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Abstract: The wound-healing process is a significant area of interest in the medical field, and it
is influenced by both external and patient-specific factors. The aim of this review paper is to
highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as
polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the
wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as
these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A
second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects
on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third
benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic
wound care are specifically addressed, and within this general theme, molecular pathways related
to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically
enriched in the biocompounds involved in these pathways and live in European marine habitats are
presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the
fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy)
or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without
inducing allergic complications. More studies are needed to explore more varieties of jellyfish that
can be exploited for their biocomponents, which may be useful in wound healing.

Keywords: wound healing; jellyfishes; jellyfish polysaccharides (JSP); jellyfish collagens;
marine biocompounds

1. Introduction

Wounds are anatomical breaks that can extend from skin to other tissues and structures,
such as subcutaneous tissue, muscles, tendons, nerves, blood vessels and bone [1]. Wound
healing presents a major challenge due to the damage to the skin architecture and function
caused by accidents or surgical interventions [2]. Wound healing can be hampered by
destructive dermatological conditions sustained by wound infection due to bacteria [3].
Wounds can be classified into acute and chronic wounds [4]. Acute wounds undergo normal
healing phases within approximately four weeks [5]. Chronic wounds do not develop
according to the signs of normal healing stages. Instead, they heal slowly and are very
susceptible to infections [6]. In wound healing, different treatments are applied depending
on the type, place and depth of wound [7]. In chronic wounds, the healing mechanisms
are affected due to a predisposing condition that compromises the dermal and epidermal
tissue integrity [8]. Chronic wound care can benefit significantly from marine biomaterial
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therapy sourced from jellyfish. In chronic wounds, comorbidities aggravate wound severity;
therefore, associated diseases should be treated simultaneously with wound healing [9].
Some metabolic diseases play an important role in chronic wounds, the most common
example being diabetes [10]. Topical vascular endothelial growth factor has been shown to
accelerate diabetic wound healing by increasing angiogenesis [10]. Collagen from jellyfish
may also contribute to wound healing through significant immunostimulatory effects by
increasing the percentage of phagocytosis, which plays a role in increasing angiogenesis [11].
In the case of chronic wounds, it is necessary to treat metabolic disease and wound healing
simultaneously [12].

Given that healing chronic wounds is associated with a high risk of morbidity, new
treatments based on natural bioactive compounds with a high potential for complete
wound healing are being sought [13]. The mentioned therapies cannot be used for all types
of wounds, which is why the development of competitive therapies is a necessity [14].
Therefore, a clear requirement exists for the development of new and innovative treatment
methods in the management of chronic wounds [15].

New treatments are based on advanced technologies that include nanotherapy, stem
cell therapy, skin grafts and modern strategies in order to improve therapeutic results,
with an emphasis on skin regeneration with minimal side effects. A new direction for
these treatments is the use of natural biocompounds [16]. Natural compounds (such as
polysaccharide compounds or collagen compounds) are important sources for wound
healing which can be found in both plants and animals [17]. Compounds from terrestrial
animals (such as collagen from cattle or pigs) can present a number of major disadvantages
through the transmission of various diseases (spongiform encephalopathy), and potential
viral vectors, both of which can be transmitted to humans [18]. For this reason, there is a
continuous need for new sources of collagen derived from other natural resources, such as
marine resources [19].

The marine environment offers multiple sources of biomaterials for wound healing
and tissue regeneration. Silva et al. reported that jellyfish collagen is an available and
relevant alternative source for use in tissue regeneration which presents a low percentage
of impurities [20]. In this direction, Silva et al. emphasized that the production process of
marine collagen for medical applications must be validated and sufficiently rigorous to
eliminate any pathogens/residues that are potentially harmful to humans. The authors
point out that there is a regulatory legislative framework with material quality standards
that must be respected [20].

The use of marine resources in the production of pharmaceutical preparations for skin
tissue regeneration has led to positive results [21]. Jellyfish collagen matrices have been
studied in treatments to accelerate wound healing [22]. Bioactive compounds from jellyfish
may be a new clean, natural marine collagen resource [23].

Jellyfish are part of the phylum Cnidaria, marine organisms that have not been studied
in detail until recently due to the risks they can generate [24]. There is a negative impact on
human social activity [25]. Tourism in coastal areas has been affected due to stinging acci-
dents, allergic reactions or even human deaths [26]. There are also economic disadvantages
due to closed beaches, affecting marine fisheries, aquatic life and sometimes even marine
biology studies [27].

Until recently, jellyfish were either completely missing from FAO statistics or were
given little consideration due to the unknown importance of their biocomponents and
wound healing capacity [28]. In 2020, jellyfish were finally presented as a separate group
in official FAO reports, which is why there are few published studies on their use in
medicine [29].

Jellyfish are a rich, natural marine resource that is underutilized for its bioactive
compounds compared to other marine animals [30]. We can achieve an overview of
just how numerous and important this marine resource is by studying reported data on
the number of known species of jellyfish [31]. Edelist et al. reported that there are ap-
proximately 400 species of Scyphomedusae [32]. Of these, Dawson et al. state that about
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92 species are Rhizostomatous [33]. Bazi et al. considered Rhizostomatous to be the best-
known species [34]. Currently, only two major taxa are recognized for edible jellyfish:
Rhopilema spp. and Stomolophus meleagris, representing catches from Asia and the Amer-
icas, respectively [35]. The richness of the jellyfish resource began to be reconsidered
early in the last century, when at least 11 species from five families were recognized by
Omori et al. [36]. This opened the path for commercial exploitation in Southeast Asia and
new ecoregions [37]. Brotz et al. listed 39 jellyfish taxa that have been used for commercial
and biomedical purposes [38]. Most exploited species belong to the order Rhizostomeae, a
fact also confirmed by Kienberger et al. [39].

