Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = maritime microgrids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 4637 KB  
Review
Smart, Connected, and Sustainable: The Transformation of Maritime Ports Through Electrification, IoT, 5G, and Green Energy
by Mohamad Issa, Patrick Rizk, Loïc Boulon, Miloud Rezkallah, Rodrigue Rizk and Adrian Ilinca
Sustainability 2025, 17(17), 7568; https://doi.org/10.3390/su17177568 - 22 Aug 2025
Viewed by 1548
Abstract
In recent years, there has been a fast expansion in the usage of renewable energy sources (RESs) in power distribution systems. Numerous advantages result from this advancement, such as environmental friendliness, cost-effective power generation, easier maintenance, and energy sustainability and reliability. Reducing reliance [...] Read more.
In recent years, there has been a fast expansion in the usage of renewable energy sources (RESs) in power distribution systems. Numerous advantages result from this advancement, such as environmental friendliness, cost-effective power generation, easier maintenance, and energy sustainability and reliability. Reducing reliance on fossil fuels, which are of significant environmental concern, and increasing energy efficiency are two benefits of integrating RESs into maritime systems, such as port microgrids. As a result, ports are implementing several programs to increase energy efficiency using various RESs that are supported by power electronic converters. To highlight the most recent developments in seaport electrification and infrastructure, this work conducts a systematic review. It addresses important issues like energy efficiency enhancements, environmental concerns, the integration of renewable energy sources, the Internet of Things (IoT), and regulatory and legal compliance. The study also discusses technology strategies like digitization, electrification, onshore power supply systems, and port energy storage options. Operational tactics, including peak-shaving methods and energy-efficient operations, are also covered. Additionally, an infrastructure framework—which includes port microgrids and smart seaport microgrids—that is intended to enhance energy efficiency in contemporary ports is examined. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

27 pages, 3280 KB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 682
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

18 pages, 10952 KB  
Article
The Coordinated Power Control of Flexible DC Microgrids in Sustainably Optimized Yacht Marinas
by Andrea Alessia Tavagnutti, Serena Bertagna, Marco Dalle Feste, Massimiliano Chiandone, Daniele Bosich, Vittorio Bucci and Giorgio Sulligoi
Energies 2024, 17(2), 521; https://doi.org/10.3390/en17020521 - 21 Jan 2024
Cited by 3 | Viewed by 1681
Abstract
Nowadays, the industrial world is undergoing a disruptive transformation towards more environmentally sustainable solutions. In the blue economy, this new approach is not only expressed in the domain of actual vessels, but also in the development of charging infrastructure, displaying a notable transition [...] Read more.
Nowadays, the industrial world is undergoing a disruptive transformation towards more environmentally sustainable solutions. In the blue economy, this new approach is not only expressed in the domain of actual vessels, but also in the development of charging infrastructure, displaying a notable transition towards more eco-friendly solutions. The key focus lies in adopting flexible power systems capable of integrating renewable energy sources and storage technologies. Such systems play a crucial role in enabling a shift towards low-emission maritime transport. The emissions reduction goal extends beyond onboard shipboard distribution systems, encompassing also the design of supplying platforms and marinas. This study explores the implementation of a controlled DC microgrid tailored to efficient management of power flows within a yacht marina. Once having established the interfaces for the vessels at berth, the integration between the vessels, the onshore photovoltaic plant and the battery storage unit is made possible thanks to the coordinated management of multiple power converters. The overarching goal is to curtail reliance on external energy sources. Within this DC microgrid framework, a centralized controller assumes a pivotal role in orchestrating the power sources and loads. This coordinated management is essential to achieve sustainable operations, ultimately leading to the reduction of emissions from both ships and onshore power plants. Full article
(This article belongs to the Special Issue Sustainable/Renewable Energy Systems Analysis and Optimization)
Show Figures

