Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = marine plastic litter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 42622 KiB  
Article
Seasonal Comparative Monitoring of Plastic and Microplastic Pollution in Lake Garda (Italy) Using Seabin During Summer–Autumn 2024
by Marco Papparotto, Claudia Gavazza, Paolo Matteotti and Luca Fambri
Microplastics 2025, 4(3), 44; https://doi.org/10.3390/microplastics4030044 - 28 Jul 2025
Viewed by 371
Abstract
Plastic (P) and microplastic (MP) pollution in marine and freshwater environments is an increasingly urgent issue that needs to be addressed at many levels. The Seabin (an easily operated and cost-effective floating debris collection device) can help clean up buoyant plastic debris in [...] Read more.
Plastic (P) and microplastic (MP) pollution in marine and freshwater environments is an increasingly urgent issue that needs to be addressed at many levels. The Seabin (an easily operated and cost-effective floating debris collection device) can help clean up buoyant plastic debris in calm waters while monitoring water pollution. A Seabin was used to conduct a comparative analysis of plastic and microplastic concentrations in northern Lake Garda (Italy) during peak and low tourist seasons. The composition of the litter was further investigated using Fourier-Transform Infrared (FTIR) spectroscopy. The analysis showed a decreased mean amount of plastic from summer (32.5 mg/m3) to autumn (17.6 mg/m3), with an average number of collected microplastics per day of 45 ± 15 and 15 ± 3, respectively. Packaging and foam accounted for 92.2% of the recognized plastic waste products. The material composition of the plastic mass (442 pieces, 103.0 g) was mainly identified as polypropylene (PP, 47.1%) and polyethylene (PE, 21.8%). Moreover, 313 microplastics (approximately 2.0 g) were counted with average weight in the range of 1–16 mg. A case study of selected plastic debris was also conducted. Spectroscopic, microscopic, and thermal analysis of specimens provided insights into how aging affects plastics in this specific environment. The purpose of this study was to establish a baseline for further research on the topic, to provide guidelines for similar analyses from a multidisciplinary perspective, to monitor plastic pollution in Lake Garda, and to inform policy makers, scientists, and the public. Full article
(This article belongs to the Collection Feature Paper in Microplastics)
Show Figures

Figure 1

32 pages, 5001 KiB  
Article
The Seasonal and Cross-Shore Distribution of Beach Litter Along Four Sites on the Northern Adriatic Coast (Ferrara, Italy)
by Joana Buoninsegni, Giorgio Anfuso, Francisco Asensio-Montesinos, Elena Marrocchino and Carmela Vaccaro
Water 2025, 17(15), 2173; https://doi.org/10.3390/w17152173 - 22 Jul 2025
Viewed by 610
Abstract
This study investigated the presence and distribution of macrolitter along four beach sites on the Ferrara coast, North-eastern Italy. At each site, monitoring campaigns were conducted from summer 2023 to summer 2024 to assess seasonal and cross-shore fluctuations of litter items and their [...] Read more.
This study investigated the presence and distribution of macrolitter along four beach sites on the Ferrara coast, North-eastern Italy. At each site, monitoring campaigns were conducted from summer 2023 to summer 2024 to assess seasonal and cross-shore fluctuations of litter items and their relations with local geomorphological features. Following the Marine Strategy Framework Directive, 5627 litter items were collected, with an average density of 0.61 ± 0.23 items/m2. Plastic was the dominant material, representing 94% of the total. The Clean Coast Index (CCI) was applied to evaluate beach cleanliness, seasonal patterns, and cross-shore litter distribution. Although the sites were generally classified as “Clean”, CCI values revealed a progressive decline in cleanliness from summer to spring. Litter was especially accumulated in the upper backshore and at the dune foot. All macrolitter items were classified by material, typology, and usage category to identify potential sources of release, following the Joint List of Litter Categories for Marine Macrolitter Monitoring. The “Top 10” of the most collected items was compiled per each site, season, and geomorphological zone. The results underscore the relevance of high-resolution monitoring programs to support the development of targeted management strategies for effective beach litter mitigation. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

