Immunomodulatory Effects of Halichondrin Isolated from Marine Sponges and Its Synthetic Analogs in Oncological Applications
Abstract
:1. Introduction
2. Marine Sponges as a Source of Halichondrins
2.1. Structural Features of Halichondrins
2.2. Notable Types of Halichondrins
2.2.1. Halichondrin B
2.2.2. Halichondrin C
2.2.3. Norhalichondrin B
2.2.4. Homohalichondrin B
2.2.5. Other Types of Halichondrins
2.3. Comparison with Synthetic Analogs
Other Notable Analogs
2.4. Synthetic Strategies Used in Total Synthesis of Halichondrins
3. Immunomodulatory Effects and Potential Therapeutic Applications of Halichondrin and Its Synthetic Analog
3.1. Enhancement of Antitumor Immunity
3.1.1. Reprogramming Tumor Microenvironment
3.1.2. Promoting the Infiltration and Activation of Immune Cells
3.1.3. Inhibition of Microtubule Dynamics
3.1.4. Interaction with Signaling Pathways
3.2. Cancer-Related Therapeutic Applications and Combination Therapies
4. Preclinical and Clinical Studies
5. Challenges and Future Directions
5.1. Complexity of Synthesis
5.2. Bioavailability and Pharmacokinetics
5.3. Drug Resistance
5.4. Future Directions
Biosynthetic Approaches
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Uemura, D. Halichondrins-Antitumor Polyether Macrolides from a Marine Sponge. Pure Appl. Chem. 1986, 58, 701–710. [Google Scholar] [CrossRef]
- Katinger, H.; Meyrath, J. Aspekte des Massentransfers bei der Verwertung von Kohlenwasserstoffen durch Hefe. Pathol. Microbiol. 2008, 36, 341–342. [Google Scholar] [CrossRef]
- Özenver, N.; Efferth, T. Mitosis Inhibitors and Medicinal Plants: Neurotoxicity and Neuroprotection. In Medicinal Herbs and Fungi: Neurotoxicity vs. Neuroprotection; Springer: Singapore, 2021; pp. 1–35. [Google Scholar]
- Prabhu, R.H.; Patravale, V.B. Marine-derived Pharmaceuticals for Oncotherapy: Clinical Trial and FDA-approved Compounds. Encycl. Mar. Biotechnol. 2020, 4, 2607–2618. [Google Scholar]
- Strzelec, M.; Detka, J.; Mieszczak, P.; Sobocinska, M.K.; Majka, M. Immunomodulation-a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front. Immunol. 2023, 14, 1127704. [Google Scholar] [CrossRef]
- Haanen, J.; Ernstoff, M.S.; Wang, Y.; Menzies, A.M.; Puzanov, I.; Grivas, P.; Larkin, J.; Peters, S.; Thompson, J.A.; Obeid, M. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: Review of the literature and personalized risk-based prevention strategy. Ann. Oncol. 2020, 31, 724–744. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.B.; Lill, R.E.; Hickford, S.J.; Blunt, J.W.; Munro, M.H. The halichondrins: Chemistry, biology, supply and delivery. In Drugs from the Sea; Karger Publishers: Basel, Switzerland, 2000; pp. 134–153. [Google Scholar]
- Hart, J.B. Studies on Marine Natural Products. 1995. Available online: https://ir.canterbury.ac.nz/items/10817622-e16b-4f12-8874-7d2883ab9331 (accessed on 16 September 2024).
