Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = marine biocompounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
67 pages, 6303 KiB  
Review
Bioactive Compounds of Marine Algae and Their Potential Health and Nutraceutical Applications: A Review
by Emin Cadar, Antoanela Popescu, Ana-Maria-Laura Dragan, Ana-Maria Pesterau, Carolina Pascale, Valentina Anuta, Irina Prasacu, Bruno Stefan Velescu, Cezar Laurentiu Tomescu, Claudia Florina Bogdan-Andreescu, Rodica Sirbu and Ana-Maria Ionescu
Mar. Drugs 2025, 23(4), 152; https://doi.org/10.3390/md23040152 - 31 Mar 2025
Cited by 4 | Viewed by 4721
Abstract
Currently, marine algae are still an under-exploited natural bioresource of bioactive compounds. Seaweeds represent a sustainable source for obtaining bioactive compounds that can be useful for the fabrication of new active products with biomedical benefits and applications as biomedicinals and nutraceuticals. The objective [...] Read more.
Currently, marine algae are still an under-exploited natural bioresource of bioactive compounds. Seaweeds represent a sustainable source for obtaining bioactive compounds that can be useful for the fabrication of new active products with biomedical benefits and applications as biomedicinals and nutraceuticals. The objective of this review is to highlight scientific papers that identify biocompounds from marine macroalgae and emphasize their benefits. The method used was data analysis to systematize information to identify biocompounds and their various benefits in pharmaceuticals, cosmetics, and nutraceuticals. The research results demonstrate the multiple uses of seaweeds. As pharmaceuticals, seaweeds are rich sources of bioactive compounds like polysaccharides, protein compounds, pigments, and polyphenols, which have demonstrated various pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, antiviral, anticoagulant, and potentially anticarcinogenic effects. Seaweed has gained recognition as a functional food and offers a unique set of compounds that promote body health, including vitamins, minerals, and antioxidants. In conclusion, the importance of this review is to expand the possibilities for utilizing natural resources by broadening the areas of research for human health and marine nutraceuticals. Full article
Show Figures

Graphical abstract

14 pages, 4704 KiB  
Article
Macroalgae Compound Characterizations and Their Effect on the Ruminal Microbiome in Supplemented Lambs
by Adriana Guadalupe De la Cruz Gómez, Huitzimengari Campos-García, German D. Mendoza, Juan Carlos García-López, Gregorio Álvarez-Fuentes, Pedro A. Hernández-García, José Alejandro Roque Jiménez, Oswaldo Cifuentes-Lopez, Alejandro E Relling and Héctor A. Lee-Rangel
Vet. Sci. 2024, 11(12), 653; https://doi.org/10.3390/vetsci11120653 - 14 Dec 2024
Cited by 1 | Viewed by 1212
Abstract
The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: Macrocystis pyrifera (Brown), Ulva spp. (Lettuce), Mazzaella spp. (Red) and their effect on species-specific modulations of [...] Read more.
The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: Macrocystis pyrifera (Brown), Ulva spp. (Lettuce), Mazzaella spp. (Red) and their effect on species-specific modulations of the rumen microbiome. The macroalgae were characterized using GC-MS. Twelve Rambouillet lambs were randomly assigned to one of four experimental diets (n = 3 per treatment): (a) control diet (CD); (b) CD + 5 g of Red algae; (c) CD + 5 g of Brown algae; and (d) CD + 5 g of Lettuce algae. After the lambs ended their fattening phase, they donated ruminal fluid for DNA extraction and 16S rRNA gene V3 amplicon sequencing. Results: The tagged 16S rRNA amplicon sequencing and statistical analysis revealed that the dominant ruminal bacteria shared by all four sample groups belonged to phyla Firmicutes and Bacteroidota. However, the relative abundance of these bacterial groups was markedly affected by diet composition. In animals fed with macroalgae, the fibrinolytic and cellulolytic bacteria Selenomonas was found in the highest abundance. The diversity in chemical composition among macroalgae species introduces a range of bioactive compounds, particularly VOCs like anethole, beta-himachalene, and 4-ethylphenol, which demonstrate antimicrobial and fermentation-modulating properties. Full article
Show Figures