26 pages, 9214 KiB  
Article
Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives
by Corinne Corbau, Alexandre Lazarou and Umberto Simeoni
J. Mar. Sci. Eng. 2025, 13(7), 1351; https://doi.org/10.3390/jmse13071351 - 16 Jul 2025
Viewed by 359
Abstract
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. [...] Read more.
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. This study analyzed the distribution and temporal evolution of three fishing-related items (EPS fish boxes, fragments, and buoys) along the Bocassette spit in the northern Adriatic Sea, a region with high fishing and aquaculture activity. UAV monitoring (November 2019, June/October 2020) and structured interviews with Po Delta fishermen were conducted. The collected debris was mainly EPS, with boxes (54.8%) and fragments (39.6%). Fishermen showed strong awareness of degradation, identifying plastic as the primary litter type and reporting gear loss. Litter concentrated in active dunes and the southern sector indicates human and riverine influence. Persistent items (61%) at higher elevations suggest longer residence times. Mapped EPS boxes could generate billions of micro-particles (e.g., ~1013). The results reveal a complex interaction between natural processes and human activities in litter distribution. This highlights the need for integrated management strategies, like improved waste management, targeted cleanup, and community involvement, to reduce long-term impacts on vulnerable coastal ecosystems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

18 pages, 1096 KiB  
Review
Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment
by Lucas Lopes, Harish Dauari, Paulo Mendonça and Manuela Almeida
Polymers 2025, 17(13), 1729; https://doi.org/10.3390/polym17131729 - 21 Jun 2025
Viewed by 774
Abstract
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste [...] Read more.
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste within the architecture, engineering, and construction (AEC) sectors, following the PRISMA methodology. Sixty-six peer-reviewed articles published between 2015 and 2025 were analysed, focusing on the integration of plastic waste. The review identifies mechanical recycling as the predominant method, involving washing and shredding plastics into fibres or flakes for use in cementitious composites, asphalt modifiers, bricks, panels, and insulation. Results indicate that recycled plastics, such as PET, HDPE, and PP, can enhance thermal insulation, water resistance, and flexural strength in non-structural applications. However, challenges persist regarding compressive strength, fibre dispersion, and chemical compatibility with cementitious matrices. Although the reuse of marine plastics supports circular economy goals by diverting waste from oceans and landfills, significant gaps remain in long-term durability, microplastic release, end-of-life recyclability, and comprehensive environmental assessments. The findings underscore the need for further research on the broader adoption of life cycle analysis, as well as long-term durability and environmental contamination analyses. Full article
(This article belongs to the Special Issue Environmentally Responsive Polymer Materials)
Show Figures

Figure 1

22 pages, 21422 KiB  
Article
Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea
by Maria Emanuela Mihailov, Alecsandru Vladimir Chiroșca, Elena Daniela Pantea and Gianina Chiroșca
Sustainability 2025, 17(12), 5664; https://doi.org/10.3390/su17125664 - 19 Jun 2025
Viewed by 563
Abstract
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this [...] Read more.
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this form of contamination. Mytilus galloprovincialis, a well-established bioindicator, accumulates microplastics, providing a direct measure of environmental pollution and indicating potential economic consequences deriving from degraded ecosystem services. While previous studies have documented microplastic pollution in the Black Sea, our paper specifically quantified microplastic contamination in M. galloprovincialis collected from four sites along the western Black Sea coast, each characterised by distinct levels of anthropogenic influence: Midia Port, Constanta Port, Mangalia Port, and 2 Mai. We used statistical analysis to quantify site-specific microplastic contamination in M. galloprovincialis and employed machine learning to develop models predicting accumulation patterns based on environmental variables. Our findings demonstrate the efficacy of mussels as bioindicators of marine plastic pollution and highlight the utility of machine learning in developing effective predictive tools for monitoring and managing marine litter contamination in marine environments, thereby contributing to sustainable economic practices. Full article
(This article belongs to the Special Issue Environment and Sustainable Economic Growth, 2nd Edition)
Show Figures

