Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (94)

Search Parameters:
Keywords = marine sponge-derived natural products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2664 KiB  
Article
Exploring the Chemical and Pharmaceutical Potential of Kapakahines A–G Using Conceptual Density Functional Theory-Based Computational Peptidology
by Norma Flores-Holguín, Juan Frau and Daniel Glossman-Mitnik
Computation 2025, 13(5), 111; https://doi.org/10.3390/computation13050111 - 7 May 2025
Viewed by 544
Abstract
Kapakahines A–G are natural products isolated from the marine sponge Carteriospongia sp., characterized by complex molecular architectures composed of fused rings and diverse functional groups. Preliminary studies have indicated that some of these peptides may exhibit cytotoxic and antitumor activities, which has prompted [...] Read more.
Kapakahines A–G are natural products isolated from the marine sponge Carteriospongia sp., characterized by complex molecular architectures composed of fused rings and diverse functional groups. Preliminary studies have indicated that some of these peptides may exhibit cytotoxic and antitumor activities, which has prompted interest in further exploring their chemical and pharmacokinetic properties. Computational chemistry—particularly Conceptual Density Functional Theory (CDFT)-based Computational Peptidology (CP)—offers a valuable framework for investigating such compounds. In this study, the CDFT-CP approach is applied to analyze the structural and electronic properties of Kapakahines A–G. Alongside the calculation of global and local reactivity descriptors, predicted ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiles and pharmacokinetic parameters, including pKa and LogP, are evaluated. The integrated computational analysis provides insights into the stability, reactivity, and potential drug-like behavior of these marine-derived cyclopeptides and contributes to the theoretical groundwork for future studies aimed at optimizing their bioactivity and safety profiles. Full article
(This article belongs to the Section Computational Chemistry)
Show Figures

Graphical abstract

27 pages, 8871 KiB  
Article
Integrated Biological and Chemical Investigation of Indonesian Marine Organisms Targeting Anti-Quorum-Sensing, Anti-Biofilm, Anti-Biofouling, and Anti-Biocorrosion Activities
by Novriyandi Hanif, Jihan Azmi Miftah, Henny Dwi Yanti, Emmanuel Tope Oluwabusola, Vira Amanda Zahra, Nurul Farhana Salleh, Binu Kundukad, Lik Tong Tan, Nicole J. de Voogd, Nisa Rachmania, Marcel Jaspars, Staffan Kjelleberg, Dedi Noviendri, Anggia Murni and Junichi Tanaka
Molecules 2025, 30(6), 1202; https://doi.org/10.3390/molecules30061202 - 7 Mar 2025
Viewed by 2770
Abstract
Microorganisms play a significant role in biofouling and biocorrosion within the maritime industry. Addressing these challenges requires an innovative and integrated approach utilizing marine natural products with beneficial properties. A comprehensive screening of 173 non-toxic EtOAc and H₂O extracts derived from diverse marine [...] Read more.
Microorganisms play a significant role in biofouling and biocorrosion within the maritime industry. Addressing these challenges requires an innovative and integrated approach utilizing marine natural products with beneficial properties. A comprehensive screening of 173 non-toxic EtOAc and H₂O extracts derived from diverse marine organisms collected in Indonesian waters was conducted using a robust panel of assays. These included antimicrobial tests and classical biosurfactant assays (drop collapse and oil displacement), as well as anti-quorum-sensing (QS) and anti-biofilm assays. These screening efforts identified five active extracts with promising activities. Among these, EtOAc extracts of the marine tunicate Sigilina cf. signifera (0159-22e) and the marine sponge Lamellodysidea herbacea (0194-24c) demonstrated significant anti-biofouling activity against Perna indica and anti-biocorrosion performance (mpy 10.70 ± 0.70 for S. cf. signifera; 7.87 ± 0.86 for L. herbacea; 13.60 ± 1.70 for positive control Tetracorr CI-2915). Further chemical analyses of the active extracts, including LC-HR-MS/MS, MS-based molecular networking, and chemoinformatics, revealed the presence of both known and new bioactive compounds. These included tambjamines and polybrominated diphenyl ethers (PBDEs), which are likely contributors to the observed bioactivities. Subsequent investigations uncovered new anti-QS and anti-biofilm properties in synthetic and natural PBDEs 112 previously derived from L. herbacea. Among these, 8 exhibited the most potent anti-QS activity, with an IC50 value of 15 µM, while 4 significantly reduced biofilm formation at a concentration of 1 µM. This study highlights the potential of marine-derived compounds in addressing biofouling and biocorrosion challenges in a sustainable and effective manner. Full article
Show Figures