Figure 1

47 pages, 5907 KiB  
Review
Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review
by Emin Cadar, Ana-Maria Pesterau, Irina Prasacu, Ana-Maria Ionescu, Carolina Pascale, Ana-Maria Laura Dragan, Rodica Sirbu and Cezar Laurentiu Tomescu
Antioxidants 2024, 13(8), 919; https://doi.org/10.3390/antiox13080919 - 29 Jul 2024
Cited by 19 | Viewed by 5047
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine [...] Read more.
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now. Full article
Show Figures

Graphical abstract

6 pages, 1358 KiB  
Interesting Images
Coriocella and the Worms: First Record of Scale-Worm Asterophilia cf. culcitae Ectosymbiotic on a Mollusc
by Giulia Fassio
Diversity 2024, 16(1), 65; https://doi.org/10.3390/d16010065 - 18 Jan 2024
Cited by 2 | Viewed by 1728
Abstract
Species of the mollusc genus Coriocella (Velutinidae) produce defensive biocompounds, making them potentially valuable hosts for other marine invertebrates. However, so far, only two instances of crustaceans ectosymbiotic on their mantle have been reported. This is the first observation, made in New Caledonia, [...] Read more.
Species of the mollusc genus Coriocella (Velutinidae) produce defensive biocompounds, making them potentially valuable hosts for other marine invertebrates. However, so far, only two instances of crustaceans ectosymbiotic on their mantle have been reported. This is the first observation, made in New Caledonia, of a pair of scale-worms identified as Asterophilia cf. culcitae (Polynoidae) hiding themselves on the mantle of Coriocella cf. tongana. This finding represents the first evidence of a symbiotic interaction between these two groups, expanding the association range for both taxa, and providing new insight into their, mostly unknown, ecology. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

20 pages, 1338 KiB  
Review
Diving into Fish Valorisation: Review Opportunities and Analyzing Azorean Fish Data
by Nádia Valério, Margarida Soares, Cândida Vilarinho, Manuela Correia and Joana Carvalho
Processes 2023, 11(7), 1998; https://doi.org/10.3390/pr11071998 - 3 Jul 2023
Cited by 8 | Viewed by 3818
Abstract
In response to the exponential growth in world population, there has been a striking surge in the volume of discarded fish worldwide. This surge is particularly evident in the fish processing industry, where a substantial amount of waste is generated, posing significant environmental [...] Read more.
In response to the exponential growth in world population, there has been a striking surge in the volume of discarded fish worldwide. This surge is particularly evident in the fish processing industry, where a substantial amount of waste is generated, posing significant environmental concerns. Consequently, the repurposing and utilisation of these waste materials have emerged as pivotal processes for the preservation of marine resources. By employing innovative strategies, valuable products can be extracted from these fish by-products, offering not only economic advantages but also contributing to mitigating environmental impacts. This comprehensive literature review focuses on exploring diverse avenues for using fish waste and extracting high-value materials such as bioactive peptides, collagen, and enzymes, elucidating their potential applications across various industries. The literature review also demonstrates the possibility of extracting various bio-compounds from highly diverse fish waste. It has been observed that there is a need for optimisation of extraction protocols, as the variation in extraction methods and respective conditions significantly affects the extraction yields of the products. Moreover, considering our specific interest in the fish species endemic to The Azores, a meticulous characterisation will be conducted, as there is limited knowledge about waste utilisation processes specific to this archipelago. Full article
(This article belongs to the Special Issue Value-Added Utilization Processes of Industrial Wastes)
Show Figures

