The Coordinated Power Control of Flexible DC Microgrids in Sustainably Optimized Yacht Marinas
Abstract
:1. Introduction
2. The Green Yacht Marina
2.1. Sustainability in Yacht Marinas
2.2. Hosted Vessels
3. DC Microgrid in Yacht Marinas
3.1. Controlled Power System
3.2. PV Plant Design
3.3. Optimization Assumptions
3.4. Techno-Economic–Environmental Evaluation
3.5. Final Considerations
4. Coordinated Power Management
4.1. Advanced Control Strategy for Flexibility
4.2. Scenario under Test
4.3. Hardware in the Loop Platform
4.4. Tests on HIL Platform
4.5. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RES | Renewable Energy Sources |
PV | Photovoltaic |
BESS | Battery Energy Storage System |
PMS | Power Management System |
ZEMar | Zero Emission Marina |
DSO | Distribution System Operator |
MG | Main Grid |
AFE | Active Front End |
ROI | Return On Investment |
HIL | Hardware In the Loop |
References
- Sun, Y.; Hu, Y.; Zhang, H.; Chen, H.; Wang, F.-Y. A Parallel Emission Regulatory Framework for Intelligent Transportation Systems and Smart Cities. IEEE Trans. Intell. Veh. 2023, 8, 1017–1020. [Google Scholar] [CrossRef]
- Wang, M.; Liu, K.; Choi, T.-M.; Yue, X. Effects of Carbon Emission Taxes on Transportation Mode Selections and Social Welfare. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 1413–1423. [Google Scholar] [CrossRef]
- Gan, W.; Shahidehpour, M.; Yan, M.; Guo, J.; Yao, W.; Paaso, A.; Zhang, L.; Wen, J. Coordinated Planning of Transportation and Electric Power Networks With the Proliferation of Electric Vehicles. IEEE Trans. Smart Grid 2020, 11, 4005–4016. [Google Scholar] [CrossRef]
- Kanellos, F.D. Optimal Power Management With GHG Emissions Limitation in All-Electric Ship Power Systems Comprising Energy Storage Systems. IEEE Trans. Power Syst. 2014, 29, 330–339. [Google Scholar] [CrossRef]
- Hansen, J.F.; Wendt, F. History and State of the Art in Commercial Electric Ship Propulsion, Integrated Power Systems, and Future Trends. Proc. IEEE 2015, 103, 2229–2242. [Google Scholar] [CrossRef]
- Bosich, D.; Chiandone, M.; Sulligoi, G.; Tavagnutti, A.A.; Vicenzutti, A. High-Performance Megawatt-Scale MVDC Zonal Electrical Distribution System Based on Power Electronics Open System Interfaces. IEEE Trans. Transp. Electrif. 2023, 9, 4541–4551. [Google Scholar] [CrossRef]
- Fang, S.; Wang, Y.; Gou, B.; Xu, Y. Toward Future Green Maritime Transportation: An Overview of Seaport Microgrids and All-Electric Ships. IEEE Trans. Veh. Technol. 2020, 69, 207–219. [Google Scholar] [CrossRef]
- Qiu, J.; Tao, Y.; Lai, S.; Zhao, J. Pricing Strategy of Cold Ironing Services for All-Electric Ships Based on Carbon Integrated Electricity Price. IEEE Trans. Sustain. Energy 2022, 13, 1553–1565. [Google Scholar] [CrossRef]
- Smolenski, R.; Benysek, G.; Malinowski, M.; Sedlak, M.; Stynski, S.; Jasinski, M. Ship-to-Shore Versus Shore-to-Ship Synchronization Strategy. IEEE Trans. Energy Convers. 2018, 33, 1787–1796. [Google Scholar] [CrossRef]
- Guo, Z.; Wei, W.; Chen, L.; Dong, Z.Y.; Mei, S. Impact of Energy Storage on Renewable Energy Utilization: A Geometric Description. IEEE Trans. Sustain. Energy 2021, 12, 874–885. [Google Scholar] [CrossRef]
- Satpathi, K.; Ukil, A.; Nag, S.S.; Pou, J.; Zagrodnik, M.A. DC Marine Power System: Transient Behavior and Fault Management Aspects. IEEE Trans. Ind. Inform. 2019, 15, 1911–1925. [Google Scholar] [CrossRef]
- Xu, L.; Guerrero, J.M.; Lashab, A.; Wei, B.; Bazmohammadi, N.; Vasquez, J.C.; Abusorrah, A. A Review of DC Shipboard Microgrids—Part I: Power Architectures, Energy Storage, and Power Converters. IEEE Trans. Power Electron. 2022, 37, 5155–5172. [Google Scholar] [CrossRef]