Figure 1

20 pages, 10930 KB  
Article
A Data-Driven Approach for Generator Load Prediction in Shipboard Microgrid: The Chemical Tanker Case Study
by Tayfun Uyanık, Nur Najihah Abu Bakar, Özcan Kalenderli, Yasin Arslanoğlu, Josep M. Guerrero and Abderezak Lashab
Energies 2023, 16(13), 5092; https://doi.org/10.3390/en16135092 - 30 Jun 2023
Cited by 8 | Viewed by 2278
Abstract
Energy efficiency and operational safety practices on ships have gained more importance due to the rules set by the International Maritime Organization in recent years. While approximately 70% of the fuel consumed on a commercial ship is utilized for the propulsion load, a [...] Read more.
Energy efficiency and operational safety practices on ships have gained more importance due to the rules set by the International Maritime Organization in recent years. While approximately 70% of the fuel consumed on a commercial ship is utilized for the propulsion load, a significant portion of the remaining fuel is consumed by the auxiliary generators responsible for the ship’s onboard load. It is crucial to comprehend the impact of the electrical load on the ship’s generators, as it significantly assists maritime operators in strategic energy planning to minimize the chance of unexpected electrical breakdowns during operation. However, an appropriate handling mechanism is required when there are massive datasets and varied input data involved. Thus, this study implements data-driven approaches to estimate the load of a chemical tanker ship’s generator using a 1000-day real dataset. Two case studies were performed, namely, single load prediction for each generator and total load prediction for all generators. The prediction results show that for the single generator load prediction of DG1, DG2, and DG3, the decision tree model encountered the least errors for MAE (0.2364, 0.1306, and 0.1532), RMSE (0.2455, 0.2069, and 0.2182), and MAPE (17.493, 5.1139, and 7.7481). In contrast, the deep neural network outperforms all other prediction models in the case of total generation prediction, with values of 1.0866, 2.6049, and 14.728 for MAE, RMSE, and MAPE, respectively. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

21 pages, 4578 KB  
Article
A New Load Frequency Control Technique for Hybrid Maritime Microgrids: Sophisticated Structure of Fractional-Order PIDA Controller
by Fahad M. Almasoudi, Gaber Magdy, Abualkasim Bakeer, Khaled Saleem S. Alatawi and Mahmoud Rihan
Fractal Fract. 2023, 7(6), 435; https://doi.org/10.3390/fractalfract7060435 - 27 May 2023
Cited by 24 | Viewed by 2463
Abstract
This paper proposes an efficient load frequency control (LFC) technique based on a fractional-order proportional–integral–derivative–accelerator with a low-pass filter compensator (FOPIDA-LPF) controller, which can also be accurately referred to as the PIλDND2N2 controller. A trustworthy metaheuristic optimization algorithm, known as the gray wolf [...] Read more.
This paper proposes an efficient load frequency control (LFC) technique based on a fractional-order proportional–integral–derivative–accelerator with a low-pass filter compensator (FOPIDA-LPF) controller, which can also be accurately referred to as the PIλDND2N2 controller. A trustworthy metaheuristic optimization algorithm, known as the gray wolf optimizer (GWO), is used to fine-tune the suggested PIλDND2N2 controller parameters. Moreover, the proposed PIλDND2N2 controller is designed for the LFC of a self-contained hybrid maritime microgrid system (HMμGS) containing solid oxide fuel cell energy units, a marine biodiesel generator, renewable energy sources (RESs), non-sensitive loads, and sensitive loads. The proposed controller enables the power system to deal with random variations in load and intermittent renewable energy sources. Comparisons with various controllers used in the literature demonstrate the excellence of the proposed PIλDND2N2 controller. Additionally, the proficiency of GWO optimization is checked against other powerful optimization techniques that have been extensively researched: particle swarm optimization and ant lion optimization. Finally, the simulation results performed by the MATLAB software prove the effectiveness and reliability of the suggested PIλDND2N2 controller built on the GWO under several contingencies of different load perturbations and random generation of RESs. The proposed controller can maintain stability within the system, while also greatly decreasing overshooting and minimizing the system’s settling time and rise time. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

25 pages, 1494 KB  
Perspective
New Horizons for Microgrids: From Rural Electrification to Space Applications
by Alexander Micallef, Josep M. Guerrero and Juan C. Vasquez
Energies 2023, 16(4), 1966; https://doi.org/10.3390/en16041966 - 16 Feb 2023
Cited by 20 | Viewed by 4166
Abstract
The microgrid concept has evolved from the humble origins of simple remote electrification applications in rural environments to complex architectures. Microgrids are key enablers to the integration of higher penetrations of renewables in the energy sector (including electricity, heating, cooling, transport and industry). [...] Read more.
The microgrid concept has evolved from the humble origins of simple remote electrification applications in rural environments to complex architectures. Microgrids are key enablers to the integration of higher penetrations of renewables in the energy sector (including electricity, heating, cooling, transport and industry). In addition to the local energy sources, energy storage systems and loads, the modern microgrid encompasses sophisticated energy and power management systems, peer-to-peer energy markets and digital technologies to support this energy transition. The microgrid concept has recently been applied to all energy sectors, in order to develop solutions that address pressing issues related to climate change and the decarbonization of these important sectors. This paper initially reviews novel applications in which the microgrid concept is being applied, from a detailed analysis of recent literature. This consists of a comprehensive analysis of the state of the art in shipboard microgrids, port microgrids, aircraft microgrids, airport microgrids and space microgrids. Future research directions are then presented, based on the authors’ perspectives on pushing the boundaries of microgrids further. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Graphical abstract