Figure 1

21 pages, 4767 KiB  
Article
Mapping the Distribution and Discharge of Plastic Pollution in the Ganga River
by Ekta Sharma, Aishwarya Ramachandran, Pariva Dobriyal, Srishti Badola, Heather Koldewey, Syed Ainul Hussain and Ruchi Badola
Sustainability 2025, 17(11), 4932; https://doi.org/10.3390/su17114932 - 27 May 2025
Viewed by 1135
Abstract
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving [...] Read more.
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving critical gaps in understanding plastic pollution’s sources and pathways. Addressing these gaps, the study documents the prevalence and typology of plastic debris in urban and underexplored rural communities along the Ganga River, India, aiming to suggest mechanisms for a reduction in source-based pollution. A stratified random sampling approach was used to select survey sites and plastic debris was quantified and categorised through transect surveys. A total of 37,730 debris items were retrieved, dominated by packaging debris (52.46%), fragments (23.38%), tobacco-related debris (5.03%), and disposables (single-use plastic cutleries) (4.73%) along the surveyed segments with varying abundance trends. Floodplains displayed litter densities nearly 28 times higher than river shorelines (6.95 items/m2 vs. 0.25 items/m2), with minor variations between high- and low-population-density areas (7.14 items/m vs. 6.7 items/m2). No significant difference was found between rural and urban areas (V = 41, p = 0.19), with mean densities of 0.87 items/m2 and 0.81 items/m2, respectively. Seasonal variations were insignificant (V = 13, p = 0.30), but treatment sites displayed significant variance (Chi2 = 10.667, p = 0.004) due to flood impacts. The findings underscore the urgent need for tailored waste management strategies integrating industrial reforms, decentralised governance, and community-driven efforts. Enhanced baseline information and coordinated multi-sectoral efforts, including Extended Producer Responsibility (EPR), are crucial for mitigating plastic pollution and protecting freshwater ecosystems, given rivers’ significant contribution to ocean pollution. Full article
Show Figures

Figure 1

18 pages, 3266 KiB  
Article
Nautical Tourism Vessels as a Source of Seafloor Litter: An ROV Survey in the North Adriatic Sea
by Livia Maglić, Lovro Maglić and Antonio Blažina
J. Mar. Sci. Eng. 2025, 13(6), 1012; https://doi.org/10.3390/jmse13061012 - 23 May 2025
Viewed by 509
Abstract
Marine litter threatens ocean ecosystems, and nautical tourism, as a source of litter, contributes significantly. This paper presents a qualitative and quantitative study of seafloor litter in the Bay of Selehovica in the northern Adriatic Sea. The bay is accessible only by sea [...] Read more.
Marine litter threatens ocean ecosystems, and nautical tourism, as a source of litter, contributes significantly. This paper presents a qualitative and quantitative study of seafloor litter in the Bay of Selehovica in the northern Adriatic Sea. The bay is accessible only by sea and is attractive to nautical tourism vessels. The survey was conducted using a remotely operated vehicle across 22,100 m2 of seafloor, before and after the tourist season (summer) in 2024. The analysis shows a 25.90% increase in litter items after one season. The predominant litter category is plastic, followed by glass, metal, rubber, and textiles. The abundance of marine litter increased from 1.3 to 1.7 items per 100 m2 in the post-season, reflecting a measurable rise in litter density. Due to non-normal data distribution (Shapiro–Wilk test, p < 0.001), the Wilcoxon Signed-Rank Test was used, revealing a statistically significant increase in marine litter (W = 0, p < 0.001) with a large effect size (Cohen’s d = 0.89). A strong positive correlation between the pre- and post-season values was observed (Spearman’s r = 0.96, p < 0.001), suggesting that areas with higher initial litter levels tend to accumulate more over time. The results point to the necessity of targeted management strategies to reduce the pressure of nautical tourism on marine ecosystems and to protect the marine environment. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