- Nicolaou, K.; Pan, S.; Shelke, Y.; Das, D.; Ye, Q.; Lu, Y.; Sau, S.; Bao, R.; Rigol, S. A reverse approach to the total synthesis of halichondrin B. J. Am. Chem. Soc. 2021, 143, 9267–9276. [Google Scholar] [CrossRef]
- Bai, R.; Smith, A.B., 3rd; Pettit, G.R.; Hamel, E. The interaction of spongistatin 1 with tubulin. Arch. Biochem. Biophys. 2022, 727, 109296. [Google Scholar] [CrossRef]
- Davey, S. The halichondrin C campaign. Nat. Chem. 2012, 4, 146. [Google Scholar] [CrossRef]
- Yamamoto, A.; Ueda, A.; Bremond, P.; Tiseni, P.S.; Kishi, Y. Total synthesis of halichondrin C. J. Am. Chem. Soc. 2012, 134, 893–896. [Google Scholar] [CrossRef]
- Hanson, G.H. Synthetic Studies of Halichondrin B Subunits. Ph.D. Thesis, The University of Wisconsin, Madison, WI, USA, 2006. [Google Scholar]
- Cermak, V.; Dostal, V.; Jelinek, M.; Libusova, L.; Kovar, J.; Rosel, D.; Brabek, J. Microtubule-targeting agents and their impact on cancer treatment. Eur. J. Cell Biol. 2020, 99, 151075. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J. Drug Discovery from Natural Sources. Curr. Pharmacol. Rep. 2023, 9, 67–89. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Pan, S.; Shelke, Y.; Rigol, S.; Bao, R.; Das, D.; Ye, Q. A unified strategy for the total syntheses of eribulin and a macrolactam analogue of halichondrin B. Proc. Natl. Acad. Sci. USA 2022, 119, e2208938119. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.; Pan, S.; Shelke, Y.; Ye, Q.; Das, D.; Rigol, S. A highly convergent total synthesis of norhalichondrin B. J. Am. Chem. Soc. 2021, 143, 20970–20979. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, P.; Singh, P.K.; Singh, T.G.; Saini, B. Medicinal Potential of Heterocyclic Compounds from Diverse Natural Sources for the Management of Cancer. Mini Rev. Med. Chem. 2020, 20, 942–957. [Google Scholar] [CrossRef] [PubMed]
- Parmar, G.; Chudasama, J.M.; Shah, V.; Shah, A.P.; Patel, A. A Mini-Review on Marine Bioactive Compounds as a Source of Antiviral Drug Lead. Curr. Tradit. Med. 2023, 9, 116–119. [Google Scholar] [CrossRef]
- Kaburagi, Y.; Kira, K.; Yahata, K.; Iso, K.; Sato, Y.; Matsuura, F.; Ohashi, I.; Matsumoto, Y.; Isomura, M.; Sasaki, T.; et al. Ten-Gram-Scale Total Synthesis of the Anticancer Drug Candidate E7130 to Supply Clinical Trials. Org. Lett. 2024, 26, 2837–2842. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.L.; Henderson, J.A.; Phillips, A.J. The halichondrins and E7389. Chem. Rev. 2009, 109, 3044–3079. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5488895, Halichondrin B. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Halichondrin-B (accessed on 16 September 2024).
- National Center for Biotechnology Information. Pubchem Compounds for CID 57333215, Halichondrin C. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Halichondrin-C (accessed on 16 September 2024).
- National Center for Biotechnology Information. PubChem Substance Record for SID 273819388, Norhalichondrin B, Source: Japan Chemical Substance Dictionary (Nikkaji). Available online: https://pubchem.ncbi.nlm.nih.gov/substance/273819388 (accessed on 16 September 2024).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 163705, Homohalichondrin B. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/163705 (accessed on 16 September 2024).
- Stamos, D.P.; Kishi, Y. Synthetic studies on halichondrins: A practical synthesis of the C.1–C.13 segment. Tetrahedron Lett. 1996, 37, 8643–8646. [Google Scholar] [CrossRef]
- Yuan, P.; Xu, B. Clinical Utility of Eribulin Mesylate in the Treatment of Breast Cancer: A Chinese Perspective. Breast Cancer 2021, 13, 135–150. [Google Scholar] [CrossRef]
- Lu, W.Y.; Li, H.J.; Li, Q.Y.; Wu, Y.C. Application of marine natural products in drug research. Bioorg. Med. Chem. 2021, 35, 116058. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.C.; Boger, D.L. The quest for supernatural products: The impact of total synthesis in complex natural products medicinal chemistry. Nat. Prod. Rep. 2020, 37, 1511–1531. [Google Scholar] [CrossRef] [PubMed]