- Son, Y.-K.; Lee, S.-Y.; Ko, S.; Kim, Y.-W.; Sul, S.-K. Maritime DC Power System With Generation Topology Consisting of Combination of Permanent Magnet Generator and Diode Rectifier. IEEE Trans. Transp. Electrif. 2020, 6, 869–880. [Google Scholar] [CrossRef]
- Kanellos, F.D. Real-Time Control Based on Multi-Agent Systems for the Operation of Large Ports as Prosumer Microgrids. IEEE Access 2017, 5, 9439–9452. [Google Scholar] [CrossRef]
- Rolán, A.; Manteca, P.; Oktar, R.; Siano, P. Integration of Cold Ironing and Renewable Sources in the Barcelona Smart Port. IEEE Trans. Ind. Appl. 2019, 55, 7198–7206. [Google Scholar] [CrossRef]
- Tavagnutti, A.A.; Bertagna, S.; Bosich, D.; Bucci, V.; Sulligoi, G. Coordinated Power Control for Flexible and Sustainable Operation of DC microgrids in Yacht Marinas. In Proceedings of the 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 22–24 June 2022; pp. 689–694. [Google Scholar]
- Meng, L.; Shafiee, Q.; Trecate, G.F.; Karimi, H.; Fulwani, D.; Lu, X.; Guerrero, J.M. Review on Control of DC Microgrids and Multiple Microgrid Clusters. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 928–948. [Google Scholar]
- McCallum, P. Green Ports—Sustainable Port Development. In Ports 2022; American Society of Civil Engineers: Reston, VA, USA, 2022; pp. 592–600. [Google Scholar]
- Jugović, T.P.; Agatić, A.; Gračan, D.; Šekularac-Ivošević, S. Sustainable activities in Croatian marinas—Towards the “green port” concept. Sci. J. Marit. Res. 2022, 36, 318–327. [Google Scholar]
- Ahmad, N.B.; Othman, M.R.; Saadon, M.S.I.; Nor, D.A.M. Sustainable Development Goal of the Recreation Port: The Case Study of the Duyong Marina & Resort, Terengganu, Malaysia. J. Crit. Rev. 2020, 7, 1449–1454. [Google Scholar]
- Benevolo, C. Turismo Nautico: Una sfida per il distination management. Riv. Sci. Tur. 2010, 1, 105–129. [Google Scholar]
- Bucci, V.; Marinò, A.; Bosich, D.; Sulligoi, G. The design of a slow-cruising superyacht with zero emission navigation and smart berthing modes. In Proceedings of the 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 25–27 March 2014; pp. 1–8. [Google Scholar]
- Braidotti, L.; Bertagna, S.; Marinò, A.; Bosich, D.; Bucci, V.; Sulligoi, G. An Application of Modular Design in the Refitting of a Hybrid-electric Propelled Training Ship. In Proceedings of the 2020 AEIT International Annual Conference (AEIT), Catania, Italy, 23–25 September 2020; pp. 1–6. [Google Scholar]
- Skorobogatova, N. Sustainable Development of an Enterprise Under Industry 4.0 Conditions. In Proceedings of the 2019 International Conference on Creative Business for Smart and Sustainable Growth (CREBUS), Sandanski, Bulgaria, 18–21 March 2019; pp. 1–5. [Google Scholar]
- Lamberti, T.; Sorce, A.; Di Fresco, L.; Barberis, S. Smart port: Exploiting renewable energy and storage potential of moored boats. In Proceedings of the OCEANS 2015-Genova, Genova, Italy, 18–21 May 2015; pp. 1–3. [Google Scholar]
- Banaei, M.; Rafiei, M.; Boudjadar, J.; Khooban, M.-H. A Comparative Analysis of Optimal Operation Scenarios in Hybrid Emission-Free Ferry Ships. IEEE Trans. Transp. Electrif. 2020, 6, 318–333. [Google Scholar] [CrossRef]
- La Nautica in Cifre 2020/2021; Confindustria Nautica: Genova, Italy; Fondazione Edison: Milano, Italy, 26 February 2021.
- Electric Boat and Ship Market—Growth, Trends, COVID-19 Impact, and Forecasts (2023–2028); Research and Markets: Dublin, Ireland, 2023.