Currently, Rhopilema esculentum is noted as the most exploited jellyfish species in
China for its bioactive compounds [40]. Nemopilema nomurai is recognized in Korea and in
Japan for being rich in biocompounds of medical interest [41]. There are likely much larger
quantities of these jellyfish than what is reported in the FAO data [42].

Jellyfish can be sources of bioactive compounds for wound healing due to their
rich content of collagen peptides and polysaccharides [43]. The potential of jellyfish
biocompounds (such as collagen peptides from jellyfish) for wound healing was also
demonstrated by Felician et al. [44].

The goal of our review work is to highlight the proven wound-healing potential
of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen,
collagen peptides and amino acids) through their biological activities in the wound. We
also endeavour to highlight the rich, natural marine resource of colonies of different jellyfish
species in European marine habitats, although they are little used for wound healing.

2. Wound Healing

In the normal healing process of acute wounds, four phases are established, namely: I.
haemostasis, II. inflammation, III. proliferation and IV. remodelling [45]. The phases follow
one after another, as in Figure 1, adapted from [46].
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Figure 1. Normal phases of wound healing.

We aim to expand the use of marine biomaterials in wound healing with new marine
resources—jellyfish, which have been under-exploited to date. These jellyfish biocom-
pounds can act in the phases of wound healing [47]. Thus:

- Cheng et al. reported that collagen extracts from jellyfish demonstrate haemostatic
action and could intervene to stop bleeding as it occurs in the haemostasis phase [48].
An important immunostimulatory effect of jellyfish collagens that may stimulate
growth factors was reported by Krishnan et al. [11]. Singh et al. reported that in the
haemostasis phase, under the actions of the growth factor and the proinflammatory
mediators released in the wound, fibrinogen is converted to fibrin (a clot) which stops
bleeding [2]. Jellyfish extracts could stimulate these molecular processes that occur in
the wound through immunostimulatory effects;

- Morishige et al. reported that collagen extracts and collagen peptides from jellyfish
can exert immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and
(TGF), which are involved in phase II (inflammation) and phase III (proliferation) of
wound healing [49];
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- Mapoung et al. and Yu H. et al. showed that glycosaminoglycan (GAG) biocom-
pounds, in addition to the proteins, amino acids and phenolic compounds present in
aqueous and hydroalcoholic extracts of certain jellyfish species, exhibit antioxidant
and antibacterial activities [50,51]. These activities could be beneficial in phase III
(proliferation) of the wound-healing process;

- Li et al. reported that jellyfish extracts containing compounds with GAG-like struc-
tures may contribute to tissue regeneration, which also occurs in phase IV (remod-
elling) [52].

The whole healing process is very complex, depending on the type of wound: acute or
chronic [53]. Acute wound healing in healthy individuals is a dynamic process. It is shown
in Figure 2, adapted from [54]. In chronic wounds, the healing process does not follow the
four phases of healing [55].
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The healing process is blocked in one of the phases, most often in the inflammatory
phase [56]. In this situation, rapid colonisation of the wound by bacteria and fungi can
occur, reducing growth factors and degrading the fibrin that is essential for healing [57].

Reducing bacterial infection improves the wound-healing process [58]. In chronic
wounds, the mitotic activity, growth factor activity and fibroblast activity decrease, as
shown in Figure 3, adapted from [54].
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Risk factors affecting the wound-healing process are:

- Drug treatments that affect the inflammatory response [59];
- Another chronic disease that hinders the healing process, such as diabetes [60];
- Elderly patients, who are at higher risk of developing chronic diseases [61];
- A poor diet with low protein levels can delay wound healing [62].

It has been shown that the actual generation of granulation tissue in the wound
depends more on the patient’s nutrition than on the dressings applied [63]:

- Wounds are subject to contamination with various microorganisms (bacteria and
fungi) [64]. Wound contamination occurs in all chronic wounds [65].

Infections occur when bacteria invade both the skin surface and the healthy peripheral
tissue [66].

All these factors can affect the wound-healing process. Therefore, clinicians need to
act so that the wound-healing process can be completed easily [67]. In wound healing,
there is practically no “ideal dressing” [68].

Key factors in wound treatment are the provision of a warm, moist, non-toxic envi-
ronment and the use of dressings based on substances that contribute to natural wound
healing [69]. Through their potential for healing, jellyfish biocompounds can constitute a
valuable component in the production of dressings [70].

3. Jellyfish: Important Bioresource Compound for Wound Healing Found in European
Marine Habitats

Though they are a rich, natural marine resource, jellyfish have thus far been under-
utilized in wound healing. This marine resource contains bioactive compounds that can
contribute significantly to wound healing [44]. The healing ability of jellyfish is due to two
classes of compounds, namely protein compounds (collagen, collagen peptides and amino
acids) and polysaccharide compounds (JSP). The collagen, collagen peptide, protein and
amino acid content of jellyfish differs from species to species, but these compounds have
been identified in all jellyfish [71].
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Polysaccharides have only been identified in certain species of jellyfish. Condon et al.
reported the existence of gelatinous compounds in jellyfish [50]. Richardson et al. confirmed
the existence of gelatinous compounds of marine origin from jellyfish [72]. Merquoil et al.
reported collagen, collagen peptide and amino acid contents in some species of the class
of scyphomedusae [73]. Stabili et al. showed that jellyfish of the species Aurelia spp. filum
Cnidaria contain collagenous compounds and oligosaccharides that also confer significant
antioxidant activities beneficial to the wound-healing process [74]. A study on the chemical
composition of jellyfish was conducted by Hsieh et al. [75]. Torri et al. also confirmed that
jellyfish are a bioresource rich in protein (collagen compounds) and low in carbohydrates
and lipids [76].