- Niwa, Y.; Adachi, K.; Tabata, K.; Ishida, R.; Hotta, K.; Ishida, T.; Mano, Y.; Ozawa, Y.; Minoshima, Y.; Funahashi, Y.; et al. Liposome-Encapsulated Eribulin Shows Enhanced Antitumor Activity over Eribulin for Combination Therapy with Anti-PD-1 Antibody. Mol. Cancer Ther. 2023, 22, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Ono, M.; Mukohara, T.; Yasojima, H.; Shimoi, T.; Kobayashi, K.; Harano, K.; Mizutani, M.; Tanioka, M.; Takahashi, S.; et al. Phase 1 study of the liposomal formulation of eribulin (E7389-LF): Results from the breast cancer expansion cohort. Eur. J. Cancer 2022, 168, 108–118. [Google Scholar] [CrossRef]
- Sasaki, T.; Yahata, K.; Isomura, M.; Ohashi, I.; Fukuyama, T.; Miyashita, Y.; Watanabe, Y.; Murai, N.; Matsuda, M.; Kamada, A.; et al. What Does It Take to Develop Structurally Complex Molecules by Total Synthesis? Rapid Process Development and GMP Manufacturing of E7130 Drug Substance for First-in-Human Clinical Study. Org. Process Res. Dev. 2024, 28, 2077–2089. [Google Scholar] [CrossRef]
- Maier, M.E. Design and synthesis of analogues of natural products. Org. Biomol. Chem. 2015, 13, 5302–5343. [Google Scholar] [CrossRef]
- Henderson, J.A. Synthesis of Marine Natural Products: Aburatubolactam A and the Halichondrins. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2008. [Google Scholar]
- Lawrence, N. Chapter 9—Synthetic methods. In Annual Reports Section “B” (Organic Chemistry); Royal Society of Chemistry: Lonodn, UK, 1992; Volume 89, pp. 249–280. [Google Scholar]
- Fuwa, H. Structure determination, correction, and disproof of marine macrolide natural products by chemical synthesis. Org. Chem. Front. 2021, 8, 3990–4023. [Google Scholar] [CrossRef]
- Yu, M.J.; Zheng, W.; Seletsky, B.M.; Littlefield, B.A.; Kishi, Y. Chapter 14—Case History: Discovery of Eribulin (HALAVEN™), a Halichondrin B Analogue That Prolongs Overall Survival in Patients with Metastatic Breast Cancer. In Annual Reports in Medicinal Chemistry; Macor, J.E., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 46, pp. 227–241. [Google Scholar]
- Kaghad, A. Formal Syntheses of Eribulin and Synthesis of Biologically Active Small Molecules. Summit Research Repository, SFU, Canada. Available online: https://summit.sfu.ca/item/36065 (accessed on 16 September 2024).
- Quach, R.; Aitken, H.; Kishi, Y. Stereochemistry and Total Synthesis of Neonorhalichondrin B. Cambridge Open Engage, ChemRxiv. Available online: https://chemrxiv.org/engage/chemrxiv/article-details/64b14dedb053dad33a3ac3a1 (accessed on 16 September 2024).
- Rai, T.; Kaushik, N.; Malviya, R.; Sharma, P.K. A review on marine source as anticancer agents. J. Asian Nat. Prod. Res. 2024, 26, 415–451. [Google Scholar] [CrossRef]
- Dolmatova, L.S.; Dolmatov, I.Y. Tumor-Associated Macrophages as Potential Targets for Anti-Cancer Activity of Marine Invertebrate-Derived Compounds. Curr. Pharm. Des. 2021, 27, 3139–3160. [Google Scholar] [CrossRef]
- Salemme, V.; Centonze, G.; Cavallo, F.; Defilippi, P.; Conti, L. The Crosstalk Between Tumor Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy. Front. Oncol. 2021, 11, 610303. [Google Scholar] [CrossRef]
- Funahashi, Y.; Okamoto, K.; Adachi, Y.; Semba, T.; Uesugi, M.; Ozawa, Y.; Tohyama, O.; Uehara, T.; Kimura, T.; Watanabe, H.; et al. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models. Cancer Sci. 2014, 105, 1334–1342. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Hamamichi, S.; Abe, T.; Akagi, T.; Shirota, H.; Kawano, S.; Asano, M.; Asano, O.; Yokoi, A.; Matsui, J.; et al. Eribulin modulates tumor microenvironment through vascular remodeling for antitumor effect in multiple mouse xenograft models. Cancer Res. 2017, 77 (Suppl. S13), 5927. [Google Scholar] [CrossRef]
- Cortes, J.; Schoffski, P.; Littlefield, B.A. Multiple modes of action of eribulin mesylate: Emerging data and clinical implications. Cancer Treat. Rev. 2018, 70, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Yamaguchi, M.; Semba, T.; Tabata, K.; Tamura, M.; Aoyama, M.; Abe, T.; Asano, O.; Terada, Y.; Funahashi, Y.; et al. Amelioration of Tumor-promoting Microenvironment via Vascular Remodeling and CAF Suppression Using E7130: Biomarker Analysis by Multimodal Imaging Modalities. Mol. Cancer Ther. 2024, 23, 235–247. [Google Scholar] [CrossRef]