Figure 1

23 pages, 4151 KiB  
Article
Biocompounds from Green Algae of Romanian Black Sea Coast as Potential Nutraceuticals
by Emin Cadar, Ticuta Negreanu-Pirjol, Rodica Sirbu, Ana-Maria Laura Dragan, Bogdan-Stefan Negreanu-Pirjol, Elena Roxana Axente and Ana-Maria Ionescu
Processes 2023, 11(6), 1750; https://doi.org/10.3390/pr11061750 - 8 Jun 2023
Cited by 11 | Viewed by 3887
Abstract
Three green algae, collected from the Romanian Black Sea coast, are studied: Ulva lactuca, Enteromorpha intestinalis, and Cladophora vagabunda, which were collected from six different coastal areas. This paper aims to identify the bioactive compounds of these green algae and [...] Read more.
Three green algae, collected from the Romanian Black Sea coast, are studied: Ulva lactuca, Enteromorpha intestinalis, and Cladophora vagabunda, which were collected from six different coastal areas. This paper aims to identify the bioactive compounds of these green algae and their beneficial properties, in order to use them as potential nutraceuticals using different analytical methods. Pharmacognostic, microbiological, and physico-chemical methods used for the analysis of algal materials revealed a rich and diverse array of biocompounds with nutritional value. In the case of green algae, a high percentage of sulphates, carbohydrates and dietary fibers were identified. Moisture, ash, total nitrogen, protein and lipid contents were determined. The contents of pigments, vitamins, and metals determined complement the nutritional qualities of the three seaweed species studied as future nutraceuticals. The content of flavonoid and phenolic compounds identified in the composition of seaweeds justifies their antioxidant and antimicrobial properties. The antioxidant capacity was tested by means of DPPH, reducing power, and TEAC methods, and the algae studied exhibit important antioxidant properties that can be used to enhance their potential as nutraceuticals. The studied algae show good antibacterial activity on both Gram (+) and Gram (−) bacteria, with slightly better activity on Gram (−) bacteria. Biocompounds from green algae from the Black Sea coast may represent an important source of marine nutraceuticals with medical and nutritional potential. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

27 pages, 2814 KiB  
Review
Jellyfishes—Significant Marine Resources with Potential in the Wound-Healing Process: A Review
by Emin Cadar, Ana-Maria Pesterau, Rodica Sirbu, Bogdan Stefan Negreanu-Pirjol and Cezar Laurentiu Tomescu
Mar. Drugs 2023, 21(4), 201; https://doi.org/10.3390/md21040201 - 24 Mar 2023
Cited by 18 | Viewed by 6585
Abstract
The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such [...] Read more.
The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing. Full article
(This article belongs to the Special Issue Healing and Regenerating Potential of Marine Natural Products)
Show Figures

Figure 1

19 pages, 3075 KiB  
Article
Green Inhibition of Corrosion of Aluminium Alloy 5083 by Artemisia annua L. Extract in Artificial Seawater
by Gloria Zlatić, Ivana Martinović, Zora Pilić, Andrea Paut, Ivana Mitar, Ante Prkić and Dušan Čulum
Molecules 2023, 28(7), 2898; https://doi.org/10.3390/molecules28072898 - 23 Mar 2023
Cited by 15 | Viewed by 2635
Abstract
Plant extracts are increasingly being examined in the corrosion inhibition of metal and alloys in various environments due to their potent antioxidant properties. The use of Artemisia annua L. aqueous extract (AAE) as an aluminium alloy 5083 (ALA) corrosion inhibitor in artificial seawater [...] Read more.
Plant extracts are increasingly being examined in the corrosion inhibition of metal and alloys in various environments due to their potent antioxidant properties. The use of Artemisia annua L. aqueous extract (AAE) as an aluminium alloy 5083 (ALA) corrosion inhibitor in artificial seawater (ASW) was investigated using electrochemical tests and spectroscopy tools, while the active biocompounds found in AAE were analyzed using high-performance liquid chromatography (HPLC). Electrochemical results showed that AAE acts as an anodic inhibitor through the physisorption (ΔG ≈ –16.33 kJ mol1) of extract molecules on the ALA surface, thus reducing the active sites for the dissolution of the alloy in ASW. Fourier-transform infrared spectra confirmed that phenolic acids found in AAE formed the surface layer that protects ALA against the corrosive marine environment, while HPLC analysis confirmed that the main phytoconstituents of AAE were chlorogenic acid and caffeic acid. The inhibition action of phenolic acids and their derivatives found in the AAE was based on the physisorption of caffeic acid on the ALA surface, which improved physicochemical properties of the barrier film and/or conversion of Al3+ to elemental aluminium by phenolic acids as reducens, which slowed down the diffusion rate of Al3+ to or from the ALA surfaces. The protective effect of the surface layer formed in the presence of AAE against ASW was also confirmed by inductively coupled plasma–optical emission spectrometry (ICP-OES) whereby the measured concentration of Al ions after 1 h of immersion of ALA in the pure ASW was 15.30 μg L−1 cm−2, while after the addition of 1 g L−1 AAE, the concentration was 3.09 μg L−1 cm−2. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