The abundance of jellyfish in the territorial waters of the European continent is due
to periods in which there have been strong increases in jellyfish populations known as
“blooms” during certain annual periods. These phenomena were studied by Pitt et al. [77].
The phenomenon of jellyfish “blooms” has also been confirmed by Sanz-Martin et al. [78].
Increases in the jellyfish biomass are followed by periods of regression, as reported by Hays
et al. [79]. Richardson et al. studied the influence of ocean water acidification on jellyfish
biomass growth [80].

Brodeur et al. posed the problem of finding a solution to benefit from these increased
jellyfish populations in terms of a beneficial use of the jellyfish [81]. Boero et al. studied the
impact of marine environmental factors on jellyfish colonies [82].

The possible causes of increased jellyfish populations are very diverse, including
climate change, eutrophication, and the jellyfish life cycle [83]. Attrill et al. suggested that
climate impacts on the marine environment may lead to more gelatine in the future in
North Sea jellyfish [84]. Milisenda et al. reported on studies of the conditions of the jellyfish
Pelagia noctiluca, one of the jellyfish most rich in collagen compounds among the phylum
Cnidaria Scyphozoa [85]. Dong et al. also studied the effect of jellyfish blooms on dominant
species of the phylum Cnidaria Scyphozoa [86].

The quantitative importance of biocompounds of interest in wound healing is condi-
tioned by the abundance of the species containing those compounds [87]. This abundance
of jellyfish species and the population growth of a species is explained by the jellyfish life
cycle, which has been intensively studied [88]. Thus, Helm et al. studied the development
of jellyfish in the Scyphozoan phyla [89]. The life cycle evolution of medusae in Meduzoa has
been reported [90].

The abundance of jellyfish colonies is also due to the sexual and asexual modes of
reproduction that have been shown to occur even in the same species [91]. In the case of
the species Aurelia aurita (Scyphozoa, Cnidaria), Kuniyoshi et al. showed that the abundance
of the species is due to both asexual and sexual reproduction [92]. Kroiher et al. studied
the factors influencing this development in Aurelia aurita [93]. Berking et al. also reported
factors influencing the development of the Aurelia aurita species [94]. Schiariti studied
the influence of asexual reproduction on population growth in Scyphozoa jellyfish [95].
Martin-Abadal et al. reported data on ways to monitor jellyfish [96].

The composition of the species Aurelia aurita from European continental waters was
studied by Özdemir et al. and Leone et al. [97,98].

In Table 1, jellyfish species from European continental waters (data adapted from
Edelist et al.) are presented with their habitats in European seas, in addition to the classes
of biocomponents involved in wound healing [32].
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Table 1. Jellyfish species in European waters.

Species Distribution in European Seas Region Biocompounds Reference

Aurelia spp.

Baltic Sea; North Sea; Celtic Seas;
Adriatic Sea; Gulf of Trieste;
Bay of Biscay; Mediterranean Sea;
Black Sea; Atlantic Ocean;
Trondheimsfjorden

Turkey (jellyfish fishing);
Iberia Peninsula;
Macaronesia; Slovenia; Italy;
Norway

JSPs; collagen peptides;
Amino acids [32,71,75,97–100]

Catostylus tagi Bay of Biscay (Tagus estuary);
Eastern North Atlantic

Iberian Peninsula;
Macaronesia

Proteins; collagen peptides;
amino acids [32,71,101,102]

Chrysaora ssp. Baltic Sea; North Sea; Celtic Seas;
Bay of Biscay; Mediterranean Sea

Iberian Peninsula;
Macaronesia JSPs; proteins [32,71,103,104]

Cotylorhiza tuberculata Mediterranean Sea Mar Menor; Spain; Italy Collagen compounds [32,71,100,105,106]

Cyanea capillata Baltic Sea; North Sea; Celtic Seas;
Bay of Biscay Norway; Iberian Peninsula Proteins; collagen [32,107]

Cyanea lamarckii
Baltic Sea; North Sea; Celtic Seas;
Bay of Biscay; Norvegian Sea;
Trondheimsfjorden

Norway; Iberian Peninsula Proteins [32,107]

Mnemiopsis leidyi
Baltic Sea; North Sea; Mediterranean
Sea; Black Sea; Adriatic Sea; Gulf
of Trieste

Norway; Turkey; Slovenia Collagen peptides [108–110]

Pelagia noctiluca
Celtic Seas; Bay of Biscay and
Mediterranean Sea; Black Sea;
Atlantic Ocean Ionian Sea

Iberian Peninsula;
Macaronesia; Italy

Collagen compounds;
amino acids [32,106,111–114]

Periphylla periphylla North Sea Trondheimsfjorden Norway Collagen peptides [32,115]

Phyllorhiza punctate Mediterranean Sea; Black Sea;
North Sea Turkey; Norway Collagen peptides [32,116,117]

Rhizostoma luteum Bay of Biscay; Atlantic Ocean Iberian Peninsula Collagen compounds [32,118]

Rhizostoma octopus Baltic; North; and Celtic Seas Wales Collagen compounds [32,119,120]

Rhizostoma pulmo Mediterranean Sea; Ionian Sea;
Black Sea; Marmara Sea; Aegean Sea Turkey; Slovenia; Italy JSPs (GAG); collagen;

amino acids [32,98,106,121–123]

Rhopilema nomadica Mediterranean Sea Israel; to trade with China JSPs; collagen compounds [32,124–126]

Rhopilema esculentum Mediterranean Sea; Atlantic Ocean France JSPs; collagen compounds [32,44,99]

For jellyfish harvested from the Mediterranean Sea, D’Ambra et al. described the
phylum Cnidaria, class Scyphozoa, and highlighted the prospects for biomedical applications
in tissue regeneration [113]. Fleming et al. studied the predominant jellyfish species Pelagia
noctiluca [114].