- Ito, K.; Hamamichi, S.; Abe, T.; Akagi, T.; Shirota, H.; Kawano, S.; Asano, M.; Asano, O.; Yokoi, A.; Matsui, J. Antitumor effects of eribulin depend on modulation of the tumor microenvironment by vascular remodeling in mouse models. Cancer Sci. 2017, 108, 2273–2280. [Google Scholar] [CrossRef]
- Yoshida, T.; Ozawa, Y.; Kimura, T.; Sato, Y.; Kuznetsov, G.; Xu, S.; Uesugi, M.; Agoulnik, S.; Taylor, N.; Funahashi, Y.; et al. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br. J. Cancer 2014, 110, 1497–1505. [Google Scholar] [CrossRef]
- Goto, W.; Kashiwagi, S.; Asano, Y.; Takada, K.; Morisaki, T.; Fujita, H.; Takashima, T.; Ohsawa, M.; Hirakawa, K.; Ohira, M. Eribulin Promotes Antitumor Immune Responses in Patients with Locally Advanced or Metastatic Breast Cancer. Anticancer Res. 2018, 38, 2929–2938. [Google Scholar]
- Ho, G.Y.; Vandenberg, C.J.; Lim, R.; Christie, E.L.; Garsed, D.W.; Lieschke, E.; Nesic, K.; Kondrashova, O.; Ratnayake, G.; Radke, M.; et al. The microtubule inhibitor eribulin demonstrates efficacy in platinum-resistant and refractory high-grade serous ovarian cancer patient-derived xenograft models. Ther. Adv. Med. Oncol. 2023, 15, 17588359231208674. [Google Scholar] [CrossRef]
- Sandha, K.K.; Shukla, M.K.; Gupta, P.N. Recent Advances in Strategies for Extracellular Matrix Degradation and Synthesis Inhibition for Improved Therapy of Solid Tumors. Curr. Pharm. Des. 2020, 26, 5456–5467. [Google Scholar] [CrossRef]
- Kaul, R.; Risinger, A.L.; Mooberry, S.L. Eribulin rapidly inhibits TGF-beta-induced Snail expression and can induce Slug expression in a Smad4-dependent manner. Br. J. Cancer 2019, 121, 611–621. [Google Scholar] [CrossRef]
- Pederson, P.J.; Liang, H.; Filonov, D.; Mooberry, S.L. Eribulin and Paclitaxel Differentially Alter Extracellular Vesicles and Their Cargo from Triple-Negative Breast Cancer Cells. Cancers 2021, 13, 2783. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ying, J.; Zhang, M.; Qiu, X.; Lu, Y. Antitumor Potential of Marine Natural Products: A Mechanistic Investigation. Anticancer Agents Med. Chem. 2018, 18, 702–718. [Google Scholar] [CrossRef]
- Wen, W.; Marcinkowski, E.; Luyimbazi, D.; Luu, T.; Xing, Q.; Yan, J.; Wang, Y.; Wu, J.; Guo, Y.; Tully, D.; et al. Eribulin Synergistically Increases Anti-Tumor Activity of an mTOR Inhibitor by Inhibiting pAKT/pS6K/pS6 in Triple Negative Breast Cancer. Cells 2019, 8, 1010. [Google Scholar] [CrossRef] [PubMed]
- Husemann, L.C.; Reese, A.; Radine, C.; Piekorz, R.P.; Budach, W.; Sohn, D.; Janicke, R.U. The microtubule targeting agents eribulin and paclitaxel activate similar signaling pathways and induce cell death predominantly in a caspase-independent manner. Cell Cycle 2020, 19, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Fermaintt, C.S.; Takahashi-Ruiz, L.; Liang, H.; Mooberry, S.L.; Risinger, A.L. Eribulin Activates the cGAS-STING Pathway via the Cytoplasmic Accumulation of Mitochondrial DNA. Mol. Pharmacol. 2021, 100, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Mougalian, S.S.; Kish, J.K.; Zhang, J.; Liassou, D.; Feinberg, B.A. Effectiveness of Eribulin in Metastatic Breast Cancer: 10 Years of Real-World Clinical Experience in the United States. Adv. Ther. 2021, 38, 2213–2225. [Google Scholar] [CrossRef]
- Fujii, T.; Tokuda, S.; Nakazawa, Y.; Kurozumi, S.; Obayashi, S.; Yajima, R.; Shirabe, K. Eribulin Suppresses New Metastases in Patients With Metastatic Breast Cancer. Vivo 2020, 34, 917–921. [Google Scholar] [CrossRef]
- Lee, J.S.; Yost, S.E.; Blanchard, S.; Schmolze, D.; Yin, H.H.; Pillai, R.; Robinson, K.; Tang, A.; Martinez, N.; Portnow, J.; et al. Phase I clinical trial of the combination of eribulin and everolimus in patients with metastatic triple-negative breast cancer. Breast Cancer Res. 2019, 21, 119. [Google Scholar] [CrossRef]
- Osgood, C.L.; Chuk, M.K.; Theoret, M.R.; Huang, L.; He, K.; Her, L.; Keegan, P.; Pazdur, R. FDA Approval Summary: Eribulin for Patients with Unresectable or Metastatic Liposarcoma Who Have Received a Prior Anthracycline-Containing Regimen. Clin. Cancer Res. 2017, 23, 6384–6389. [Google Scholar] [CrossRef]