14 pages, 4015 KiB  
Article
Marine Macro-Plastics Litter Features and Their Relation to the Geographical Settings of the Selected Adriatic Islands, Croatia (2018–2023)
by Natalija Špeh and Robert Lončarić
Coasts 2025, 5(2), 13; https://doi.org/10.3390/coasts5020013 - 10 Apr 2025
Viewed by 564
Abstract
Marine litter (ML), encompassing human-made objects in marine ecosystems, poses significant threats to the coasts of some Adriatic islands, despite their remoteness and sparse populations. These islands, reliant on tourism, are particularly vulnerable to ML pollution. This study hypothesized that the natural features [...] Read more.
Marine litter (ML), encompassing human-made objects in marine ecosystems, poses significant threats to the coasts of some Adriatic islands, despite their remoteness and sparse populations. These islands, reliant on tourism, are particularly vulnerable to ML pollution. This study hypothesized that the natural features of the islands influence ML distribution. It employes an integrated geographic approach combining the results of field survey (via sea kayaking) with various indicators which include: (1) coastal orientation and number density of bays, (2) vegetation exposure and biomass share, (3) island area and number density of bays, (4) bay openness and ML quantity, and (5) bay openness and plastic prevalence in ML. Focusing on islands of Lošinj, Pašman, Vis, and the Kornati and Elaphiti archipelago, the study analyzed data collected over six years (2018–2023). Results highlighted that NW-SE and W-E coastal orientations are particularly susceptible to ML accumulation, especially in the southern Adriatic. Linear Fitting Regression analyses revealed a stronger correlation between number density of polluted bays and the surface area of smaller islands (<10 km2) compared to larger islands (>10 km2). The following findings underscore the need for international collaboration and stringent policies to mitigate ML pollution, ensuring the protection of Adriatic marine ecosystems and the sustainability of local communities. Full article
Show Figures

Figure 1

18 pages, 4931 KiB  
Article
Microplastics in Mussels (Mytilus galloprovincialis): Understanding Pollution in Italian Seas
by Silva Rubini, Martina Munari, Erika Baldini, Filippo Barsi, Daniela Meloni, Nicola Pussini, Francesca Barchiesi, Gabriella Di Francesco, Carmen Losasso, Cristiano Cocumelli, Salvatore Dara, Sebastiano Virgilio, Fabio Di Nocera, Antonio Petrella, Matteo Zinni, Carmela Vaccaro, Negar Eftekhari, Stefano Manfredini and Silvia Vertuani
Toxics 2025, 13(3), 144; https://doi.org/10.3390/toxics13030144 - 20 Feb 2025
Cited by 1 | Viewed by 1239
Abstract
Plastic marine litter is a critical issue that threatens marine ecosystems. This study investigated microplastics (MPs) contamination in the Italian seas, involving regions significantly affected by pollution from urban, industrial and agricultural sources. The research, conducted in collaborations between 10 different Experimental Zooprophylactic [...] Read more.
Plastic marine litter is a critical issue that threatens marine ecosystems. This study investigated microplastics (MPs) contamination in the Italian seas, involving regions significantly affected by pollution from urban, industrial and agricultural sources. The research, conducted in collaborations between 10 different Experimental Zooprophylactic Institutes throughout Italy, analyzed Mytilus galloprovincialis (common mussels) for its filtration capacity and suitability as a bioindicator. Using data from two projects funded by the Italian Ministry of Health, MPs were detected from 7% to 13% of mussel samples, mainly polypropylene and polystyrene fragments and fibers. These findings align with previous studies highlighting the pervasive presence of MPs and their potential risks as mussels are consumed whole, allowing MPs to be ingested. The study underscores the need for standardized detection methods and coordinated policies to mitigate plastic pollution. Public awareness campaigns and improved waste management practices are key to addressing the environmental and health impacts of MPs. Further research on the long-term effects of MPs on marine ecosystems and human health is essential to developing comprehensive mitigation strategies. Full article
Show Figures