Graphical abstract

20 pages, 4056 KiB  
Article
The Polybrominated Diphenyl Ether Bromoxib Disrupts Nuclear Import and Export by Affecting Nucleoporins of the Nuclear Pore Complex
by Karina S. Krings, Anastasia Ritchie, Laura Schmitt, Judith Hatzfeld, Gudrun Totzke, Thomas Lenz, María José Mendiburo, Björn Stork, Nicole Teusch, Peter Proksch, Kai Stühler, Lisa Müller and Sebastian Wesselborg
Mar. Drugs 2025, 23(3), 108; https://doi.org/10.3390/md23030108 - 28 Feb 2025
Viewed by 842
Abstract
Polybrominated diphenyl ethers (PBDEs) are natural products with potent antimicrobial and antineoplastic activity. We have previously shown that the polybrominated diphenyl ether bromoxib (4,5,6-tribromo-2-(2′,4′-dibromophenoxy) phenol), isolated from the marine sponge Dysidea species, exhibits a strong cytotoxic potential in leukemia and lymphoma cells by [...] Read more.
Polybrominated diphenyl ethers (PBDEs) are natural products with potent antimicrobial and antineoplastic activity. We have previously shown that the polybrominated diphenyl ether bromoxib (4,5,6-tribromo-2-(2′,4′-dibromophenoxy) phenol), isolated from the marine sponge Dysidea species, exhibits a strong cytotoxic potential in leukemia and lymphoma cells by targeting mitochondrial metabolism. Here, using a mass spectrometric thermal proteome profiling (TPP) approach, we observed that bromoxib induces a rapid reduction in the levels of 19 nucleoporins (NUPs) that are part of the nuclear pore complex (NPC). This apparently affected the functionality of the NPC, as evidenced by the bromoxib-mediated inhibition of the nuclear translocation and subsequent gene reporter activity of transcription factors such as nuclear factor of activated T cells (NFAT) and nuclear factor κB (NF-κB). In addition, bromoxib inhibited the nuclear export of the mRNA of the human immunodeficiency virus transactivator of transcription (HIV-Tat) and the subsequent import of the HIV-Tat protein into the nucleus as determined by the decrease in Tat-dependent gene reporter luciferase activity. Inhibition of nuclear mRNA-export also affected expression of the short-lived anti-apoptotic Bcl-2 protein Mcl-1, which has been shown to induce apoptosis. Thus, its ability to target both mitochondrial metabolism and the NPC renders bromoxib a promising anticancer agent. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

50 pages, 6603 KiB  
Review
Bioactive Terpenes from Marine Sponges and Their Associated Organisms
by Yuan Yuan, Yu Lei, Muwu Xu, Bingxin Zhao and Shihai Xu
Mar. Drugs 2025, 23(3), 96; https://doi.org/10.3390/md23030096 - 21 Feb 2025
Viewed by 2086
Abstract
In recent years, marine natural products have continued to serve as a pivotal resource for novel drug discovery. Globally, the number of studies focusing on Porifera has been on the rise, underscoring their considerable importance and research value. Marine sponges are prolific producers [...] Read more.
In recent years, marine natural products have continued to serve as a pivotal resource for novel drug discovery. Globally, the number of studies focusing on Porifera has been on the rise, underscoring their considerable importance and research value. Marine sponges are prolific producers of a vast array of bioactive compounds, including terpenes, alkaloids, peptides, and numerous secondary metabolites. Over the past fifteen years, a substantial number of sponge-derived terpenes have been identified, exhibiting extensive structural diversity and notable biological activities. These terpenes have been isolated from marine sponges or their associated symbiotic microorganisms, with several demonstrating multifaceted biological activities, such as anti-inflammatory, antibacterial, cytotoxic, anticancer, and antioxidant properties. In this review, we summarize 997 novel terpene metabolites, detailing their structures, sources, and activities, from January 2009 to December 2024. The structural features and structure-activity relationship (SAR) of different types of terpenes are broadly analyzed and summarized. This systematic and comprehensive review will contribute to the summary of and speculation on the taxonomy, activity profiles, and SAR of terpenes and the development of sponge-derived terpenes as potential lead drugs. Full article
(This article belongs to the Special Issue Bio-Active Components from Marine Sponge)
Show Figures