The biochemical compositions of Aurelia aurita in the riverine waters of the north of
Ireland were monitored by Peggy et al. and Khong et al. [75,100].

4. Wound-Healing Biochemical Compounds of Interest from Jellyfish

The biochemical composition of jellyfish initially interested nutritionists, who recom-
mended it as a protein-based diet. In Asian countries, jellyfish are a preferred food for their
high collagen peptide content and low carbohydrate content, as shown by Raposo et al.,
Peggy et al. and Kong et al. [71,75,100].

4.1. Polysacharides from Jellyfish (JSP)

Polysaccharides are important components in wound healing, a fact attested by various
studies, such as those presented by Shen et al. in 2021 [127]. Polysaccharides can present a
simple, three-dimensional structure and can be composed of a wide variety of saccharide
residues organized as homopolysaccharides or heteropolysaccharides, arranged either
linearly or in branched structures [33]. In the case of jellyfish, the carbohydrate content of
fresh and dried jellyfish meat is reported by few authors and with different values [37].

In Table 2, only values provided as the percentage of dry mass for all results were
selected from the literature [71]. It is found that carbohydrate levels of the fresh and dried
meat of jellyfish are in the range of 0.83% and 22.71%. The highest polysaccharide content
is demonstrated by Chrysaora pacifica (22.71%), followed by Aurelia aurita (19.9%), Rhopilema
hispidum (18.2%), Acromitus hardenbergi (17.66%) and Rhizostoma polmo (13.54%).
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Table 2. Biochemical composition for different types of Scyphomedusae as the percentage of dry
mass (DM).

Jellyfish Species Body Part Protein (%) Carbohydrates
(%) Lipid (%) Moisture

(%) Ash (%) Reference

Semaeostomeae

Aurelia aurita Whole body 3.49 -5.3 19.90 0.43 - 76.19 [71,114]

Cyanea capillata Whole body 16.5 0.88 0.50 95.8 76.8 [71,128]

Pelagia noctiluca Whole body 10.9–19.8 0.1–0.7 1.3–2.9 - - [71,111,112]

Rhizostomeae

Acromitus
hardenbergi

Umbrella 21.38 17.66 0.38 98.40 48.42 [71,100]

Oral arms 33.69 6.02 1.08 97.93 31.10 [71,100]

Catostylus tagi
Oral arms 0.43 - 0.05 - 1.82 [71,75,100,101]

Umbrella 0.18 - 0.02 - 1.88 [71,75,100,101]

Cotylorhiza
tuberculata Whole body 2.2 - 12.3 - - [71,105]

Rhizostoma
octopus Whole body 12.8 0.83 0.32 96.1 83.4 [71,120,128]

Rhizostomapolmo Whole body 4.67 13.54 9.2 67.33 3.26 [71,122,123]

Stomolophus
meleagris Umbrella 2.92 - <0.01 96.10 1.25 [71,75]

Rhopilema
hispidum Umbrella 19.95 18.20 0.46 97.80 57.15 [71,100]

Rhopilema
esculentum

Umbrella 38.12 8.87 0.61 96.02 33.22 [40,71,100]

Oral arms 53.87 7.7 1.79 95.54 15.90 [40,71,100]

Chrysaora pacifica Whole body 7.53 22.71 0.72 - 69.05 [71,100]

In 2015, Abdullah et al. found that two-thirds of the carbohydrate content is in the
form of glycogen stored in the muscle of the animals, and the rest is in the liver [129].
Glycogen is a polysaccharide produced in the body from several glucose molecules, and
it is specifically needed to provide energy. The carbohydrate level reported by Abdullah
et al. was comparably lower than the level reported by Solihat et al. in 2004 (levels of 6.93%
and 17.08%) [129,130]. Chen et al. proposed the idea that polysaccharides serve to prevent
excessive protein breakdown and mineral loss and aid in fat and protein metabolism [131].
Natural polysaccharides are important in gelation and various immunomodulatory and
antioxidant processes but are especially important in wound healing [131]. In 2014, Zang
et al. identified polysaccharides (JSP) in the skin of Rhopilema esculetum jellyfish in a
1:7.5 (w/v) raw material/water ratio [132]. From the JPS, they separated three polysaccha-
ride fractions of JSP1, JSP2 and JSP3, respectively, with different molecular masses and
physicochemical properties [132]. They identified the monosaccharide composition and
the type of glycosidic linkages through the analysis of infrared absorption spectra [132].

The JSP3 fraction showed strong inhibitory effects on the conversion induced by the
oxidized, low-density lipoproteins of macrophages in cells. In 2017, Li Qiang-Ming et al.
discovered new types of polysaccharides, namely, a homogenous polysaccharide (JSP-11)
with a molecular weight of 1.25 × 106 Da [52].

