Toxic Effects of Povidone-Iodine on Macrobrachium rosenbergii: Concentration-Dependent Responses in Oxidative Stress, Immunosuppression, and Recovery Potential
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Maintenance
2.2. Median Lethal Concentration (LC50) of PVP-I on M. rosenbergii
2.3. PVP-I Exposure Experiment
2.4. RNA Extraction, cDNA Synthesis, and Real-Time Quantitative PCR (qPCR)
2.5. Determination of Antioxidative Parameters
2.6. TUNEL Assay
2.7. Transmission Electron Microscopy (TEM)
2.8. Statistical Analysis
3. Results
3.1. Acute Toxic Effects of PVP-I on M. rosenbergii
3.2. Expression of Hepatopancreatic Immunity-Related Genes
3.3. Antioxidant System Response in the Hepatopancreas
3.4. Expression of Apoptosis-Related Genes in Gill Tissues
3.5. Ultrastructural Damage to Gill Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PVP-I | Povidone-iodine |
LC50 | Median lethal concentrations |
SC | Safe concentration |
Toll | Toll-like receptor |
ACP | Acid phosphatase |
C. carpio | Cyprinus carpio |
TEM | Transmission electron microscopy |
qPCR | Quantitative PCR |
SOD | Superoxide dismutase |
CAT | Catalase |
GSH-Px | Glutathione peroxidase |
TUNEL | Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling |
Bok | B cell lymphoma 2 ovarian killer |
Cyt-c | Cytochrome c |
HSP70 | Heat shock protein 70 gene |
References
- Pradeepkiran, J.A. Aquaculture role in global food security with nutritional value: A review. Transl. Anim. Sci. 2019, 3, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, X.Y.; Yue, F.J.; Lang, Y.C.; Ding, H.; Li, X.D.; Li, S.; Liu, X. Nitrous Oxide Emissions at Aquaculture Ponds in the coastal zone of the Bohai Rim Region of China: Impacts of eutrophication and feeding practice. Environ. Pollut. 2025, 371, 125959. [Google Scholar] [CrossRef] [PubMed]
- Li, X.S.; Guan, L.F.; Liu, C.Y.; Chen, J.P.; He, X.; Li, Y.W.; Wang, S.; Qin, Q.; Yang, M. Co-infection by RGNNV and V. rotiferianus in golden pompano: Insights into disease risks and immune responses. Aquaculture 2025, 600, 742188. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, C.X.; Li, K.; Su, J.Q.; Zhu, G.F.; Liu, L. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes. Water Res. 2015, 70, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Jampani, M.; Javier, M.S.; Chandrasekar, A.; Despo, F.K.; Graham, D.W.; Gothwal, R.; Moodley, A.; Chadag, V.M.; Wiberg, D.; Langan, S. Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. J. Hazard. Mater. 2024, 461, 132527. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.Y.; Zhu, H.; Yan, B.X.; Xu, Y.Y.; Shutes, B. Treatment of typical antibiotics in constructed wetlands integrated with microbial fuel cells: Roles of plant and circuit operation mode. Chemosphere 2020, 250, 126252. [Google Scholar] [CrossRef] [PubMed]
- Opal, M.S. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. Crit. Care 2016, 20, 397. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Jiang, W.P.; Liu, S.L.; Chi, M.L.; Zheng, J.B.; Liu, Y.N.; Hang, X.; Peng, M.; Li, F.; Wang, D. Effects of disinfectants, sponge densities, water circulation rates, and vibration frequency on the artificial incubation of redclaw crayfish embryos. Aquaculture 2023, 570, 739374. [Google Scholar] [CrossRef]
- Jussila, J.; Makkonen, J.; Kokko, H. Peracetic acid (PAA) treatment is an effective disinfectant against crayfish plague (Aphanomyces astaci) spores in aquaculture. Aquaculture 2011, 320, 37–42. [Google Scholar] [CrossRef]