- Swami, U.; Shah, U.; Goel, S. Eribulin in non-small cell lung cancer: Challenges and potential strategies. Expert. Opin. Investig. Drugs 2017, 26, 495–508. [Google Scholar] [CrossRef]
- Morgan, R.J.; Synold, T.W.; Longmate, J.A.; Quinn, D.I.; Gandara, D.; Lenz, H.J.; Ruel, C.; Xi, B.; Lewis, M.D.; Colevas, A.D.; et al. Pharmacodynamics (PD) and pharmacokinetics (PK) of E7389 (eribulin, halichondrin B analog) during a phase I trial in patients with advanced solid tumors: A California Cancer Consortium trial. Cancer Chemother. Pharmacol. 2015, 76, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Shao, B.; Wan, D.; Liu, J.; He, M.; Chai, Y.; Sang, D.; Wang, J.; Ma, F.; Fan, Y.; et al. Eribulin combined with antiangiogenic agents in women with HER2-negative metastatic breast cancer: A retrospective multicenter study. Ther. Adv. Med. Oncol. 2023, 15, 17588359231204856. [Google Scholar] [CrossRef]
- Terashima, M.; Sakai, K.; Togashi, Y.; Hayashi, H.; De Velasco, M.A.; Tsurutani, J.; Nishio, K. Synergistic antitumor effects of S-1 with eribulin in vitro and in vivo for triple-negative breast cancer cell lines. Springerplus 2014, 3, 417. [Google Scholar] [CrossRef]
- Goto, W.; Kashiwagi, S.; Asano, Y.; Takada, K.; Takahashi, K.; Fujita, H.; Takashima, T.; Shibutani, M.; Amano, R.; Tomita, S.; et al. The Effects of Eribulin on Breast Cancer Microenvironment Identified Using Eribulin-resistant Breast Cancer Cell Lines. Anticancer Res. 2019, 39, 4031–4041. [Google Scholar] [CrossRef]
- Benlloch, R.; Castejon, R.; Rosado, S.; Coronado, M.J.; Sanchez, P.; Romero, J. In vitro radiosensitization by eribulin in human cancer cell lines. Rep. Pract. Oncol. Radiother. 2022, 27, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Yanagi, T.; Maeda, T.; Nishihara, H.; Miyamoto, K.; Kitamura, S.; Tokuchi, K.; Ujiie, H. Eribulin inhibits growth of cutaneous squamous cell carcinoma cell lines and a novel patient-derived xenograft. Sci. Rep. 2023, 13, 8650. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, C.; Wang, Y.; Wu, Y.; Wang, H.; Qiu, S.; Hao, M.; Wang, Z.; Wang, X.; Jin, H.; et al. Suppression of alpha-tubulin acetylation potentiates therapeutic efficacy of Eribulin in liver cancer. Am. J. Cancer Res. 2023, 13, 5698–5718. [Google Scholar]
- Lim, H.I.; Sun, Y.U.; Han, Q.; Yamamoto, J.; Hoffman, R.M. Efficacy of Oral Recombinant Methioninase and Eribulin on a PDOX Model of Triple-negative Breast Cancer (TNBC) Liver Metastasis. Vivo 2021, 35, 2531–2534. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Zhu, K.Y.; Tu, X.L.; Albu, D.; Woodall-Jappe, M.; Littlefield, B.A. Evaluation of eribulin-induced alterations of the intact immune cell landscape in spleens and tumors from tumor-bearing immunocompetent mice. Cancer Res. 2020, 80, 5522. [Google Scholar] [CrossRef]
- Synold, T.W.; Morgan, R.J.; Newman, E.M.; Lenz, H.J.; Gandara, D.R.; Colevas, A.D.; Lewis, M.D.; Doroshow, J.H. A phase I pharmacokinetic and target validation study of the novel anti-tubulin agent E7389: A California Cancer Consortium trial. J. Clin. Oncol. 2005, 23, 200s. [Google Scholar] [CrossRef]
- Minami, H.; Mukohara, T.; Nagai, S.; Mukai, H.; Namiki, M. 446 POSTER A phase I study of eribulin mesylate (E7389) in patients with refractory cancers. Eur. J. Cancer Suppl. 2008, 6, 140. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Nakatsukasa, K.; Koyama, H.; Kato, M.; Sakuyama, A.; Matsuda, T.; Tsunoda, N.; Fujiwara, I.; Yamaguchi, M.; Tanaka, H.; et al. Phase II Clinical Trial of First-line Eribulin Plus Trastuzumab for Advanced or Recurrent HER2-positive Breast Cancer. Anticancer Res. 2018, 38, 4073–4081. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.N.; Chen, Y.H.; Carducci, M.A.; Hudes, G.R.; Lerma, P.M.; Tan, W.W.; Dalune, R.; Rowland, K.M.; Kuzel, T.M.; DiPaola, R.S. Phase II Trial of Eribulin in Patients With Metastatic Hormone Refractory Prostate Cancer: A Trial of the ECOG-ACRIN Cancer Research Group (E5805). Am. J. Clin. Oncol. 2019, 42, 375–381. [Google Scholar] [CrossRef]