26 pages, 5346 KiB  
Review
Recent Advancement in Anticancer Compounds from Marine Organisms: Approval, Use and Bioinformatic Approaches to Predict New Targets
by Giovanna Santaniello, Angela Nebbioso, Lucia Altucci and Mariarosaria Conte
Mar. Drugs 2023, 21(1), 24; https://doi.org/10.3390/md21010024 - 28 Dec 2022
Cited by 10 | Viewed by 6023
Abstract
In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of [...] Read more.
In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of cancer. However, the administration of drugs in cancer patients requires careful evaluation since their interaction with individual biological macromolecules, such as proteins or nucleic acids, determines variable downstream effects. This is reflected in a constant search for personalized therapies that lay the foundations of modern medicine. The new knowledge acquired on cancer mechanisms has certainly allowed advancements in tumor prevention, but unfortunately, due to the huge complexity and heterogeneity of cancer, we are still looking for a definitive therapy and clinical approaches. In this review, we discuss the significance of recently approved molecules originating from the marine environment, starting from their organism of origin to their structure and mechanism of action. Subsequently, these bio-compounds are used as models to illustrate possible bioinformatics approaches for the search of new targets that are useful for improving the knowledge on anticancer therapies. Full article
(This article belongs to the Special Issue Bioinformatics of Marine Natural Products 2.0)
Show Figures

Figure 1

16 pages, 1618 KiB  
Article
Physico-Chemical Attributes of Lemon Fruits as Affected by Growing Substrate and Rootstock
by Juan José Martínez-Nicolas, Dámaris Núñez-Gómez, Vicente Lidón, Rafael Martínez-Font, Pablo Melgarejo, Francisca Hernández and Pilar Legua
Foods 2022, 11(16), 2487; https://doi.org/10.3390/foods11162487 - 17 Aug 2022
Cited by 14 | Viewed by 4940
Abstract
Due to its high content of bioactive compounds, the lemon is considered one of the most relevant species around the world. Its great economic importance is motivated, in addition to its fresh consumption, by its applications in the medical, pharmaceutical, and food industries, [...] Read more.
Due to its high content of bioactive compounds, the lemon is considered one of the most relevant species around the world. Its great economic importance is motivated, in addition to its fresh consumption, by its applications in the medical, pharmaceutical, and food industries, etc. However, the chemical and nutritional composition of lemon is not constant and can be influenced by external factors such as variety, weather conditions, crop management, etc. Determining the compositional variations of the fruit, essential to defining its potential use, was the main objective of this study. The physicochemical characteristics of the ‘Verna’ lemon were studied as a function of two controlled variables, the growing substrate and the rootstock. For this, 90 lemon trees were cultivated in three rootstocks and three different culture media. Lemon trees cultivated with 50% sediment/peat mix substrate presented a higher total production (590 lemons and 90.53 kg) while this production was 80% lower on trees cultivated with 75% marine sediment. Citrus macrophylla and Citrus aurantium/Citrus sinensis rootstocks showed a significantly higher production than the Citrus aurantium. All the fruits presented a predominantly yellow color appropriate for the market (0 < CI < +5). Nutritional and chemical parameters were consistent with data reported for the ‘Verna’ clones. All the obtained lemons were suitable for marketing and consumption both in fresh and processed forms. The results indicated the limited influence that the studied variables have on the quality parameters of lemon fruits, but they also could confirm the potential of marine sediment as a culture substrate. Full article
(This article belongs to the Special Issue Fruits and Fruit-Based Products as a Source of Bioactive Compounds)
Show Figures