Figure 1

17 pages, 1859 KiB  
Systematic Review
Exploring Antibacterial Properties of Marine Sponge-Derived Natural Compounds: A Systematic Review
by Cintia Cristina Santi Martignago, Camila de Souza Barbosa, Homero Garcia Motta, Beatriz Soares-Silva, Erica Paloma Maso Lopes Peres, Lais Caroline Souza e Silva, Mirian Bonifácio, Karolyne dos Santos Jorge Sousa, Amanda Sardeli Alqualo, Júlia Parisi, Olivier Jordan, Ana Claudia Muniz Renno, Anna Caroline Campos Aguiar and Viorica Patrulea
Mar. Drugs 2025, 23(1), 43; https://doi.org/10.3390/md23010043 - 16 Jan 2025
Cited by 2 | Viewed by 2045
Abstract
The rise in multidrug-resistant (MDR) bacteria has prompted extensive research into antibacterial compounds, as these resistant strains compromise current treatments. This resistance leads to prolonged hospitalization, increased mortality rates, and higher healthcare costs. To address this challenge, the pharmaceutical industry is increasingly exploring [...] Read more.
The rise in multidrug-resistant (MDR) bacteria has prompted extensive research into antibacterial compounds, as these resistant strains compromise current treatments. This resistance leads to prolonged hospitalization, increased mortality rates, and higher healthcare costs. To address this challenge, the pharmaceutical industry is increasingly exploring natural products, particularly those of marine origin, as promising candidates for antimicrobial drugs. Marine sponges, in particular, are of interest because of their production of secondary metabolites (SM), which serve as chemical defenses against predators and pathogens. These metabolites exhibit a wide range of therapeutic properties, including antibacterial activity. This systematic review examines recent advancements in identifying new sponge-derived compounds with antimicrobial activity, specifically targeting Pseudomonas aeruginosa, a prevalent Gram-negative pathogen with the highest incidence rates in clinical settings. The selection criteria focused on antimicrobial compounds with reported Minimum Inhibitory Concentration (MIC) values. The identified SM include alkaloids, sesterterpenoids, nitrogenous diterpene, and bromotyrosine-derived derivatives. The structural features of the active compounds selected in this review may provide a foundational framework for developing new, highly bioactive antimicrobial agents. Full article
(This article belongs to the Special Issue Marine Natural Products with Antimicrobial Activity)
Show Figures

Graphical abstract

19 pages, 1810 KiB  
Article
Chemical Changes Under Heat Stress and Identification of Dendrillolactone, a New Diterpene Derivative with a Rare Rearranged Spongiane Skeleton from the Antarctic Marine Sponge Dendrilla antarctica
by Andrea Prófumo, Conxita Avila and Adele Cutignano
Mar. Drugs 2025, 23(1), 10; https://doi.org/10.3390/md23010010 - 28 Dec 2024
Viewed by 2026
Abstract
The waters around the western Antarctic Peninsula are experiencing fast warming due to global change, being among the most affected regions on the planet. This polar area is home to a large and rich community of benthic marine invertebrates, such as sponges, tunicates, [...] Read more.
The waters around the western Antarctic Peninsula are experiencing fast warming due to global change, being among the most affected regions on the planet. This polar area is home to a large and rich community of benthic marine invertebrates, such as sponges, tunicates, corals, and many other animals. Among the sponges, the bright yellow Dendrilla antarctica is commonly known for using secondary diterpenoids as a defensive mechanism against local potential predators. From the dichloromethane extract of sponge samples from Deception Island collected in January 2023, we isolated a novel derivative with an unusual β-lactone diterpene skeleton here named dendrillolactone (1), along with seven previously described diterpenes, including deceptionin (2), a gracilane norditerpene (3), cadlinolide C (4), a glaciolane norditerpene (5), membranolide (6), aplysulphurin (7), and tetrahydroaplysulphurine-1 (8). Here, we also report our studies on the changes in the chemical arsenal of this sponge by slow temperature increase in aquaria experiments. Despite being a species capable of inhabiting volcanically active areas, with frequent water temperature fluctuations due to the existing fumaroles, the results show that diterpenes such as deceptionin, cadlinolide C, membranolide, and tetrahydroaplysulphurin-1 seem to be susceptible to the temperature increase, resulting in a trend to higher concentrations. However, temperatures above 4 °C severely affected sponge metabolism, causing its death much earlier than expected. Further research on the roles of these natural products in D. antarctica and their relationship to the sponge’s resilience to environmental changes should help to better understand the defensive mechanisms of Antarctic marine benthos in the context of global change. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
Show Figures