- Carolyn, T.C.; Erica, G.C.; Elizabeth, J.D.; Hadi, J.A.H.; Christopher, M.W. Evaluating the effectiveness of common disinfectants at preventing the propagation of Mycobacterium spp. isolated from zebrafish. Comp. Biochem. Physiol. Part C 2015, 178, 45–50. [Google Scholar]
- Yu, X.W.; Sun, N.B.; Cheng, Y.X.; Yang, X.Z. Povidone-iodine modulates the antioxidant capacity, immunity, and resistance to Aeromonas hydrophila of the Chinese mitten crab, Eriocheir sinensis. Aquac. Int. 2022, 30, 2953–2967. [Google Scholar] [CrossRef]
- Xu, X.; Guan, Y. Investigating the Complexation and Release Behaviors of Iodine in Poly (vinylpyrrolidone)-Iodine Systems Through Experimental and Computational Approaches. Ind. Eng. Chem. Res. 2020, 59, 22667–22676. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Kong, X.H.; Pei, C.; Zhao, X.L.; Li, L. Molecular characterization of polymeric im-munoglobulin receptor and expression response to Aeromonas hydrophila challenge in Carassius auratus. Fish Shellfish Immunol. 2017, 70, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.H. Safety Evaluation and Bactericidal Effect of Fishery Povidonum-Iodum. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 20 April 2013. (In Chinese). [Google Scholar]
- Wang, N.; Lou, Q.N.; Wang, A.J.; Zhou, L.X.; Zhang, F.L.; Hua, L.F. An Experiment on Disinfection Efficacy of Povidone Iodine against Silkworm Pathogens. North Seric. 2014, 35, 18–20. (In Chinese) [Google Scholar]
- Park, K.H.; Zeon, S.R.; Lee, J.G.; Choi, S.H.; Shin, Y.K.; Park, K.I. In vitro andin vivo efficacy of drugs against the protozoan parasite Azumiobodo hoyamushi that causes soft tunic syndrome in the edible ascidian Halocynthia roretzi (Drasche). J. Fish Dis. 2014, 37, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Hershberger, P.K.; Pacheco, C.A.; Gregg, J.L. Inactivation of Ichthyophonus spores using sodium hypochlorite and polyvinyl pyrrolidone iodine. J. Fish Dis. 2008, 31, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Chen, Z.L.; Yao, M.S.; Huang, Y.; Xiao, J.; Ma, L.X.; Mo, J.; Lin, L.; Qin, Z. Effects of glutaraldehyde and povidone-iodine on apoptosis of grass carp liver and hepatocytes. Ecotoxicol. Environ. Saf. 2024, 272, 116078. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, G.T.; Zhu, J.Y.; Wang, X.W.; Liu, L.L.; Li, H.J.; Zhu, H. Povidone iodine exposure alters the immune response and microbiota of the gill and skin in koi carp, Cyprinus carpio. Aquaculture 2023, 563, 738926. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2024: Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar]
- Pillai, D.; Bonami, R.J. A review on the diseases of freshwater prawns with special focus on white tail disease of Macrobrachium rosenbergii. Aquac. Res. 2012, 43, 1029–1037. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ge, X.P.; He, Y.H.; Xie, J.; Xu, P.; He, Y.J.; Zhou, Q.; Pan, L.; Chen, R. Effects of anthraquinones extracted from Rheum officinale Bail on the growth, non-specific immune response of Macrobrachium rosenbergii. Aquaculture 2010, 310, 13–19. [Google Scholar] [CrossRef]
- Shi, F.; Ma, L.X.; Chen, Z.L.; Huang, Y.; Lin, L.; Qin, Z.D. Long-term disinfectant exposure on intestinal immunity and microbiome variation of grass carp. Aquat. Toxicol. 2024, 272, 106942. [Google Scholar] [CrossRef] [PubMed]
- Darzynkiewicz, Z.; Galkowski, D.; Zhao, H. Analysis of apoptosis by cytometry using TUNEL assay. Methods 2008, 44, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ge, Q.Q.; Chen, Z.; Wang, J.J.; Jia, S.T.; He, Y.Y.; Li, J.; Chang, Z.; Li, J. The effect of air exposure and re-water on gill microstructure and molecular regulation of Pacific white shrimp Penaeus vannamei. Fish Shellfish Immunol. 2023, 132, 108458. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.S. Calculatiang the LC50of insecticides with software SPSS. Chin. J. Appl. Entomol. 2006, 414–417. (In Chinese) [Google Scholar]