Graphical abstract

26 pages, 4009 KiB  
Article
Fresh Versus Beach Users’ Deposited Litter in El Puerto De Santa Maria (Cádiz, SW Spain)
by Elisabetta Ciufegni, Francisco Asensio-Montesinos, Christian Rodríguez Castle and Giorgio Anfuso
J. Mar. Sci. Eng. 2025, 13(2), 258; https://doi.org/10.3390/jmse13020258 - 30 Jan 2025
Cited by 1 | Viewed by 955
Abstract
This study is based on a 10-day survey carried out at seven beaches in March 2023 in El Puerto de Santa María municipality (SW Spain). An amount of 5592 items were collected, with a combined weight of 26 kg. Fresh litter, which refers [...] Read more.
This study is based on a 10-day survey carried out at seven beaches in March 2023 in El Puerto de Santa María municipality (SW Spain). An amount of 5592 items were collected, with a combined weight of 26 kg. Fresh litter, which refers to litter transported to the shore by marine/coastal processes, accounted for 4634 items weighing 23 kg. The remaining 958 items, weighing 3 kg, were identified as litter deposited by beach visitors. The average total litter recorded during the sampling was 0.40 ± 0.07 items m−1 with a density of 1.85 ± 0.69 g m−1. Litter materials were relatively consistent regardless of whether they were stranded by marine processes or discharged by beachgoers. Plastic dominates fresh and deposited litter followed by metal and glass, with minimal contributions of chemicals, organic matter, clothing, rubber, wood, and paper. They were identified 115 items’ categories from the 184 listed in the EU Joint List: 107 for fresh and 75 for deposited litter. Food consumption-related items made up a significant portion of the total debris followed by personal hygiene and care-related and smoking-related litter. The obtained information is very useful to propose sound management actions that have to be especially devoted to raise beach users’ responsibility. Last, in order to have a year-round view of litter characteristics and behavior, further investigations should be carried out during winter, when the number of visitors is very low and waves’ energy is high, and summer, when opposite conditions are recorded. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 4751 KiB  
Article
Efficient Beach Litter Monitoring: Accelerated Surveys of Pollution Hotspots—A North African Case Study
by Emna Ben Slimane, Mirco Haseler, Lilia Ben Abdallah, Fadhel Mhiri, Abdallah Nassour and Gerald Schernewski
J. Mar. Sci. Eng. 2025, 13(1), 71; https://doi.org/10.3390/jmse13010071 - 3 Jan 2025
Cited by 3 | Viewed by 1802
Abstract
Marine litter is a critical environmental issue, with beach litter being its most visible indicator. Despite severe pollution on Mediterranean beaches, Tunisia currently lacks a national beach litter monitoring program. To address this gap and support the development of such a program, particularly [...] Read more.
Marine litter is a critical environmental issue, with beach litter being its most visible indicator. Despite severe pollution on Mediterranean beaches, Tunisia currently lacks a national beach litter monitoring program. To address this gap and support the development of such a program, particularly at pollution hotspots like urban beaches, we conducted a one-year study on six Tunisian beaches. We employed an innovative, accelerated multiple 10 m transect method tailored to highly polluted beaches, focusing on macro-litter (>2.5 cm). This method significantly reduces survey time compared to the standard 100 m approach while maintaining comparable pollution metrics, offering a practical and efficient solution for areas with high litter density. Our findings reveal an average litter density of 1.01 ± 1.08 pieces/m2, with higher pollution in urban areas. Based on the Clean Coast Index (CCI), two beaches were classified as extremely dirty, one as dirty, two as moderately clean, and one as clean. Plastics (59.2%) and cigarette butts (21.1%) were the most prevalent pollutants, with single-use plastics comprising 52.5% ± 5.3% of total litter. Most of the litter (60.6%) originated from shoreline activities and poor waste management. These findings underscore the urgent need for a long-term national beach litter monitoring program. The integration of our accelerated transect method would enable efficient, effective surveys on highly polluted beaches, providing critical data to address litter sources and support targeted strategies for mitigating pollution and protecting Tunisia’s coastal ecosystems. Full article
Show Figures