Graphical abstract

9 pages, 2337 KiB  
Communication
Discovery of Anti-Inflammatory Alkaloids from Sponge Stylissa massa Suggests New Biosynthetic Pathways for Pyrrole–Imidazole Alkaloids
by Xiaojing Liu, Qi Wang, Yun Zhang and Hanting Zhang
Mar. Drugs 2024, 22(10), 477; https://doi.org/10.3390/md22100477 - 18 Oct 2024
Cited by 3 | Viewed by 1737
Abstract
Pyrrole–imidazole alkaloids (PIAs) are a class of marine sponge derived natural products which have complex carbon frameworks and broad bioactivities. In this study, four new alkaloids, stylimassalins A–B (12), 3, and 5, together with two known compounds [...] Read more.
Pyrrole–imidazole alkaloids (PIAs) are a class of marine sponge derived natural products which have complex carbon frameworks and broad bioactivities. In this study, four new alkaloids, stylimassalins A–B (12), 3, and 5, together with two known compounds (4 and 6), were isolated from Stylissa massa. Compounds 2, 4, and 6 are the C-2 brominated analogues of 1, 3, and 5, respectively. Their structures display three different scaffolds, of which scaffold 1 (compounds 1,2) is new. A new biosynthetic pathway from oroidin, through spongiacidin, to latonduine and scaffold 1 was proposed by our group, in which the C12-N13-cleavaged compounds of spongiacidin (scaffold 2), dubbed seco-spongiacidins (3 and 4), are recognized as a key bridged scaffold, to afford PIA analogues (1,2 and 5,6). An anti-inflammatory evaluation in a zebrafish inflammation model induced by copper sulphate (CuSO4) demonstrated that stylimassalins A and B (1 and 2) could serve as a promising lead scaffold for treating inflammation. Full article
(This article belongs to the Special Issue Bio-Active Components from Marine Sponges)
Show Figures

Figure 1

22 pages, 1573 KiB  
Review
Immunomodulatory Effects of Halichondrin Isolated from Marine Sponges and Its Synthetic Analogs in Oncological Applications
by Dinusha Shiromala Dissanayake, Dineth Pramuditha Nagahawatta, Jung-Suck Lee and You-Jin Jeon
Mar. Drugs 2024, 22(9), 426; https://doi.org/10.3390/md22090426 - 20 Sep 2024
Cited by 5 | Viewed by 2094
Abstract
Marine natural products comprise unique chemical structures and vast varieties of biological activities. This review aims to summarize halichondrin, a marine natural product, and its synthetic analogs along with its therapeutic properties and mechanisms. Halichondrin and its analogs, derived from marine sponges, exhibit [...] Read more.
Marine natural products comprise unique chemical structures and vast varieties of biological activities. This review aims to summarize halichondrin, a marine natural product, and its synthetic analogs along with its therapeutic properties and mechanisms. Halichondrin and its analogs, derived from marine sponges, exhibit potent antineoplastic properties, making them promising candidates for cancer therapeutics. These compounds, characterized by their complex molecular structures, have demonstrated significant efficacy in inhibiting microtubule dynamics, leading to cell cycle arrest and apoptosis in various cancer cell lines. Several types of halichondrins such as halichondrins B, C, norhalichondrin B, and homohalichondrin B have been discovered with similar anticancer and antitumor characteristics. Since naturally available halichondrins show hurdles in synthesis, recent advancements in synthetic methodologies have enabled the development of several halichondrin analogs, such as E7389 (eribulin), which have shown improved therapeutic indices. Eribulin has shown excellent immunomodulatory properties by several mechanisms such as reprogramming tumor microenvironments, facilitating the infiltration and activation of immune cells, and inhibiting microtubule dynamics. Despite promising results, challenges remain in the synthesis and clinical application of these compounds. This review explores the mechanisms underlying the immunomodulatory activity of halichondrin and its analogs in cancer therapy, along with their clinical applications and potential for future drug development. Full article
(This article belongs to the Special Issue Marine Natural Products with Immunomodulatory Activity)
Show Figures