- Aogi, K.; Iwata, H.; Masuda, N.; Mukai, H.; Yoshida, M.; Rai, Y.; Taguchi, K.; Sasaki, Y.; Takashima, S. A phase II study of eribulin in Japanese patients with heavily pretreated metastatic breast cancer. Ann. Oncol. 2012, 23, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, T.; Jinno, H.; Mori, K.; Sato, H.; Matsui, A.; Sakurai, T.; Hattori, H.; Takayama, S.; Wada, M.; Takahashi, M.; et al. Phase II trial of eribulin mesylate as a first- or second-line treatment for locally advanced or metastatic breast cancer: A multicenter, single-arm trial. BMC Cancer 2018, 18, 701. [Google Scholar] [CrossRef]
- Szeja, W.; Grynkiewicz, G. Syntheses of asymmetrically substituted pyrans of natural origin. Nat. Prod. Source Mol. Ther. Potential Res. Dev. Chall. Perspect. 2018, 233–307. [Google Scholar]
- Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and Opportunities in Cancer Drug Resistance. Chem. Rev. 2021, 121, 3297–3351. [Google Scholar] [CrossRef]
- Takada, S.; Hosokawa, Y.; Umehara, K.; Kimura, Y.; Fukai, Y.; Shikishima, K.; Yamamoto, M.; Maeda, H.; Tomioka, N.; Watanabe, K.; et al. Risk Factors for Eribulin-induced Severe Neutropenia in Patients With Recurrent Breast Cancer. Vivo 2024, 38, 500–505. [Google Scholar] [CrossRef]
- Saito, Y.; Takekuma, Y.; Takeshita, T.; Noguchi, T.; Takeuchi, S.; Shimizu, Y.; Kinoshita, I.; Dosaka-Akita, H.; Sugawara, M. Risk Factor Analysis for the Occurrence of Severe Adverse Effects in Eribulin Treatment. Anticancer Res. 2022, 42, 3693–3700. [Google Scholar] [CrossRef]
- Tarasiuk, O.; Cavaletti, G.; Meregalli, C. Clinical and preclinical features of eribulin-related peripheral neuropathy. Exp. Neurol. 2022, 348, 113925. [Google Scholar] [CrossRef]
- Bagheri, M.; Lee, M.K.; Muller, K.E.; Miller, T.W.; Pattabiraman, D.R.; Christensen, B.C. Alteration of DNA methyltransferases by eribulin elicits broad DNA methylation changes with potential therapeutic implications for triple-negative breast cancer. Epigenomics 2024, 16, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Engle, K.; Kumar, G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur. J. Med. Chem. 2022, 239, 114542. [Google Scholar] [CrossRef] [PubMed]
- Niklaus, N.J.; Tokarchuk, I.; Zbinden, M.; Schlafli, A.M.; Maycotte, P.; Tschan, M.P. The Multifaceted Functions of Autophagy in Breast Cancer Development and Treatment. Cells 2021, 10, 1447. [Google Scholar] [CrossRef]
- Ni, Y.; Zhou, X.; Yang, J.; Shi, H.; Li, H.; Zhao, X.; Ma, X. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Front. Cell Dev. Biol. 2021, 9, 637675. [Google Scholar] [CrossRef]
- Pena, L.F.; Gonzalez-Andres, P.; Parte, L.G.; Escribano, R.; Guerra, J.; Barbero, A.; Lopez, E. Continuous Flow Chemistry: A Novel Technology for the Synthesis of Marine Drugs. Mar. Drugs 2023, 21, 402. [Google Scholar] [CrossRef] [PubMed]
- Laughney, A.M.; Kim, E.; Sprachman, M.M.; Miller, M.A.; Kohler, R.H.; Yang, K.S.; Orth, J.D.; Mitchison, T.J.; Weissleder, R. Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci. Transl. Med. 2014, 6, 261ra152. [Google Scholar] [CrossRef] [PubMed]
- Swami, U.; Chaudhary, I.; Ghalib, M.H.; Goel, S. Eribulin—a review of preclinical and clinical studies. Crit. Rev. Oncol. Hematol. 2012, 81, 163–184. [Google Scholar] [CrossRef]
- Xu, Y.; Du, X.; Yu, X.; Jiang, Q.; Zheng, K.; Xu, J.; Wang, P. Recent Advances in the Heterologous Expression of Biosynthetic Gene Clusters for Marine Natural Products. Mar. Drugs 2022, 20, 341. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, R.S.; Gupta, G.; Ahmad, T.; Kaur, B. Metabolic Engineering of Enzyme-Regulated Bioprocesses. In Advances in Enzyme Technology; Singh, R.S., Singhania, R.R., Pandey, A., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 293–323. [Google Scholar]
- Lee, H.Y.; Harvey, C.J.; Cane, D.E.; Khosla, C. Improved precursor-directed biosynthesis in E. coli via directed evolution. J. Antibiot. 2011, 64, 59–64. [Google Scholar] [CrossRef]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. Engl. 2021, 60, 88–119. [Google Scholar] [CrossRef]