- Jiang, L.F. Lecture Three: Evaluation Methods of Safe Concentrations of Fish Medicines. Chin. Fish. Econ. 1995, 27. (In Chinese) [Google Scholar]
- Dai, Y.; Wang, Y.X.; Xu, B.Q.; Dai, Y.X.; Lin, Q.C.; Cai, L.J. Study on acute toxicity and histopathology of copper sulfate, trichlorfon and povidone-iodine to GIFT tilapia (Oreochromis niloticus). South China Fish. Sci. 2023, 19, 116–126. [Google Scholar]
- Song, G.L.; Bao, B.W.; Liu, Z. Acute Toxicity of Three Disinfectants to Penaeus vannamei juveniles. J. Aquac. 2022, 43, 24–29. (In Chinese) [Google Scholar]
- Loker, E.S.; Adema, C.M.; Zhang, S.M.; Kepler, T.B. Invertebrate immune systems–not homogeneous, not simple, not well understood. Immunol. Rev. 2004, 198, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Yao, M.S.; Huang, Y.; Chen, Z.L.; Xiao, J.; Zhan, F.B.; Li, Y.; Lin, L.; Qin, Z. Effects of antibiotics on immunity and apoptosis on grass carp liver and hepatocytes. J. Environ. Chem. Eng. 2023, 11, 110168. [Google Scholar] [CrossRef]
- Liu, Z.H.; Chen, J.; Huang, X.L.; Tu, H.T.; Liang, H.Y. Effects of cadmium stress on the expression of C-type lectin gene and some physiological indexes of Pinctada fucata martensii. J. South. Agric. 2024, 55, 3414–3425. (In Chinese) [Google Scholar]
- Wang, H.K.; Han, D.S. Toll-like Receptors Signaling and Regulation of Immune Response. Prog. Biochem. Biophys. 2006, 33, 820–827. (In Chinese) [Google Scholar]
- Wang, Z.Y.; Zhang, Y.L.; Yao, D.F.; Zhao, Y.Z.; Tran, N.T.; Li, S.K.; Ma, H.; Aweya, J.J. Metabolic reprogramming in crustaceans: A vital immune and environmental response strategy. Rev. Aquac. 2021, 14, 1094–1119. [Google Scholar] [CrossRef]
- Guo, Z.W.; Song, T.; Wang, Z.Q.; Lin, D.H.; Cao, K.K.; Liu, P.; Feng, Y.; Zhang, X.; Wang, P.; Yin, F.; et al. The chaperone Hsp70 is a BH3 receptor activated by the pro-apoptotic Bim to stabilize anti-apoptotic clients. J. Biol. Chem. 2020, 295, 12900–12909. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.P.; Huang, B.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.L.; Zhuang, X.Q.; Liao, M.Q.; Cui, Q.Q.; Yan, C.X.; Huang, J.Y.; Jiang, Z.; Huang, L.; Luo, W.; Liu, Y.; et al. Andrographis paniculata improves growth and non-specific immunity of shrimp Litopenaeus vannamei, and protects it from Vibrio alginolyticus by reducing oxidative stress and apoptosis. Dev. Comp. Immunol. 2022, 139, 104542. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.K.; Li, H.R.; Wei, J.; Hong, K.H.; Zhou, Q.Y.; Liu, X.L.; Hong, X.; Li, W.; Liu, C.; Zhu, X.; et al. Multi-Effects of Acute Salinity Stress on Osmoregulation, Physiological Metabolism, Antioxidant Capacity, Immunity, and Apoptosis in Macrobrachium rosenbergii. Antioxidants 2023, 12, 1836. [Google Scholar] [CrossRef] [PubMed]
- Kalpage, H.A.; Wan, J.; Morse, P.T.; Zurek, M.P.; Turner, A.A.; Khobeir, A.; Yazdi, N.; Hakim, L.; Liu, J.; Vaishnav, A.; et al. Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis. Int. J. Biochem. Cell Biol. 2020, 121, 105704. [Google Scholar] [CrossRef] [PubMed]
- Bechmann, R.K.; Arnberg, M.; Gomiero, A.; Westerlund, S.; Lyng, E.; Berry, M.; Agustsson, T.; Jager, T.; Burridge, L.E. Gill damage and delayed mortality of Northern shrimp (Pandalus borealis) after short time exposure to anti-parasitic veterinary medicine containing hydrogen peroxide. Ecotoxicol. Environ. Saf. 2019, 180, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, Z.Q.; Yan, W.H.; Li, J.J.; Huang, H.B.; Sun, M.L.; Tang, J.-Q.; Pan, J.-L. Acute hypoxia/reoxygenation stress affect antioxidant and enegy metabolism of Procambarus clarkii. Acta Hydrobiol. Sin. 2023, 47, 594–601. [Google Scholar]