Graphical abstract

17 pages, 2939 KiB  
Article
Stonikacidin A, an Antimicrobial 4-Bromopyrrole Alkaloid Containing L-Idonic Acid Core from the Northwestern Pacific Marine Sponge Lissodendoryx papillosa
by Kseniya M. Tabakmakher, Tatyana N. Makarieva, Yuri E. Sabutski, Maxim S. Kokoulin, Alexander S. Menshov, Roman S. Popov, Alla G. Guzii, Larisa K. Shubina, Ekaterina A. Chingizova, Artur R. Chingizov, Ekaterina A. Yurchenko, Sergey N. Fedorov, Boris B. Grebnev, Gunhild von Amsberg, Sergey A. Dyshlovoy, Natalia V. Ivanchina and Pavel S. Dmitrenok
Mar. Drugs 2024, 22(9), 396; https://doi.org/10.3390/md22090396 - 30 Aug 2024
Cited by 2 | Viewed by 3977
Abstract
Stonikacidin A (1), the first representative of a new class of 4-bromopyrrole alkaloids containing an aldonic acid core, was isolated from the marine sponge Lissodendoryx papillosa. The compound is named in honor of Prof. Valentin A. Stonik, who is one [...] Read more.
Stonikacidin A (1), the first representative of a new class of 4-bromopyrrole alkaloids containing an aldonic acid core, was isolated from the marine sponge Lissodendoryx papillosa. The compound is named in honor of Prof. Valentin A. Stonik, who is one of the outstanding investigators in the field of marine natural chemistry. The structure of 1 was determined using NMR, MS analysis, and chemical correlations. The L-idonic acid core was established by the comparison of GC, NMR, MS, and optical rotation data of methyl-pentaacetyl-aldonates obtained from the hydrolysis products of 1 and standard hexoses. The L-form of the idonic acid residue in 1 was confirmed by GC analysis of pentaacetate of (S)-2-butyl ester of the hydrolysis product from 1 and compared with corresponding derivatives of L- and D-idonic acids. The biosynthetic pathway for stonikacidin A (1) was proposed. The alkaloid 1 inhibited the growth of Staphylococcus aureus and Escherichia coli test strains, as well as affected the formation of S. aureus and E. coli biofilms. Compound 1 inhibited the activity of sortase A. Molecular docking data showed that stonikacidin A (1) can bind with sortase A due to the interactions between its bromine atoms and some amino acid residues of the enzyme. Full article
(This article belongs to the Special Issue Bio-Active Components from Marine Sponges)
Show Figures

Graphical abstract

73 pages, 18532 KiB  
Review
An Overview on the Synthesis of Lamellarins and Related Compounds with Biological Interest
by Vasiliki-Panagiota M. Mitsiou, Anastasia-Maria N. Antonaki, Matina D. Douka and Konstantinos E. Litinas
Molecules 2024, 29(17), 4032; https://doi.org/10.3390/molecules29174032 - 26 Aug 2024
Cited by 5 | Viewed by 2395
Abstract
Lamellarins are natural products with a [3,4]-fused pyrrolocoumarin skeleton possessing interesting biological properties. More than 70 members have been isolated from diverse marine organisms, such as sponges, ascidians, mollusks, and tunicates. There is a continuous interest in the synthesis of these compounds. In [...] Read more.
Lamellarins are natural products with a [3,4]-fused pyrrolocoumarin skeleton possessing interesting biological properties. More than 70 members have been isolated from diverse marine organisms, such as sponges, ascidians, mollusks, and tunicates. There is a continuous interest in the synthesis of these compounds. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological properties. Three routes are followed for the synthesis of lamellarins. Initially, pyrrole derivatives are the starting or intermediate compounds, and then they are fused to isoquinoline or a coumarin moiety. Second, isoquinoline is the starting compound fused to an indole moiety. In the last route, coumarins are the starting compounds, which are fused to a pyrrole moiety and an isoquinoline scaffold. The synthesis of isolamellarins, azacoumestans, isoazacoumestans, and analogues is also described. The above synthesis is achieved via metal-catalyzed cross-coupling, [3 + 2] cycloaddition, substitution, and lactonization reactions. The title compounds exhibit cytotoxic, multidrug resistance (MDR), topoisomerase I-targeted antitumor, anti-HIV, antiproliferative, anti-neurodegenerative disease, and anti-inflammatory activities. Full article
(This article belongs to the Special Issue Coumarin and Its Derivatives III)
Show Figures