25 pages, 12570 KB  
Article
Optimal SOC Control and Rule-Based Energy Management Strategy for Fuel-Cell-Based Hybrid Vessel including Batteries and Supercapacitors
by Zeyu Ma, Hao Chen, Jingang Han, Yizheng Chen, Jiongchen Kuang, Jean-Frédéric Charpentier, Nadia Aϊt-Ahmed and Mohamed Benbouzid
J. Mar. Sci. Eng. 2023, 11(2), 398; https://doi.org/10.3390/jmse11020398 - 10 Feb 2023
Cited by 19 | Viewed by 3135
Abstract
Around the world, the development of electric vehicles is underway, including in maritime transportation. However, the development of clean energy vessels still has a long way to go. Fuel cells (FCs) are a relevant choice among the many clean energy sources to power [...] Read more.
Around the world, the development of electric vehicles is underway, including in maritime transportation. However, the development of clean energy vessels still has a long way to go. Fuel cells (FCs) are a relevant choice among the many clean energy sources to power clean energy vessels. However, due to the complex and drastic change in the shipload power, FCs need to be equipped with dynamic fast-response energy storage equipment to make up for it. For multiple energy storage devices connected in parallel, the state of charge (SOC) is not balanced, which affects their service life and the stability of the vessel microgrid, as well as slowing the speed and lowering the accuracy of SOC equalization. This paper proposes a distributed variable sag slope control strategy for vessels to improve SOC equalization, with a FC as the energy source and a battery and supercapacitor as the energy storage system (ESS). For the output power distribution problem of energy storage equipment caused by shipload power variation, a power distribution strategy with a variable filter time constant is used to improve the reasonableness of the output power distribution of energy-based lithium batteries and power-based supercapacitors. Meanwhile, this paper considers the power generation equipment’s service life and energy cost as the optimization objectives, considering the discharge depth of the energy storage equipment. Finally, a method based on the combination of the lithium battery SOC rule (the rule formulated according to the state of charge and load power change in energy storage equipment) and particle swarm optimization algorithm is proposed to solve this problem. The simulation results show that the proposed strategy improves the equalization speed and accuracy of the SOC of energy storage devices, fully realizes the characteristics of different energy storage devices, and reduces the life loss of energy storage devices. Full article
(This article belongs to the Special Issue Advanced Research in Innovative Ship Energy Systems)
Show Figures

Figure 1

18 pages, 3452 KB  
Article
Optimal Configuration and Sizing of Seaport Microgrids including Renewable Energy and Cold Ironing—The Port of Aalborg Case Study
by Nur Najihah Abu Bakar, Josep M. Guerrero, Juan C. Vasquez, Najmeh Bazmohammadi, Muzaidi Othman, Brian Dalby Rasmussen and Yusuf A. Al-Turki
Energies 2022, 15(2), 431; https://doi.org/10.3390/en15020431 - 7 Jan 2022
Cited by 37 | Viewed by 5633
Abstract
Microgrids are among the promising green transition technologies that will provide enormous benefits to the seaports to manage major concerns over energy crises, environmental challenges, and economic issues. However, creating a good design for the seaport microgrid is a challenging task, considering different [...] Read more.
Microgrids are among the promising green transition technologies that will provide enormous benefits to the seaports to manage major concerns over energy crises, environmental challenges, and economic issues. However, creating a good design for the seaport microgrid is a challenging task, considering different objectives, constraints, and uncertainties involved. To ensure the optimal operation of the system, determining the right microgrid configuration and component size at minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system for a seaport microgrid with optimally sized components. The selected case study is the Port of Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources (photovoltaic system and wind turbines), an energy storage system, and cold ironing facilities. The seaport architecture is then optimized by utilizing HOMER to meet the maximum load demand by considering important parameters such as solar global horizontal irradiance, temperature, and wind resources. Finally, the best configuration is analyzed in terms of economic feasibility, energy reliability, and environmental impacts. Full article
(This article belongs to the Special Issue Smart Energy Management for Smart Grid)
Show Figures