Chemical Structure | Molecular Formula | Molecular Weight (g/mol) | Sources | Synthetic Analogs | References | |
---|---|---|---|---|---|---|
Halichondrin B | Consists of polyether domain and C1–C38 macrolactone domain | C60H86O19 | 1111.3 | Halichondia okadai, Axinells sp., and Phakellia carteri | Eribulin | [22,23] |
Halichondrin C | Polyether domain with an oxidation at C12. Belongs to the C series of halichondrin | C60H86O20 | 1127.3 | Halichondia okadai | Not specified | [22,24] |
Norhalichondrin B | Belongs to the B series of halichondrin | C59H82O19 | 1095.3 | Halichondia okadai and Lissodendory sp. | Not specified | [9,25] |
Homohalichondrin B | Belongs to the B series of halichondrin | C61H86O19 | 1123.3 | Halichondia okadai, Axinells sp., and Lissodendory sp. | Not specified | [9,26] |
Study ID | Study Type | Model Used | Objectives | Key Findings | References |
---|---|---|---|---|---|
1 | In vitro | Four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-468, BT-549, and MX-1) | To study the combination effect of eribulin and S-1 (5-FU) | Through eribulin’s MET induction, the combination of S-1 (5-FU) and eribulin has a synergistic antitumor effect against TNBC cell lines | [66] |
2 | In vitro | Two human breast cancer cell lines (MDA-MB-231 and MCF-7) | To examine the effect of eribulin on breast cancer microenvironment | Phenotypical changes in the cells after eribulin treatment. Acquired cross-resistance to other anticancer agents | [67] |
3 | In vitro | HeLa (human cervical cancer) cell line and FaDu (human pharyngeal carcinoma) cell line | To study eribulin’s radiosensitizing qualities in cervical and head and neck cancer cell lines and the alterations it causes to the cell cycle and apoptosis | In both cell lines, eribulin pretreatment dramatically boosted radio-induced cell death at various dosages. A range of clinically significant radiation doses cause radiosensitization, and adding the medication increases radiosensitivity more than twice as much as radiation alone | [68] |
4 | In vitro | Cutaneous squamous cell carcinoma (cSCC) and normal primary dermal fibroblast (NHDF) | To examine the effect of eribulin on cSCC cells and possibility of innovative therapies | In cSCC cell lines, eribulin causes irreversible mitotic blockage and death, which results in tumor regression. Suggests that eribulin may possess exceptional antineoplastic efficacy against cSCC cells, irrespective of their genetic composition | [69] |
5 | In vitro | Hepatocellular carcinoma (HCC) cell line | To look into how variations in microtubule acetylation levels affect treatment outcomes and HCC development | A higher amount of acetyl-α-tubulin-lys40 is associated with a decreased sensitivity to eribulin. Cells exhibiting reduced acetyl-α-tubulin-lys40 levels were more susceptible to apoptosis triggered by eribulin. The microtubule assembly was disrupted by eribulin in a dose-dependent way | [70] |
6 | In vivo | 5–6-week-old female BALB/Cnu/nu mice | To study the anticancer activity of eribulin or eribulin-LF as monotherapy or in combination with anti-PD-1 Ab using a P-glycoprotein-knockout 4T1 mouse | When eribulin and eribulin-LF were administered to immunocompetent mice instead of immunodeficient mice, their anticancer activity was greater, suggesting that their immunomodulatory action was the source of their antitumor activity. When eribulin and eribulin-LF were combined with anti-PD-1 Ab, the combination therapy demonstrated anticancer effectiveness. Additionally, when eribulin-LF was used in conjunction with anti-PD-1 Ab, the administration interval and dose were larger than when eribulin was used alone | [31] |
7 | In vivo | 4–6-week-old femalenu/nu nude mice | To demonstrate the sensitivity of the liver-metastasis PDOX model to low-dose o-rMETase and eribulin, as well as their combination | A significant inhibition in the TNBC growth in the liver compared to the control group after 2 weeks | [71] |