Figure 1

22 pages, 2173 KiB  
Review
Recent Advances in Marine-Derived Compounds as Potent Antibacterial and Antifungal Agents: A Comprehensive Review
by Devaraj Bharathi and Jintae Lee
Mar. Drugs 2024, 22(8), 348; https://doi.org/10.3390/md22080348 - 29 Jul 2024
Cited by 8 | Viewed by 7646
Abstract
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm [...] Read more.
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm formation. Marine environments, with their extensive biodiversity, provide a valuable source of natural products with a wide range of biological activities. Marine-derived antimicrobial compounds show significant potential against drug-resistant bacteria and fungi. This review discusses the current knowledge on marine natural products such as microorganisms, sponges, tunicates and mollusks with antibacterial and antifungal properties effective against drug-resistant microorganisms and their ecological roles. These natural products are classified based on their chemical structures, such as alkaloids, amino acids, peptides, polyketides, naphthoquinones, terpenoids, and polysaccharides. Although still in preclinical studies, these agents demonstrate promising in vivo efficacy, suggesting that marine sources could be pivotal in developing new drugs to combat AMR, thereby fulfilling an essential medical need. This review highlights the ongoing importance of marine biodiversity exploration for discovering potential antimicrobial agents. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products, 2nd Edition)
Show Figures

Figure 1

18 pages, 10761 KiB  
Article
Streptomyces-Fungus Co-Culture Enhances the Production of Borrelidin and Analogs: A Genomic and Metabolomic Approach
by Tan Liu, Xi Gui, Gang Zhang, Lianzhong Luo and Jing Zhao
Mar. Drugs 2024, 22(7), 302; https://doi.org/10.3390/md22070302 - 28 Jun 2024
Viewed by 3195
Abstract
The marine Streptomyces harbor numerous biosynthetic gene clusters (BGCs) with exploitable potential. However, many secondary metabolites cannot be produced under laboratory conditions. Co-culture strategies of marine microorganisms have yielded novel natural products with diverse biological activities. In this study, we explored the metabolic [...] Read more.
The marine Streptomyces harbor numerous biosynthetic gene clusters (BGCs) with exploitable potential. However, many secondary metabolites cannot be produced under laboratory conditions. Co-culture strategies of marine microorganisms have yielded novel natural products with diverse biological activities. In this study, we explored the metabolic profiles of co-cultures involving Streptomyces sp. 2-85 and Cladosporium sp. 3-22—derived from marine sponges. Combining Global Natural Products Social (GNPS) Molecular Networking analysis with natural product database mining, 35 potential antimicrobial metabolites annotated were detected, 19 of which were exclusive to the co-culture, with a significant increase in production. Notably, the Streptomyces-Fungus interaction led to the increased production of borrelidin and the discovery of several analogs via molecular networking. In this study, borrelidin was first applied to combat Saprolegnia parasitica, which caused saprolegniosis in aquaculture. We noted its superior inhibitory effects on mycelial growth with an EC50 of 0.004 mg/mL and on spore germination with an EC50 of 0.005 mg/mL compared to the commercial fungicide, preliminarily identifying threonyl-tRNA synthetase as its target. Further analysis of the associated gene clusters revealed an incomplete synthesis pathway with missing malonyl-CoA units for condensation within this strain, hinting at the presence of potential compensatory pathways. In conclusion, our findings shed light on the metabolic changes of marine Streptomyces and fungi in co-culture, propose the potential of borrelidin in the control of aquatic diseases, and present new prospects for antifungal applications. Full article
Show Figures