Figure 1

31 pages, 46954 KB  
Review
A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside
by Nur Najihah Abu Bakar, Josep M. Guerrero, Juan C. Vasquez, Najmeh Bazmohammadi, Yun Yu, Abdullah Abusorrah and Yusuf A. Al-Turki
Energies 2021, 14(23), 7941; https://doi.org/10.3390/en14237941 - 26 Nov 2021
Cited by 35 | Viewed by 6896
Abstract
Seaports are well known as the medium that has evolved into the central link between sea and land for complex marine activities. The growth in maritime logistics particularly necessitates a large volume of energy supply in order to maintain the operation of sea [...] Read more.
Seaports are well known as the medium that has evolved into the central link between sea and land for complex marine activities. The growth in maritime logistics particularly necessitates a large volume of energy supply in order to maintain the operation of sea trade, resulting in an imbalance between generation and demand sides. Future projections for three major concerns show an increase in load demand, cost of operation, and environmental issues. In order to overcome these problems, integrating microgrids as an innovative technology in the seaport power system appears to be a vital strategy. It is believed that microgrids enhance seaport operation by providing sustainable, environmentally friendly, and cost-effective energy. Although microgrids are well established and widely used in a variety of operations on land, their incorporation into the seaport is still limited. The involvement of a variety of heavy loads such as all-electric ships, cranes, cold ironing, and buildings infrastructure renders it a complicated arrangement task in several aspects, which necessitates further research and leaves space for improvement. In this paper, an overview of the seaport microgrids in terms of their concepts and operation management is presented. It provides the perspectives for integrating the microgrid concept into a seaport from both shore side and seaside as a smart initiative for the green port’s vision. Future research directions are discussed towards the development of a more efficient marine power system. Full article
(This article belongs to the Special Issue Smart Energy Management for Smart Grid)
Show Figures

Figure 1

17 pages, 4878 KB  
Article
Coordinated Control of Diesel Generators and Batteries in DC Hybrid Electric Shipboard Power System
by Luona Xu, Baoze Wei, Yun Yu, Josep M. Guerrero and Juan Vasquez
Energies 2021, 14(19), 6246; https://doi.org/10.3390/en14196246 - 1 Oct 2021
Cited by 12 | Viewed by 4658
Abstract
Hybrid electric ships powered by diesel generators and batteries are the main configuration for shipboard microgrids (SMGs) in the current maritime industry. Extensive studies have been conducted for the hybrid operation mode, whereas the all-electric operation mode and the switching between the aforementioned [...] Read more.
Hybrid electric ships powered by diesel generators and batteries are the main configuration for shipboard microgrids (SMGs) in the current maritime industry. Extensive studies have been conducted for the hybrid operation mode, whereas the all-electric operation mode and the switching between the aforementioned two modes in a system with multiple generators and batteries have not been tested. In this paper, a coordinated approach for a hybrid electric ship is proposed, where two operation modes have been simultaneously considered. More specifically, for achieving an efficient operation with reduced generator wear losses, the governor-less diesel-engine-driven generators have been adopted in the study. According to the practical operation conditions, two operation modes, the all-electric and hybrid modes, are preset. Based on these, the coordination of the generators acting as the main power sources and batteries regulating the power flow and improving the generator efficiency is studied. The governor-less diesel generators are regulated to inject the rated power in order to maximize the generator efficiency, while the DC bus voltage is regulated by DC/DC converters. For the benefit of the overall lifespan of battery banks, power sharing during charging and discharging states have been realized by the state of charge (SoC)-based adaptive droop regulator. For the test of two operation modes, as well as the mode switching, a simulation assessment in a 1 kV DC SMG has been conducted. The simulation results show that the DC bus voltage can be controlled well, and that the power sharing among batteries follows the design. Additionally, smooth transients can be observed during mode switching when the proposed control scheme is applied. Full article
Show Figures