- Wenz, T. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 2013, 13, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Sonia, M.; Simone, P.; Natascia, C.; Gaia, P.; Mariasole, P.; Maurizio, P.; Wieckowski, M.R.; Giorgi, C. Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis. 2018, 9, 329. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.P.; Shen, M.H.; Su, J.; Xing, X.M.; Zhang, C.; Yin, S.W.; Zhang, K. Novel insights into copper-induced Chinese mitten crab hepatopancreas mitochondrial toxicity: Oxidative stress, apoptosis and BNIP3L-mediated mitophagy. Aquat. Toxicol. 2025, 283, 107335. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Sequence (5′→3′) | Sources |
---|---|---|
β-actin-F | CAGGGAAAAGATGACCCAGA | AY626840 |
β-actin-R | GGAAGTGCATACCCCTCGTA | |
ACP-F | GCTTGGCTGTGACACTGATAAC | XM067128045.1 |
ACP-R | TCACAACTGACGAAGGTGTTTC | |
Hsp70-F | TGACAAGGGTCGCCTCAGTA | [24] |
Hsp70-R | CATTATCTTGTTGCGATCCTC | |
Toll-F | TTCGTGACTTGTCGGCTCTC | KX610955.1 |
Toll-R | GCAGTTGTTGAAGGCATCGG | |
SOD-F | GTGGCCTGGGACAATCGTTT | DQ121374.1 |
SOD-R | GTCTTATTTCGGCATCAGGC | |
CAT-F | ACTTCATTACCCTGAGACCCG | HQ668089.1 |
CAT-R | TTTCCCTCAGCATTGACCAG | |
GSH-Px-F | AGGGAAGGTGATTCTTGTGGA | FJ670566.1 |
GSH-Px-R | TTACAGGGGAAAGCCAGGA | |
Bok-F | CGCCACAGTAGGAGAGAAGG | HG530759.1 |
Bok-R | TGAAAACGGCAATGGACATA | |
Caspase3-F | TGAGGCACTGGTCTTGTCCAGAAT | HQ668093.1 |
Caspase3-R | GGCACTTGCATTGACTGCTGGATT | |
Cyt-c-F | TGGGTGACGTAGAAAAGGGC | KU745282.1 |
Cyt-c-R | TGCCTTGTTAGCGTCAGTGT |
Concentration (mg/L) | Average Mortality (%) | LC50 and 95% Confidence Interval (mg/L) | SC (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | 24 h | 48 h | 72 h | 96 h | ||
0 | 0 | 0 | 0 | 0 | 8.49 (11.63~7.60) | 6.90 (7.40~6.62) | 6.08 (6.30~5.87) | 5.67 (6.04~5.11) | 1.37 |
5 | 3.33 ± 1.67 bc | 13.33 ± 1.67 c | 23.33 ± 1.67 d | 31.67 ± 1.67 d | |||||
5.5 | 8.33 ± 1.67 b | 16.67 ± 1.67 c | 31.67 ± 1.67 d | 40.00 ± 2.89 d | |||||
6 | 13.33 ± 1.67 ab | 23.33 ± 1.67 c | 48.33 ± 1.67 c | 58.33 ± 1.67 c | |||||
6.5 | 18.33 ± 1.67 a | 35.00 ± 2.89 b | 60.00 ± 2.89 b | 71.67 ± 1.67 b | |||||
7 | 21.67 ± 1.67 a | 58.33 ± 1.67 a | 76.67 ± 1.67 a | 100.00 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, T.; Wang, Y.; Wei, J.; Xu, S.; Zhou, Q.; Mu, X.; Yu, L. Toxic Effects of Povidone-Iodine on Macrobrachium rosenbergii: Concentration-Dependent Responses in Oxidative Stress, Immunosuppression, and Recovery Potential. Animals 2025, 15, 2196. https://doi.org/10.3390/ani15152196
Jiao T, Wang Y, Wei J, Xu S, Zhou Q, Mu X, Yu L. Toxic Effects of Povidone-Iodine on Macrobrachium rosenbergii: Concentration-Dependent Responses in Oxidative Stress, Immunosuppression, and Recovery Potential. Animals. 2025; 15(15):2196. https://doi.org/10.3390/ani15152196
Chicago/Turabian StyleJiao, Tianhui, Yakun Wang, Jie Wei, Sikai Xu, Qiaoyan Zhou, Xidong Mu, and Lingyun Yu. 2025. "Toxic Effects of Povidone-Iodine on Macrobrachium rosenbergii: Concentration-Dependent Responses in Oxidative Stress, Immunosuppression, and Recovery Potential" Animals 15, no. 15: 2196. https://doi.org/10.3390/ani15152196
APA StyleJiao, T., Wang, Y., Wei, J., Xu, S., Zhou, Q., Mu, X., & Yu, L. (2025). Toxic Effects of Povidone-Iodine on Macrobrachium rosenbergii: Concentration-Dependent Responses in Oxidative Stress, Immunosuppression, and Recovery Potential. Animals, 15(15), 2196. https://doi.org/10.3390/ani15152196