Graphical abstract

16 pages, 2254 KiB  
Article
Synthesis and Cheminformatics-Directed Antibacterial Evaluation of Echinosulfonic Acid-Inspired Bis-Indole Alkaloids
by Darren C. Holland, Joshua B. Hayton, Milton J. Kiefel and Anthony R. Carroll
Molecules 2024, 29(12), 2806; https://doi.org/10.3390/molecules29122806 - 12 Jun 2024
Cited by 2 | Viewed by 2163
Abstract
Synthetic efforts toward complex natural product (NP) scaffolds are useful ones, particularly those aimed at expanding their bioactive chemical space. Here, we utilised an orthogonal cheminformatics-based approach to predict the potential biological activities for a series of synthetic bis-indole alkaloids inspired by elusive [...] Read more.
Synthetic efforts toward complex natural product (NP) scaffolds are useful ones, particularly those aimed at expanding their bioactive chemical space. Here, we utilised an orthogonal cheminformatics-based approach to predict the potential biological activities for a series of synthetic bis-indole alkaloids inspired by elusive sponge-derived NPs, echinosulfone A (1) and echinosulfonic acids A–D (25). Our work includes the first synthesis of desulfato-echinosulfonic acid C, an α-hydroxy bis(3′-indolyl) alkaloid (17), and its full NMR characterisation. This synthesis provides corroborating evidence for the structure revision of echinosulfonic acids A-C. Additionally, we demonstrate a robust synthetic strategy toward a diverse range of α-methine bis(3′-indolyl) acids and acetates (1116) without the need for silica-based purification in either one or two steps. By integrating our synthetic library of bis-indoles with bioactivity data for 2048 marine indole alkaloids (reported up to the end of 2021), we analyzed their overlap with marine natural product chemical diversity. Notably, the C-6 dibrominated α-hydroxy bis(3′-indolyl) and α-methine bis(3′-indolyl) analogues (11, 14, and 17) were found to contain significant overlap with antibacterial C-6 dibrominated marine bis-indoles, guiding our biological evaluation. Validating the results of our cheminformatics analyses, the dibrominated α-methine bis(3′-indolyl) alkaloids (11, 12, 14, and 15) were found to exhibit antibacterial activities against methicillin-sensitive and -resistant Staphylococcus aureus. Further, while investigating other synthetic approaches toward bis-indole alkaloids, 16 incorrectly assigned synthetic α-hydroxy bis(3′-indolyl) alkaloids were identified. After careful analysis of their reported NMR data, and comparison with those obtained for the synthetic bis-indoles reported herein, all of the structures have been revised to α-methine bis(3′-indolyl) alkaloids. Full article
(This article belongs to the Special Issue Discovery, Isolation, and Mechanisms of Bioactive Natural Products)
Show Figures

Graphical abstract

22 pages, 1629 KiB  
Review
Seaweeds as Nutraceutical Elements and Drugs for Diabetes Mellitus: Future Perspectives
by João Cotas, Silvia Lomartire, Leonel Pereira, Ana Valado, João Carlos Marques and Ana M. M. Gonçalves
Mar. Drugs 2024, 22(4), 168; https://doi.org/10.3390/md22040168 - 10 Apr 2024
Cited by 9 | Viewed by 5197
Abstract
Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and [...] Read more.
Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness. Full article
(This article belongs to the Special Issue Perspectives for the Development of New Multitarget Marine Drugs)
Show Figures

Figure 1

14 pages, 1716 KiB  
Article
Genomic Insights and Synthetic Biology Applications of Marine Actinomycete Streptomyces griseoincarnatus HNS054
by Qinghua Wang, Jing Zhao, Zhaoyuan Liu, Shaoxiong Ding, Zhiyong Huang and Jun Chen
Int. J. Mol. Sci. 2024, 25(6), 3127; https://doi.org/10.3390/ijms25063127 - 8 Mar 2024
Cited by 1 | Viewed by 1618
Abstract
The marine bacterium Streptomyces sp. HNS054 shows promise as a platform for producing natural products. Isolated from a marine sponge, HNS054 possesses several desirable traits for bioengineering: rapid growth, salt tolerance, and compatibility with genetic tools. Its genome contains 21 potential biosynthetic gene [...] Read more.
The marine bacterium Streptomyces sp. HNS054 shows promise as a platform for producing natural products. Isolated from a marine sponge, HNS054 possesses several desirable traits for bioengineering: rapid growth, salt tolerance, and compatibility with genetic tools. Its genome contains 21 potential biosynthetic gene clusters, offering a rich source of natural products. We successfully engineered HNS054 to increase the production of aborycin and actinorhodin by 4.5-fold and 1.2-fold, respectively, compared to S. coelicolor M1346 counterparts. With its unique features and amenability to genetic manipulation, HNS054 emerges as a promising candidate for developing novel marine-derived drugs and other valuable compounds. Full article
(This article belongs to the Special Issue Antimicrobial Peptides and Marine Microbe)
Show Figures

Figure 1

Back to TopTop