Figure 1

28 pages, 30709 KiB  
Article
Drone-Enabled AI Edge Computing and 5G Communication Network for Real-Time Coastal Litter Detection
by Sarun Duangsuwan and Phoowadon Prapruetdee
Drones 2024, 8(12), 750; https://doi.org/10.3390/drones8120750 - 12 Dec 2024
Cited by 2 | Viewed by 3196
Abstract
Coastal litter is a severe environmental issue impacting marine ecosystems and coastal communities in Thailand, with plastic pollution posing one of the most urgent challenges. Every month, millions of tons of plastic waste enter the ocean, where items such as bottles, cans, and [...] Read more.
Coastal litter is a severe environmental issue impacting marine ecosystems and coastal communities in Thailand, with plastic pollution posing one of the most urgent challenges. Every month, millions of tons of plastic waste enter the ocean, where items such as bottles, cans, and other plastics can take hundreds of years to degrade, threatening marine life through ingestion, entanglement, and habitat destruction. To address this issue, we deploy drones equipped with high-resolution cameras and sensors to capture detailed coastal imagery for assessing litter distribution. This study presents the development of an AI-driven coastal litter detection system using edge computing and 5G communication networks. The AI edge server utilizes YOLOv8 and a recurrent neural network (RNN) to enable the drone to detect and classify various types of litter, such as bottles, cans, and plastics, in real-time. High-speed 5G communication supports seamless data transmission, allowing efficient monitoring. We evaluated drone performance under optimal flying heights above ground of 5 m, 7 m, and 10 m, analyzing accuracy, precision, recall, and F1-score. Results indicate that the system achieves optimal detection at an altitude of 5 m with a ground sampling distance (GSD) of 0.98 cm/pixel, yielding an F1-score of 98% for cans, 96% for plastics, and 95% for bottles. This approach facilitates real-time monitoring of coastal areas, contributing to marine ecosystem conservation and environmental sustainability. Full article
(This article belongs to the Special Issue Detection, Identification and Tracking of UAVs and Drones)
Show Figures