The chemical structures of these monosaccharides (mannose, galactose and glucuronic
acid) are shown in Figure 4. Jellyfish polysaccharides (JSPs) belong to the glycosaminogly-
can (GAG) class, which have also been isolated from other jellyfish species and with other
structures such as glucose, galactose, glucosamine and galactosamine [133,134]. The GAG
structures are also shown in Figure 4.
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In 2021, Cao Yu et al. isolated polysaccharide compounds in significant percentages,
namely, 55.11% polysaccharides and 2.26% uronic acid, from the skin of the jellyfish
Rhopilema esculetum, Kishinouye [133]. They studied the anti-inflammatory, antioxidant and
immunomodulatory activities of JSP extracts in C57BL/6 laboratory mice [133].

In 2022, Migone et al. isolated new polysaccharides (JSPs) from the jellyfish Rhizostoma
pulmo. These polysaccharides have typical glycosaminoglycan (GAG) structures, confirmed
by LC-MS techniques, such as glucose, galactose, glucosamine and galactosamine, also
presented in Figure 4 [135]. This jellyfish is one of the main prolific species in the Mediter-
ranean and the Black Sea. Its two main fractions were isolated from Rhizostoma pulmo
(RP-JSPs): a neutral fraction (RP-JSP1) and a sulfate-rich fraction, (RP-JSP2), with average
molecular weights of 121 kDa and 590 kDa, respectively. Migone et al. demonstrated
the importance of these compounds in wound healing by applying the in vitro scratch
test [135]. The results confirmed that both RP-JSP polysaccharides show good activity in
tissue regeneration, achieving cell proliferation of more than 80% [135]. The repair of the
scratched tissues was achieved in a record time of two days.

The wound-healing process is accelerated by facilitating cell migration to the wound
margins and the regeneration of the layer by proliferation [136]. After 24 h, the cells
had outgrown the edges of the tear and tended to cover the centre of the scratch as well.
This study confirmed good cytocompatibility for jellyfish polysaccharides (JSP). It was
also found that these RP-JSP polysaccharides provided substantial protection against
oxidative stress.

These results were in agreement with the activity of polysaccharides extracted from
other marine sources, such as Gracilaria lemaneiformis and Auricularia auricula-judae, de-
scribed by Veeraperumal et al. At the same time, Zhang et al. confirmed that RP-JSP may
constitute an important source of contribution to wound healing through anti-inflammatory
and antioxidant actions and by promoting cell migration [137,138].

4.2. Proteins from Jellyfish

From the elemental analysis of jellyfish biocompatibility presented in Table 2, proteins
were identified in all studied species. The highest content is shown by Rhopilema esculentum:
38.12% to 53.87% (DM). In the dried jellyfish Cyanea capillata and Rhizostoma octopus, proteins
represent the majority of the organic content, as reported by Doyle et al. [128]. The jellyfish
Catostylus tagi, Acromitus hardenbergi and Rhopilema esculentum Kishinouye, 1891 have more
proteins in the oral arms than the umbrella, as reported by Dong et al., Morais et al. and
Khong et al. [40,100,102]. Rhopilema hispidum and Pelagia noctiluca demonstrate protein
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in both the oral arms and the gonads, as reported by Frazão et al., Costa et al. and
Kong et al. [100,111,112].

In the compositions of Rhizostoma octopus, Aurelia aurita, Rhizostoma pulmo, Chrysaora
pacifica and Cyane capillata, Raposo et al. found proteins throughout the body [71]. Khong
et al. stated the increased density of muscle mass in the oral arms, which facilitate mobility,
could be due to the higher protein content [100].

Variations in protein content may be due to species, body tissue types and the physico-
chemical procedures used in sample analysis. However, as pointed out by Costa et al., the
protein content of Pelagia noctiluca does not vary significantly according to tissue [112].

4.2.1. Collagen and Collagenic Peptides from Jellyfish

Another important component in wound healing is collagen, the most abundant
protein in the human body. Collagen is the main element of the extracellular matrix
(ECM) [139]. It has a helical, triple-helix structure formed by three twisted polypeptide
chains that are rich in amino acids. The polypeptide chains of collagen are arranged in three
helices [140]. Proline and hydroxyproline are also found in high proportions in collagen
chains [141]. Twenty different types of collagens have been identified, of which the main
types are I, II and III; these account for 80% of the total collagen in the human body [141].
Shomita et al. reported the contribution of collagen in wound healing [142].

Type I and type III collagen are involved in wound healing, with collagen playing a
role in regulating some of the processes involved in the healing phases and being useful in
adjuvant wound therapy [140]. Upon injury, collagen induces platelet activation and aggre-
gation, generating fibrin clot formation at the injury site, as suggested by Xue et al. [143].
Reinke et al. explained wound repair and regeneration and the role of collagen in this
process [144]. In the wound-healing process, the activation of immune cells occurs from
the inflammatory stage, leading to the appearance of cytokines [144].

Schultz et al. and Demidova-Rice et al. explained that fibroblasts facilitate growth
factor synthesis and angiogenesis formation [145]. ECM remodelling leads to the acquisition
of tensile strength [146].

Olczyk et al. showed that the role of the ECM is due to the activity of PDGF fac-
tors in wound healing and the appearance of glycosaminoglycans and collagen [147].
Li et al. and Chen, J. et al. confirmed the role of these compounds in the phases of the
healing process [148]. Nguyen et al. demonstrated the role of matrix metalloproteinases
in cutaneous wound healing [149]. Collagen is involved in these steps and is necessary
for the healing process. It is known that collagen sources from other marine organisms
(marine fish) have been used to heal wounds resulting from various traumatic injuries
(burns, ulcers and scars) [47].