Figure 1

15 pages, 4015 KiB  
Article
Colaconema formosanum, Sarcodia suae, and Nostoc commune as Fermentation Substrates for Bioactive Substance Production
by Meng-Chou Lee, Chin-Yi Huang, Chin-Ling Lai, Han-Yang Yeh, Jing Huang, Wei Qing Chloe Lung, Po-Tsang Lee and Fan-Hua Nan
Fermentation 2022, 8(7), 343; https://doi.org/10.3390/fermentation8070343 - 21 Jul 2022
Cited by 6 | Viewed by 2782
Abstract
Bioactive compounds extracted from natural renewable sources have attracted an increased interest from both industry and academia. Recently, algae have been highlighted as promising sources of bioactive compounds, such as polyphenols, polysaccharides, fatty acids, proteins, and pigments, which can be used as functional [...] Read more.
Bioactive compounds extracted from natural renewable sources have attracted an increased interest from both industry and academia. Recently, algae have been highlighted as promising sources of bioactive compounds, such as polyphenols, polysaccharides, fatty acids, proteins, and pigments, which can be used as functional ingredients in many industrial applications. Therefore, a simple green extraction and purification methodology capable of recovering biocompounds from algal biomass is of extreme importance in commercial production. In this study, we evaluated the application of three valuable algae (Colaconema formosanum, Sarcodia suae, and Nostoc commune) in combination with Pseudoalteromonas haloplanktis (type strain ATCC 14393) for the production of versatile compounds. The results illustrate that after 6 h of first-stage fermentation, the production of phycobiliproteins in C. formosanum was significantly increased by 156.2%, 188.9%, and 254.17% for PE, PC, and APC, respectively. This indicates that the production of phycobiliproteins from algae can be enhanced by P. haloplanktis. Furthermore, we discovered that after S. suae and N. commune were fermented with P. haloplanktis, mannose was produced. In this study, we describe a feasible biorefinery process for the production of phycobiliproteins and mannose by fermenting marine macroalgae with cyanobacteria. We believe it is worth establishing a scale-up technique by applying this fermentation method to the production of phycobiliproteins and mannose in the future. Full article
(This article belongs to the Special Issue Pigment Production in Submerged Fermentation)
Show Figures

Figure 1

28 pages, 5153 KiB  
Review
Marine-Derived Secondary Metabolites as Promising Epigenetic Bio-Compounds for Anticancer Therapy
by Mariarosaria Conte, Elisabetta Fontana, Angela Nebbioso and Lucia Altucci
Mar. Drugs 2021, 19(1), 15; https://doi.org/10.3390/md19010015 - 31 Dec 2020
Cited by 22 | Viewed by 5375
Abstract
Sessile organisms such as seaweeds, corals, and sponges continuously adapt to both abiotic and biotic components of the ecosystem. This extremely complex and dynamic process often results in different forms of competition to ensure the maintenance of an ecological niche suitable for survival. [...] Read more.
Sessile organisms such as seaweeds, corals, and sponges continuously adapt to both abiotic and biotic components of the ecosystem. This extremely complex and dynamic process often results in different forms of competition to ensure the maintenance of an ecological niche suitable for survival. A high percentage of marine species have evolved to synthesize biologically active molecules, termed secondary metabolites, as a defense mechanism against the external environment. These natural products and their derivatives may play modulatory roles in the epigenome and in disease-associated epigenetic machinery. Epigenetic modifications also represent a form of adaptation to the environment and confer a competitive advantage to marine species by mediating the production of complex chemical molecules with potential clinical implications. Bioactive compounds are able to interfere with epigenetic targets by regulating key transcriptional factors involved in the hallmarks of cancer through orchestrated molecular mechanisms, which also establish signaling interactions of the tumor microenvironment crucial to cancer phenotypes. In this review, we discuss the current understanding of secondary metabolites derived from marine organisms and their synthetic derivatives as epigenetic modulators, highlighting advantages and limitations, as well as potential strategies to improve cancer treatment. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents)
Show Figures

Figure 1

25 pages, 1275 KiB  
Review
Marine Biocompounds for Neuroprotection—A Review
by Adrian Florian Bălașa, Cristina Chircov and Alexandru Mihai Grumezescu
Mar. Drugs 2020, 18(6), 290; https://doi.org/10.3390/md18060290 - 31 May 2020
Cited by 52 | Viewed by 5669
Abstract
While terrestrial organisms are the primary source of natural products, recent years have witnessed a considerable shift towards marine-sourced biocompounds. They have achieved a great scientific interest due to the plethora of compounds with structural and chemical properties generally not found in terrestrial [...] Read more.
While terrestrial organisms are the primary source of natural products, recent years have witnessed a considerable shift towards marine-sourced biocompounds. They have achieved a great scientific interest due to the plethora of compounds with structural and chemical properties generally not found in terrestrial products, exhibiting significant bioactivity ten times higher than terrestrial-sourced molecules. In addition to the antioxidant, anti-thrombotic, anti-coagulant, anti-inflammatory, anti-proliferative, anti-hypertensive, anti-diabetic, and cardio-protection properties, marine-sourced biocompounds have been investigated for their neuroprotective potential. Thus, this review aims to describe the recent findings regarding the neuroprotective effects of the significant marine-sourced biocompounds. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory Agents 2020)
Show Figures