8 | In vivo | Mice with subcutaneous Lewis’s lung cancer (LLC) that are immunocompetent | To investigate the impact of eribulin on the cellular components of the lymphoid and myeloid lineages in the spleen and malignancies | The spleens of mice with LLC tumors that were treated with a vehicle were found to be roughly twice as large as those of mice without tumors. A strong positive correlation (r2 = 0.92) between the weight of the spleen and the size of each individual tumor | [72] |
Trial ID | Phase | Study Design | Patient Population | Key Findings | References |
---|---|---|---|---|---|
1 | I | A rapid titration design incorporating real-time pharmacokinetics (PK) was used to guide dose escalation. E7389 was administered as a weekly bolus for three consecutive weeks followed by a one-week break, starting at a dose of 0.125 mg/m2 per week | 40 | The tri-phasic elimination and the prolonged terminal t1/2 of 36–48 h are shown in the pharmacokinetic data. E7389’s plasma levels are above the threshold for in vitro cytotoxicity at the MTD for more than a week. Thirteen patients were treated at the MTD, and repeated tumor samples were taken. These specimens’ fluorescent IHC analyses show that E7389 destabilizes microtubule organization in malignancies in vivo | [73] |
2 | I | Every 21 days, on days 1 and 8, eribulin mesylate was injected intravenously during a 5 min period. Three patient cohorts received treatment at doses of 0.7, 1.0, 1.4, and 2.0 mg/m2. Measurements of the tumor were taken at baseline and every six weeks. In the first cycle, pharmacokinetics were examined on days 1 through 8 | 15 | Eribulin mesylate’s primary toxicity is neutropenia, which is easily treated. For phase II investigations, a dose of 1.4 mg/m2 given on days 1 and 8 every three weeks is advised | [74] |
3 | II | Multicenter, single-arm phase II study | 28 | With good safety and efficacy results, a combination regimen of trastuzumab + eribulin represents a potentially significant initial treatment option for advanced and recurrent HER2-positive breast cancer. | [75] |
4 | II | Open-label, multisite, single-arm ECOG trial | 119 | The chemo-naive stratum, the prior-taxane stratum, and the 2-prior-chemotherapy stratum had confirmed PSA response rates (50% drop from baseline) of 29% (90% [18.2%, 41.2%]; p = 0.20), 10% (90% [5.2%, 27.1%]; p = 1.00), and 4% ([0.2%, 18.3%]; p = 0.59), respectively. The incidence of febrile neutropenia was 4% | [76] |
5 | II | Single-arm, multicenter, open-label. Anthracycline- and taxane-pretreated patients received 1.4 mg/m2 eribulin mesylate (21-day cycle) | 80 | Eribulin demonstrated improved tolerability and effectiveness in patients with extensively pretreated metastatic breast cancer | [77] |
6 | II | Open-label, multicenter study in which the safety and efficacy of eribulin were evaluated as a first- or second-line treatment (21 day cycle) | 35 | In prior clinical trials, eribulin showed adequate efficacy as a first- or second-line therapy for metastatic breast cancer when compared to taxane and capecitabine treatment. Eribulin’s safety profile was deemed satisfactory | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dissanayake, D.S.; Nagahawatta, D.P.; Lee, J.-S.; Jeon, Y.-J. Immunomodulatory Effects of Halichondrin Isolated from Marine Sponges and Its Synthetic Analogs in Oncological Applications. Mar. Drugs 2024, 22, 426. https://doi.org/10.3390/md22090426
Dissanayake DS, Nagahawatta DP, Lee J-S, Jeon Y-J. Immunomodulatory Effects of Halichondrin Isolated from Marine Sponges and Its Synthetic Analogs in Oncological Applications. Marine Drugs. 2024; 22(9):426. https://doi.org/10.3390/md22090426
Chicago/Turabian StyleDissanayake, Dinusha Shiromala, Dineth Pramuditha Nagahawatta, Jung-Suck Lee, and You-Jin Jeon. 2024. "Immunomodulatory Effects of Halichondrin Isolated from Marine Sponges and Its Synthetic Analogs in Oncological Applications" Marine Drugs 22, no. 9: 426. https://doi.org/10.3390/md22090426
APA StyleDissanayake, D. S., Nagahawatta, D. P., Lee, J. -S., & Jeon, Y. -J. (2024). Immunomodulatory Effects of Halichondrin Isolated from Marine Sponges and Its Synthetic Analogs in Oncological Applications. Marine Drugs, 22(9), 426. https://doi.org/10.3390/md22090426