Collagen-based materials are mainly used to prevent moisture and heat loss from
damaged tissue while also providing a microbial barrier [150]. Jellyfish are a welcome
resource to address this acute need for biocompounds. The collagen content of some
jellyfish species has been reported in various studies, demonstrating variable percentages
of collagen in different body tissues of the same jellyfish [73].

In 2011, Addad et al. reported their tests on the existence of collagen in four jellyfish
species from the Mediterranean Sea [151]. They developed methods for collagen extraction
and purification and made collagen extracts from different jellyfish tissues (umbrella, oral
arms and the whole body) through two extractive techniques, namely, the acid-soluble
collagen extraction method and the extract peptization method. They obtained distinct
results from different tissues of the same jellyfish. The best yields were obtained through
acid-soluble extraction [151]. They also used a modern technique for collagen identification
based on SDS-PAGE analysis, which is an electrophoresis method that allows proteins to
be separated on a polyacrylamide gel. The results they obtained can be seen in Figure 5.
Collagen extracted from a rat tail in an acid solution, the rat sample, was used as a control.
From jellyfish, extracts from the umbrella (Um), oral arms (OA) and whole body (WB) were
used [151].
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Figure 5 also shows degraded collagen products, with collagenases noted by a red
asterisk. Using this technique, the highest collagen yield was achieved from the oral
arms of Rhizostoma pulmo, and good collagen yields were also demonstrated by Cotylorhiza
tuberculate [151]. The authors also performed comparative studies with rat fibrillar collagen
for cellular cytotoxicity testing, and the conclusion of these tests showed that jellyfish
collagens are cytotoxically harmless and comparable to mammalian type I collagen, but
with better bioavailability [151].

The protein compounds in jellyfish have recently been studied by many researchers.
Nagai et al. determined the yield of collagen from the jellyfish Rhopilema asamushi to
be 35.2% of the dry weight of the investigated material; this value is different from the
collagen extracted from an edible jellyfish umbrella [152]. The protein content of Rhopilema
esculentum Kishinouye 1891 has been identified by several researchers at different times, as
this jellyfish is one of the most abundant jellyfish in Chinese territorial waters and also
lives in the Atlantic Ocean and the Mediterranean Sea [153].

Calejo et al. reported results for collagen from Catostylus tagi, collagenous peptides
from the jellyfish Stomolophus meleagris that exhibit antioxidant properties [154]. A copper
chelating capacity, which explains the anti-melanogenic action of this jellyfish, was evi-
denced by Zhuang et al. [155]. Extracts from this jellyfish can also be used as a natural
skin-lightening agent [155]. Ding reported that Rhopilema esculentum Kishinouye 1891 con-
tains protein accounting for about 50% of its total dry weight and also possesses antioxidant
activities [156].

In 2014, Barzideh et al. reported a collagen peptide in the contents of Chrysaora
spp. [157]. Li et al. studied the protein compounds in the jellyfish venom of Stomolophus
meleagris [158]. Leone et al. studied gap junction intercellular communication in human
cell cultures for collagenous extracts from Cotylorhiza tuberculata [159].

In 2015, Leone et al. showed that quantitative differences in collagen are generated
by various laboratory techniques [160]. They showed that in pepsin treatments, only
polypeptides reacting with collagenase are involved; thus, only pure collagen. From their
published data, the following results are evident: based on their freeze-dried weights,
tissues of Aurelia spp. and Rhizostoma pulmo contained collagen of up to approximately 40%
pure collagen; tissues from Stomolophus Meleagris contained 46.4% pure collagen, tissues of
Rhopilema asamushi, contained 35.2% pure collagen and tissues of Chrysaora spp. contained
19% pure collagen. Their data were found to be consistent with those reported by other
researchers who identified collagen and protein compounds in jellyfish, such as Cheng
et al., who evaluated collagen from Rhopilema esculentum Kiahinouye 1891 in 2017, and [48].

Table 3 shows the results of research adapted from Merquoil L. et al. that was carried
out on different jellyfish organs [73]. The references for the analysed results attest a large
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variation in collagen content, and it is worth mentioning the quite high collagen content
found in the mesoglea of Stomolophus Meleagris—46.4% [155].

Table 3. Collagen content (mg/g DW%, DM and %WM) in jellyfish.

Species Tissue Type

Collagen Content

ReferencesAcid Pepsin

(mg/g DW) (% DM) (% WM)

Aurelia aurita Whole body 0.0079 - 0.01 [73,151,161]

Cyanea nozakii
Kishinouye Bell 13.0 5.5 [101]

Chrysaora sp. Bell - 9–19 [73,158,161]

Pelagia noctiluca Whole body 0.074 - 0.07 [73,151,161]

Catostylus tagi
Bell 2.7 [73,154,161]

Whole body - 4.5 [73,154]

Cotylorhiza tuberculata
Oral Arms 0.453 - 19.4 [73,151,159]

Bell 1.94 <10 8.3–31.5 [73,151,159]

Rhizostoma pulmo
Oral Arms 2.61–10.3 - 26–90 [73,151,161,162]

Bell 0.83–3.15 <10 [73,152,161,162]

Rhopilema asamushi - 35.2 - [73,152]

Rhopilema esculentum Mesoglea 0.12 - 0.28 [48,51,73,163,164]

Stomolophus meleagris Mesoglea 46.4 - [73,155,158]

Nemopilema nomurai Mesoglea 2.2 - [73,151,162]

In 2017, Lee H. et al. studied the protein properties of the jellyfish Nemopilema nomu-
rai [162]. Rastian et al. conducted physico-chemical studies of collagen from the jellyfish
Catostylus mosaicus [165]. They identified this collagen as a type I collagen, and through an
extensive molecular spectroscopic analysis, they showed similarities to the rat tail tendon
control collagen taken as the standard in biomedical research. In 2019, De Domenico et al.
reported data for Rhizostoma pulmo, Macrì 1778 from the Mediterranean Sea, which may be
a source of peptides with antioxidant properties [166].

