L and the safe concentration (SC) being 1.37 mg/L. Based on this, three sublethal concentrations (1.14, 1.89, and 2.84 mg/L) were tested over a 4-day exposure followed by a 7-day depuration period. Investigated endpoints included gill ultrastructure, apoptosis, and antioxidant and immune-related gene expression. Subacute exposure at 1.89 and 2.84 mg/L induced mitochondrial vacuolization, upregulated apoptosis-related genes (Cyt-c, Caspase-3, Bok), and downregulated antioxidant gene expression (SOD, CAT, GSH-Px). The high-concentration group also showed sustained Toll-like receptor (Toll) gene overexpression and acid phosphatase (ACP) gene suppression. After depuration, antioxidant gene expression normalized; however, apoptotic markers in gill tissue remained impaired. Overall, high PVP-I concentrations cause irreversible gill damage via mitochondrial-mediated apoptosis, whereas lower concentrations (≤1.14 mg/L) allow for greater recovery. These results offer crucial toxicodynamic insights for safer PVP-I use and risk assessment in M. rosenbergii aquaculture. Full article
(This article belongs to the Special Issue Ecotoxicology in Aquatic Animals: 2nd Edition)
Show Figures

Figure 1

24 pages, 4278 KiB  
Article
Nanoplastic Disrupts Intestinal Homeostasis in Immature Rats by Altering the Metabolite Profile and Gene Expression
by Justyna Augustyniak, Beata Toczylowska, Beata Dąbrowska-Bouta, Kamil Adamiak, Grzegorz Sulkowski, Elzbieta Zieminska and Lidia Struzynska
Int. J. Mol. Sci. 2025, 26(15), 7207; https://doi.org/10.3390/ijms26157207 - 25 Jul 2025
Viewed by 112
Abstract
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because [...] Read more.
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because they are able to freely cross biological barriers, posing health risks, particularly to developing organisms. Therefore, the aim of the current study was to investigate the toxic potential of polystyrene nanoparticles (PS-NPs) on the jejunum of immature rats. Two-week-old animals were orally exposed to environmentally relevant dose of small PS-NPs (1 mg/kg b.w.; 25 nm) for 3 weeks. We detected a significant accumulation of PS-NPs in the epithelium and subepithelial layer of the intestine, which resulted in significant changes in the expression of genes related to gut barrier integrity, nutrient absorption, and endocrine function. Moreover, increased expression of proinflammatory cytokines was observed together with decreased antioxidant capacity and increased markers of oxidative damage to proteins. Additionally, in the jejunal extracts of exposed rats, we also noted changes in the metabolite profile, mainly amino acids involved in molecular pathways related to cellular energy, inflammation, the intestinal barrier, and protein synthesis, which were consistent with the observed molecular markers of inflammation and oxidative stress. Taken together, the results of the metabolomic, molecular, and biochemical analyses indicate that prolonged exposure to PS-NPs may disrupt the proper function of the intestine of developing organisms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

10 pages, 217 KiB  
Article
Systemic Effects of Enzymatic Necrosectomy in Minor Burn Wounds Using NexoBrid®
by David Breidung, Moritz Billner, Felix Ortner, Philipp von Imhoff, Simonas Lapinskas, Konrad Karcz, Sarina Delavari and Denis Ehrl
J. Pers. Med. 2025, 15(8), 330; https://doi.org/10.3390/jpm15080330 - 25 Jul 2025
Viewed by 203
Abstract
Background/Objectives: Enzymatic debridement with NexoBrid® is an effective alternative to surgical debridement in burn care, but its potential systemic effects remain unclear. In the context of personalized burn care, understanding individual patient responses to topical agents is essential to optimize outcomes and [...] Read more.
Background/Objectives: Enzymatic debridement with NexoBrid® is an effective alternative to surgical debridement in burn care, but its potential systemic effects remain unclear. In the context of personalized burn care, understanding individual patient responses to topical agents is essential to optimize outcomes and minimize risks. This study aimed to characterize laboratory and clinical parameter changes following NexoBrid® application in patients with small burn injuries (≤10% TBSA). Methods: We retrospectively analyzed 75 burn patients treated with NexoBrid® to evaluate changes in systemic inflammatory markers, coagulation parameters, and clinical parameters before and after enzymatic debridement. Results: Statistically significant increases in body temperature (p = 0.018), decreases in hemoglobin (p < 0.001), and increases in C-reactive protein (CRP) levels (p < 0.001) were observed, suggesting mild systemic inflammatory changes. However, leukocyte counts did not change significantly (p = 0.927), and body temperature remained within the normothermic range, indicating that these changes were not clinically significant. A significant decrease in the prothrombin time ratio (% of normal; p = 0.002) was also observed, suggesting potential impacts on coagulation. Importantly, while body temperature was slightly higher in patients with a higher degree of BSA exposure within the ≤10% TBSA cohort (p = 0.036), the extent of NexoBrid® application did not correlate with other inflammatory markers. Conclusions: These findings suggest that measurable systemic changes can occur following NexoBrid® application in small burns, particularly affecting inflammatory and coagulation parameters. These observations contribute to the understanding of treatment-related responses and may help inform clinical decision-making. Full article
(This article belongs to the Special Issue Plastic Surgery: New Perspectives and Innovative Techniques)
12 pages, 632 KiB  
Article
Tailoring Inflammatory Biomarker Assessment in Axial Spondyloarthritis: A Comparative Study of Erythrocyte Sedimentation Rate and C-Reactive Protein Across Disease Profiles
by Rubén Queiro, Sara Alonso, Stefanie Burger, Estefanía Pardo, Ignacio Braña, Marta Loredo and Mercedes Alperi
J. Pers. Med. 2025, 15(8), 329; https://doi.org/10.3390/jpm15080329 - 25 Jul 2025
Viewed by 209
Abstract
Background: Personalized medicine in axial spondyloarthritis (axSpA) requires accurate tools to assess inflammation and tailor disease monitoring. The role of traditional biomarkers such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) remains controversial due to limited sensitivity and variability across disease [...] Read more.
Background: Personalized medicine in axial spondyloarthritis (axSpA) requires accurate tools to assess inflammation and tailor disease monitoring. The role of traditional biomarkers such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) remains controversial due to limited sensitivity and variability across disease profiles. Objective: To compare the performance of ESR and CRP in different clinical scenarios of axSpA, including disease activity, functional impact, severity, disease duration, and exposure to biologic therapy. Methods: We conducted a cross-sectional analysis of 330 patients with axSpA. Correlations among ESR, CRP, and composite disease indices were evaluated. The discriminatory capacity of each biomarker for relevant clinical thresholds was analyzed using ROC curves and optimal cut-offs identified by the Youden index. Results: ESR showed broader correlations with disease impact and activity scores than CRP. While both markers had low sensitivity overall, they were highly specific for identifying patients with very high disease activity in select scenarios. ESR ≥ 8.5 mm/h and CRP ≥ 1.88 mg/dL were strongly discriminatory in patients not exposed to biologics. CRP ≥ 0.56 mg/dL showed good performance in early disease. Conclusions: Both ESR and CRP provide complementary insights into disease activity in axSpA. ESR may offer a broader reflection of disease burden beyond inflammation. These results support a more personalized biomarker strategy in real-world axSpA management, adapted to patient profile and treatment context. Full article
Show Figures

Figure 1

Back to TopTop