Figure 1

25 pages, 428 KiB  
Review
Can Phthalates Be Considered as Microplastic Tracers in the Mediterranean Marine Environment?
by Giuseppa Di Bella, Ambrogina Albergamo, Federica Litrenta, Vincenzo Lo Turco and Angela Giorgia Potortì
Environments 2024, 11(12), 267; https://doi.org/10.3390/environments11120267 - 22 Nov 2024
Cited by 4 | Viewed by 1822
Abstract
Plastics are a major environmental concern, not only because of their uncontrolled dispersion in the environment, but also because of their release of chemical additives, such as phthalates (PAEs), particularly in water bodies. Key land–water interfaces, such as coastal zones, has always represented [...] Read more.
Plastics are a major environmental concern, not only because of their uncontrolled dispersion in the environment, but also because of their release of chemical additives, such as phthalates (PAEs), particularly in water bodies. Key land–water interfaces, such as coastal zones, has always represented a complex and dynamic nexus for plastic pollution, as they are sites often densely populated, with major pollution sources. The Mediterranean basin, for example, is known to be a global hotspot of plastic waste, with a microplastic concentration approximately four times greater than the North Pacific Ocean. However, differently from the overviewed issue of plastic litter and microplastics, the occurrence, distribution, and impact of PAEs on the abiotic and biotic compartment of marine ecosystems of the Mediterranean area have still not been reviewed. Hence, this review provides an introductory section on the plastic pollution issue and its close relationship, not only with microplastics, but also with the leaching of toxic PAEs. To follow, the most relevant analytical approaches for reliably assessing PAEs in abiotic and biotic marine matrices are discussed. The analysis of the main anthropogenic sources of PAEs, their occurrence and spatiotemporal trends in the Mediterranean Sea is conducted. Finally, the potential correlation between PAE pollution and the abundance of microplastics are critically examined to evaluate their effectiveness as tracers of microplastic pollution. Full article
(This article belongs to the Special Issue Plastics Pollution in Aquatic Environments, 2nd Edition)
20 pages, 13179 KiB  
Article
A Study on the Monitoring of Floating Marine Macro-Litter Using a Multi-Spectral Sensor and Classification Based on Deep Learning
by Youchul Jeong, Jisun Shin, Jong-Seok Lee, Ji-Yeon Baek, Daniel Schläpfer, Sin-Young Kim, Jin-Yong Jeong and Young-Heon Jo
Remote Sens. 2024, 16(23), 4347; https://doi.org/10.3390/rs16234347 - 21 Nov 2024
Cited by 1 | Viewed by 1583
Abstract
Increasing global plastic usage has raised critical concerns regarding marine pollution. This study addresses the pressing issue of floating marine macro-litter (FMML) by developing a novel monitoring system using a multi-spectral sensor and drones along the southern coast of South Korea. Subsequently, a [...] Read more.
Increasing global plastic usage has raised critical concerns regarding marine pollution. This study addresses the pressing issue of floating marine macro-litter (FMML) by developing a novel monitoring system using a multi-spectral sensor and drones along the southern coast of South Korea. Subsequently, a convolutional neural network (CNN) model was utilized to classify four distinct marine litter materials: film, fiber, fragment, and foam. Automatic atmospheric correction with the drone data atmospheric correction (DROACOR) method, which is specifically designed for currently available drone-based sensors, ensured consistent reflectance across altitudes in the FMML dataset. The CNN models exhibited promising performance, with precision, recall, and F1 score values of 0.9, 0.88, and 0.89, respectively. Furthermore, gradient-weighted class activation mapping (Grad-CAM), an object recognition technique, allowed us to interpret the classification performance. Overall, this study will shed light on successful FMML identification using multi-spectral observations for broader applications in diverse marine environments. Full article
(This article belongs to the Special Issue Recent Progress in UAV-AI Remote Sensing II)
Show Figures

Graphical abstract

12 pages, 2555 KiB  
Article
Plastics at an Offshore Fish Farm on the South Coast of Madeira Island (Portugal): A Preliminary Evaluation of Their Origin, Type, and Impact on Farmed Fish
by Mariana Martins, Ana Pombo, Susana Mendes and Carlos A. P. Andrade
Environments 2024, 11(9), 202; https://doi.org/10.3390/environments11090202 - 14 Sep 2024
Viewed by 1723
Abstract
Plastic pollution is a global problem affecting all ecosystems, and it represents most of the marine litter. Offshore aquaculture is a sector particularly vulnerable to this issue. To investigate this concern, the present study employed videography to monitor macroplastics at an offshore fish [...] Read more.
Plastic pollution is a global problem affecting all ecosystems, and it represents most of the marine litter. Offshore aquaculture is a sector particularly vulnerable to this issue. To investigate this concern, the present study employed videography to monitor macroplastics at an offshore fish farm on Madeira Island (Portugal) and analysis of fish gut content to evaluate macroplastic ingestion by farmed sea bream Sparus aurata. Our analysis revealed that the majority of identified plastic debris originated from domestic use (66.66%) and fisheries/aquaculture activities (24.99%). While the number of dead fish suitable for sampling was limited (1.05% of the total mortality), macroplastic debris ingestion was identified in 5.15% of the total mortalities and reported for the first time in species in offshore farming conditions. Fish ingested fragmented plastic sheets, with the amount positively correlated with fish weight (r = 0.621, p = 0.031, n = 12). Notably, the stretched length of these fragments exceeded 50% of the standard length of most fish. Inconsistencies were observed in the number of samples collected per cage and per week. To ensure robust results, these discrepancies should be rectified in future studies. Additionally, extending the sampling period to encompass all seasons would be beneficial for a more comprehensive understanding of seasonal variations in plastic occurrence. Full article
(This article belongs to the Special Issue Plastics Pollution in Aquatic Environments)
Show Figures

Figure 1

Back to TopTop