Figure 1

20 pages, 1758 KiB  
Review
Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-Products
by Fadila Al Khawli, Mirian Pateiro, Rubén Domínguez, José M. Lorenzo, Patricia Gullón, Katerina Kousoulaki, Emilia Ferrer, Houda Berrada and Francisco J. Barba
Mar. Drugs 2019, 17(12), 689; https://doi.org/10.3390/md17120689 - 6 Dec 2019
Cited by 210 | Viewed by 19385
Abstract
The activities linked to the fishing sector generate substantial quantities of by-products, which are often discarded or used as low-value ingredients in animal feed. However, these marine by-products are a prominent potential good source of bioactive compounds, with important functional properties that can [...] Read more.
The activities linked to the fishing sector generate substantial quantities of by-products, which are often discarded or used as low-value ingredients in animal feed. However, these marine by-products are a prominent potential good source of bioactive compounds, with important functional properties that can be isolated or up-concentrated, giving them an added value in higher end markets, as for instance nutraceuticals and cosmetics. This valorization of fish by-products has been boosted by the increasing awareness of consumers regarding the relationship between diet and health, demanding new fish products with enhanced nutritional and functional properties. To obtain fish by-product-derived biocompounds with good, functional and acceptable organoleptic properties, the selection of appropriate extraction methods for each bioactive ingredient is of the outmost importance. In this regard, over the last years, innovative alternative technologies of intensification, such as ultrasound-assisted extraction (UAE) and supercritical fluid extraction (SFE), have become an alternative to the conventional methods in the isolation of valuable compounds from fish and shellfish by-products. Innovative green technologies present great advantages to traditional methods, preserving and even enhancing the quality and the extraction efficiency, as well as minimizing functional properties’ losses of the bioactive compounds extracted from marine by-products. Besides their biological activities, bioactive compounds obtained by innovative alternative technologies can enhance several technological properties of food matrices, enabling their use as ingredients in novel foods. This review is focusing on analyzing the principles and the use of UAE and SFE as emerging technologies to valorize seafoods and their by-products. Full article
Show Figures

Figure 1

47 pages, 20673 KiB  
Article
Marine Heterobranchia (Gastropoda, Mollusca) in Bunaken National Park, North Sulawesi, Indonesia—A Follow-Up Diversity Study
by Jan-Hendrik Eisenbarth, Nani Undap, Adelfia Papu, Dorothee Schillo, Jobel Dialao, Sven Reumschüssel, Fontje Kaligis, Robert Bara, Till F. Schäberle, Gabriele M. König, Nathalie Yonow and Heike Wägele
Diversity 2018, 10(4), 127; https://doi.org/10.3390/d10040127 - 4 Dec 2018
Cited by 30 | Viewed by 8213
Abstract
Bunaken National Park has been surveyed for a fourth time in 14 years, in an attempt to establish the species composition of heterobranch sea slugs in a baseline study for monitoring programs and protection of this special park. These molluscs are potentially good [...] Read more.
Bunaken National Park has been surveyed for a fourth time in 14 years, in an attempt to establish the species composition of heterobranch sea slugs in a baseline study for monitoring programs and protection of this special park. These molluscs are potentially good indicators of the health of an ecosystem, as many are species-specific predators on a huge variety of marine benthic and sessile invertebrates from almost every taxonomic group. Additionally, they are known to contain bio-compounds of significance in the pharmaceutical industry. It is therefore of paramount importance not only to document the species composition from a zoogeographic point of view, but to assist in their protection for the future, both in terms of economics and aesthetics. These four surveys have documented more than 200 species, with an approximate 50% of each collection found only on that survey and not re-collected. Many species new to science have also been documented, highlighting the lack of knowledge in this field. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

Back to TopTop