Figure 1

22 pages, 5098 KB  
Article
A Deep Learning Method for Short-Term Dynamic Positioning Load Forecasting in Maritime Microgrids
by Mojtaba Mehrzadi, Yacine Terriche, Chun-Lien Su, Peilin Xie, Najmeh Bazmohammadi, Matheus N. Costa, Chi-Hsiang Liao, Juan C. Vasquez and Josep M. Guerrero
Appl. Sci. 2020, 10(14), 4889; https://doi.org/10.3390/app10144889 - 16 Jul 2020
Cited by 10 | Viewed by 5560
Abstract
The dynamic positioning (DP) system is a progressive technology, which is used in marine vessels and maritime structures. To keep the ship position from displacement in operation mode, its thrusters are used automatically to control and stabilize the position and heading of vessels. [...] Read more.
The dynamic positioning (DP) system is a progressive technology, which is used in marine vessels and maritime structures. To keep the ship position from displacement in operation mode, its thrusters are used automatically to control and stabilize the position and heading of vessels. Hence, the DP load forecasting is already an essential part of DP vessels, which the DP power demand from the power management system (PMS) for thrusting depends on weather conditions. Furthermore, the PMS is used to control power generation, and prevent power failure, limitation. To perform station keeping of vessels by DPS in environmental changes such as wind, waves, capacity, and reliability of the power generators. Hence, a lack of power may lead to lower DP performance, loss of power, and position, which is called shutdown. Therefore, precise DP power demand prediction for maintaining the vessel position can provide the PMS with sufficient information for better performance in a complex decision-making process for the DP vessel. In this paper, the concept of deep learning techniques is introduced into DPS for DP load forecasting. A Levenberg–Marquardt algorithm based on a nonlinear recurrent neural network is employed in this paper for predicting thrusters’ power consumption in sea state variations due to challenges in power generation with the relative degree of accuracy by combining weather parameter dependencies as environmental disturbances. The proposed method evaluates with three traditional forecasting methods through a set of practical real-time DP load and weather parametric data. Numerical analysis has shown that with the proposed method, the future DP load behavior can be predicted more accurately than that obtained from the traditional methods, which greatly assists in operation and planning of power system to maintain system stability, security, reliability, and economics. Full article
(This article belongs to the Special Issue Control, Optimization and Planning of Power Distribution Systems)
Show Figures

Figure 1

18 pages, 2553 KB  
Article
Development of a Multiphysics Real-Time Simulator for Model-Based Design of a DC Shipboard Microgrid
by Fabio D’Agostino, Daniele Kaza, Michele Martelli, Giacomo-Piero Schiapparelli, Federico Silvestro and Carlo Soldano
Energies 2020, 13(14), 3580; https://doi.org/10.3390/en13143580 - 11 Jul 2020
Cited by 18 | Viewed by 4190
Abstract
Recent and strict regulations in the maritime sector regarding exhaust gas emissions has led to an evolution of shipboard systems with a progressive increase of complexity, from the early utilization of electric propulsion to the realization of an integrated shipboard power system organized [...] Read more.
Recent and strict regulations in the maritime sector regarding exhaust gas emissions has led to an evolution of shipboard systems with a progressive increase of complexity, from the early utilization of electric propulsion to the realization of an integrated shipboard power system organized as a microgrid. Therefore, novel approaches, such as the model-based design, start to be experimented by industries to obtain multiphysics models able to study the impact of different designing solutions. In this context, this paper illustrates in detail the development of a multiphysics simulation framework, able to mimic the behaviour of a DC electric ship equipped with electric propulsion, rotating generators and battery energy storage systems. The simulation platform has been realized within the retrofitting project of a Ro-Ro Pax vessel, to size components and to validate control strategies before the system commissioning. It has been implemented on the Opal-RT simulator, as the core component of the future research infrastructure of the University of Genoa, which will include power converters, storage systems, and a ship bridge simulator. The proposed model includes the propulsion plant, characterized by propellers and ship dynamics, and the entire shipboard power system. Each component has been detailed together with its own regulators, such as the automatic voltage regulator of synchronous generators, the torque control of permanent magnet synchronous motors and the current control loop of power converters. The paper illustrates also details concerning the practical deployment of the proposed models within the real-time simulator, in order to share the computational effort among the available processor cores. Full article
(This article belongs to the Special Issue Advancements in Real-Time Simulation of Power and Energy Systems)
Show Figures

Figure 1

22 pages, 6241 KB  
Review
Review of Dynamic Positioning Control in Maritime Microgrid Systems
by Mojtaba Mehrzadi, Yacine Terriche, Chun-Lien Su, Muzaidi Bin Othman, Juan C. Vasquez and Josep M. Guerrero
Energies 2020, 13(12), 3188; https://doi.org/10.3390/en13123188 - 19 Jun 2020
Cited by 29 | Viewed by 16652
Abstract
For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and [...] Read more.
For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and other maritime structures. To maintain the vessels or platforms from displacement, its thrusters are used automatically to control and stabilize the position and heading of vessels in sea state disturbances. The theory of dynamic positioning has been studied and developed in terms of control techniques to achieve greater accuracy and reduce ship movement caused by environmental disturbance for more than 30 years. This paper reviews the control strategies and architecture of the DPS in marine vessels. In addition, it suggests possible control principles and makes a comparison between the advantages and disadvantages of existing literature. Some details for future research on DP control challenges are discussed in this paper. Full article
(This article belongs to the Special Issue Microgrids 2020)
Show Figures

Figure 1

Back to TopTop