In 2020, Coppola et al. analysed collagen in the marine environment from several
marine organisms and considered both fish and jellyfish collagen as a recognized source
with prospects for future use in the biomedical field [161].

In 2022, Ushida et al. identified a new glycoprotein, Q-mucin, with complex structure
in the compositions of the mesoglea [167].

In 2019, Merquiol et al. studied different species of the class scyphomedusae using
two different extraction protocols based on both acid and pepsin solubilization [73].
Barzideh et al. and Leone et al. demonstrated that different extraction techniques lead
to different collagen yields [157,160]. They showed that in case of different yields for
scyphomedusae rhizostome, such as Rhopilema esculentum Kishinouye 1891, the higher percent-
age obtained for protein ensures that the collagen content is also the highest compared to
other organisms.

In 2019, Felician et al. conducted research on extracts from the jellyfish Rhopilema
esculentum in 1% pepsin with SDS-PAGE electrophoresis techniques and FTIR analysis to
determine the molecular weight, type and purity of jellyfish collagen [44].

They obtained jellyfish collagen yields of 4.31% from the jellyfish R. esculentum and
obtained collagen peptides with molecular masses ≤25 kDa by enzymatic hydrolysis. They
performed the scratch test on mice, applying treatments with collagen peptide extracts
at a concentration of 6.25 mg/mL for 48 h. The results of the histological evaluation of
the treated wounds confirmed significant re-epithelization and good tissue regeneration.
Immunohistochemistry tests on skin sections showed that the collagen-peptide-treated
groups produced significant increases in the b-fibroblast growth factor (b-FGF) and the
transforming growth factor-b1 [156].
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4.2.2. Amino Acids from Jellyfish

Enzymatic hydrolysis has been shown to generate collagen peptides. In their struc-
ture, they may have 2–20 amino acid fragments which may have different functions and
physiological roles, as reported by Merquiol et al. and Leone et al. [73,160]. The most
abundant amino acid is glycine, which is the fixed constituent of the triplet chains in the
Gli-X-Y collagen structure, as reported by Ferreira et al. and Kogovšek et al. [142,168].
Proline and hydroxyproline are also amino acids found in the basic helical structure [169].
The passage through appropriate chemical treatments (e.g., enzymatic hydrolysis) from
collagen fibres into collagen fibrils and then into collagen molecules that finally break down
into amino acids is suggestively shown in Figure 6, adapted from Jafari et al. [169]. One
can imagine the transition from triple-stranded collagen fibres into collagen fibrils, which
are also stranded but are of a lower molecular mass, and then the breakdown into chains
(residues) of amino acids.

Mar. Drugs 2023, 21, x  14 of 29 
 

 

 
Figure 6. Collagen breakdown into amino acids. 

Tryptophan was not identified in any jellyfish. Cysteine is an amino acid identified 
only in Aurelia aurita, Catostylus tagi, Rhizostoma pulmo and Rhopilema esculentum species, 
and hydroxylysine has been identified in only three jellyfish species: Catostylus tagi, Stomo-
lophus meleagris and Nemopilema nomurai. Hydroxyproline is also found only in Catostylus 
tagi, Cotylorhiza tuberculate and Stomolophus meleagris. The rest of the amino acids are found 
in different amounts in the analysed jellyfish. In addition, the amino acid histidine is 
found in appreciable amounts only in Cotylorhiza tuberculata (78%) and Rhizostoma pulmo 
(56%); the rest are small amounts, and it was not identified at all in Catostylus tagi (see 
Table 4). Table 4 emphasizes the amino acids (AA), expressed in mg AA/g protein, adapted 
from data by Merquoil et al. [73]. 

Figure 6. Collagen breakdown into amino acids.

Jellyfish collagens with identified amino acids have the structures shown in Figure 6.
From the reported data, we find that Rhizostomeae jellyfish are richer in amino acids than
Semaeostomeae. Amino acids were identified for Mediterranean jellyfish by Merquoil et al.
in 2019, Leone et al. in 2015 and [73,160].

Yu H. et al. reported the main amino acids, which were glutamic acid, lysine, glycine,
aspartic acid and leucine, in a percentage of 51.47–52.52% of the total amino acids in
Rhopilema esculentum [163]. The essential amino acids were present in 42.89% and 40.70%,
and the aromatic amino acids were present in 47.39% and 50.12% [163]. In 2022, Ushida
et al. isolated for the first time a new glycoprotein from jellyfish called Q-mucin. This
new glycoprotein has a structure similar to the glycosaminoglycan structure [167]. Proline
and glutamic acid are found in appreciable amounts in all jellyfish [160]. Hydroxyproline
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was identified only in Catostylus tagi, (65%), Cotylorhiza tuberculata (12.5%) and Stomolophus
meleagris (40%).