- Blaabjerg, F.; Yang, Y.; Kim, K.A.; Rodriguez, J. Power Electronics Technology for Large-Scale Renewable Energy Generation. Proc. IEEE 2023, 111, 335–355. [Google Scholar] [CrossRef]
- Vandoorn, T.L.; Vasquez, J.C.; De Kooning, J.; Guerrero, J.M.; Vandevelde, L. Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies. IEEE Ind. Electron. Mag. 2013, 7, 42–55. [Google Scholar] [CrossRef]
- Yi, Z.; Dong, W.; Etemadi, A.H. A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Microgrids for Both Grid-Connected and Islanded Modes. IEEE Trans. Smart Grid 2018, 9, 5975–5985. [Google Scholar] [CrossRef]
- Egwebe, A.M.; Fazeli, M.; Igic, P.; Holland, P.M. Implementation and Stability Study of Dynamic Droop in Islanded Microgrids. IEEE Trans. Energy Convers. 2016, 31, 821–832. [Google Scholar] [CrossRef]
- Mokhtar, M.; Marei, M.I.; El-Sattar, A.A. An Adaptive Droop Control Scheme for DC Microgrids Integrating Sliding Mode Voltage and Current Controlled Boost Converters. IEEE Trans. Smart Grid 2019, 10, 1685–1693. [Google Scholar] [CrossRef]
- Tavagnutti, A.A.; Bosich, D.; Sulligoi, G. Active Damping Poles Repositioning for DC Shipboard Microgrids Control. In Proceedings of the 2021 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 3–6 August 2021; pp. 1–8. [Google Scholar]
- Mutarraf, M.U.; Terriche, Y.; Niazi, K.A.K.; Su, C.-L.; Vasquez, J.C.; Guerrero, J.M. Battery Energy Storage Systems for Mitigating Fluctuations Caused by Pulse Loads and Propulsion Motors in Shipboard Microgrids. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 1047–1052. [Google Scholar]
Type of Pleasure Vessel | Approximate Battery Packs Capacity (kWh) |
---|---|
Up to 10 m | 5.0 |
From 10.01 m to 12.00 | 8.0 |
From 12.01 m to 18.00 | 12.00 |
From 18.01 m to 24.00 | 25.00 |
From 24.01 m to 35.00 | 75.00 |
Type of Pleasure Vessel | Approximate Battery Packs Capacity (kWh) |
---|---|
Up to 10 m | 15.0 |
From 10.01 m to 12.00 | 21.0 |
From 12.01 m to 18.00 | 42.00 |
From 18.01 m to 24.00 | 350.00 |
From 24.01 m to 35.00 | 700.00 |
From 35.01 m to 60.00 | 1500.00 |
Over 60.00 m | 3000.00 |
Profile Up to 10 m | Power | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
HI | % | 10 | 10 | 20 | 25 | 40 | 70 | 90 | 80 | 60 | 35 | 20 | 10 |
kW | 325 | 325 | 650 | 813 | 1300 | 2275 | 2925 | 2600 | 1950 | 1138 | 650 | 325 | |
LO | % | 10 | 10 | 15 | 20 | 35 | 60 | 75 | 70 | 50 | 30 | 15 | 10 |
kW | 325 | 325 | 488 | 650 | 1138 | 1950 | 2438 | 2275 | 1625 | 975 | 488 | 325 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavagnutti, A.A.; Bertagna, S.; Dalle Feste, M.; Chiandone, M.; Bosich, D.; Bucci, V.; Sulligoi, G. The Coordinated Power Control of Flexible DC Microgrids in Sustainably Optimized Yacht Marinas. Energies 2024, 17, 521. https://doi.org/10.3390/en17020521
Tavagnutti AA, Bertagna S, Dalle Feste M, Chiandone M, Bosich D, Bucci V, Sulligoi G. The Coordinated Power Control of Flexible DC Microgrids in Sustainably Optimized Yacht Marinas. Energies. 2024; 17(2):521. https://doi.org/10.3390/en17020521
Chicago/Turabian StyleTavagnutti, Andrea Alessia, Serena Bertagna, Marco Dalle Feste, Massimiliano Chiandone, Daniele Bosich, Vittorio Bucci, and Giorgio Sulligoi. 2024. "The Coordinated Power Control of Flexible DC Microgrids in Sustainably Optimized Yacht Marinas" Energies 17, no. 2: 521. https://doi.org/10.3390/en17020521
APA StyleTavagnutti, A. A., Bertagna, S., Dalle Feste, M., Chiandone, M., Bosich, D., Bucci, V., & Sulligoi, G. (2024). The Coordinated Power Control of Flexible DC Microgrids in Sustainably Optimized Yacht Marinas. Energies, 17(2), 521. https://doi.org/10.3390/en17020521