Tryptophan was not identified in any jellyfish. Cysteine is an amino acid identified
only in Aurelia aurita, Catostylus tagi, Rhizostoma pulmo and Rhopilema esculentum species, and
hydroxylysine has been identified in only three jellyfish species: Catostylus tagi, Stomolophus
meleagris and Nemopilema nomurai. Hydroxyproline is also found only in Catostylus tagi,
Cotylorhiza tuberculate and Stomolophus meleagris. The rest of the amino acids are found in
different amounts in the analysed jellyfish. In addition, the amino acid histidine is found
in appreciable amounts only in Cotylorhiza tuberculata (78%) and Rhizostoma pulmo (56%);
the rest are small amounts, and it was not identified at all in Catostylus tagi (see Table 4).
Table 4 emphasizes the amino acids (AA), expressed in mg AA/g protein, adapted from
data by Merquoil et al. [73].

Table 4. Amino acid (AA) content of collagen extracted from Semaeostomeae and Rhizostomeae, ex-
pressed in mg AA/g protein.

Tissue
Aurelia aurita Catostylus

tagi
Pelagia

noctiluca
Nemopilema

nomurai
Stomolophus

meleagris
Cotylorhiza
tuberculata

Rhopilema
esculentum

Rhizostoma
pulmo

W W W W W W W W

Amino acids

Hydroxiproline - 65 - - 40 16.9 - -

Aspartic acid 94 84 6.9 71 79 25 68 32

Serine 46 42 2.9 45 45 55 44 67

Glutamic acid 138 115 10.3 94 98 160 86 152

Glycine 145 269 13.5 344 309 59 268 53

Histidine 12 - 0.9 1 2 78 6 56

Arginine 69 62 5 57 52 - 77 20

Threonine 50 31 3.1 28 35 74 36 50

Alanine 67 101 4.1 77 82 43 109 39

Proline 104 78 4.1 79 82 51 72 39

Cystine 5 1 - - - - 3 13

Tyrosine 29 4 1.8 3 6 70 18 76

Valine 36 24 3.1 24 35 59 38 49

Methionine 15 5 - 8 4 53 12 46

Lysine 68 29 4.9 24 38 61 51 69

Isoleucine 32 22 2.6 16 22 57 31 55

Leucine 44 31 3.6 27 34 74 42 91

Phenylalnine 44 6 2.1 8 10 80 30 93

Hydroxylysine - 32 - 35 27 - - -

Triptophan - - - - - - - -

Reference [170] [154] [168] [160] [73] [48] [163] [48]

4.3. Biological Activities Useful in Wound Healing

The wound-healing process is accelerated by certain biocompounds found in some
jellyfish species. These can carry out specific biological activities through their actions
in the different phases of healing. The importance of knowing the biological activity
of jellyfish biocompound extracts in the whole wound-healing process is essential, as
jellyfish species have individualised compositions and have the ability to accelerate the
wound-healing process.

Jellyfish species have different biocompounds, such as collagen and collagen peptides,
which are found in all species but in different amounts and with amino acid structures that
may differ quantitatively and in structure type from species to species.

As a result, these biocompounds can generate specific biological activities when used
for wound treatment. Additionally, polysaccharides that are useful in wound healing are
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only found in certain species of jellyfish and in varying quantities. Bioactive compounds
tested with polysaccharide and collagen peptide structures showed multiple beneficial
biological activities in wound healing, which we describe below.

The bioactive compounds analysed with polysaccharide and collagen peptide struc-
tures showed multiple biological activities.

Immunomodulatory activity was studied by Morishige et al. and Nishimoto et al. [49,171].
It is possible that the immunostimulatory effect is a common feature of collagen molecules,
especially type I collagen, and this activity is beneficial for wound healing in the species
Nemopilema nomurai Kishinouye 1922.

The conclusion of their results was that jellyfish collagen extracts stimulate an immune
response without generating other allergies. Sugahara et al. and Putra et al. demonstrated
that other edible jellyfish of the order Rhizostomae also produce immunostimulatory effects
through enhancing IgM and IgG production by hPBL cells [172,173]. Nishimoto et al.
tested the immunomodulatory activity of jellyfish extracts and confirmed the stimulation
of immunoglobulin production, concluding that jellyfish collagen stimulates both the
transcription activity and the translation activity for the increase in immunoglobulin and
cytokine production [172]. Protein extracts from the venom of the jellyfish Chrysaora
quinquecirrha were shown to increase phagocytic cell activity by Krishnan et al. [11].

Anticoagulant activity was studied by Rastogi in 2016 and Rastogi et al. in 2017, using
the tentacles of Rhizostoma pulmo jellyfish. They showed that these extracts demonstrate very
strong fibrinogenolytic activity [174,175]. They also have a significant content of protein
fractions and show a strong gelatinolytic activity, being able to affect the haemostatic system
at three different levels: platelet aggregation, fibrinogen digestion and fibrin clot digestion.
Another anticoagulant effect was demonstrated by reducing recalcification and thrombin
time in human plasma.

In 2017, Antihemorrhagic activity was tested by Cheng et al. using collagen extracts
from Rhopilema esculentum, obtaining collagen sponge by lyophilization with which in vivo
tests were performed on rats [48]. They concluded that jellyfish sponges exhibited superior
haemostatic capacity compared to a test gauze and explained the haemostatic mechanism by
which haemocytes and platelets adhere and aggregate on the collagen sponge surface [48].
This is a very important finding because jellyfish collagen sponge becomes a haemostatic
biomaterial that can be used in wound healing [44].

Anti-inflammatory activity was studied by Cao et al., who isolated polysaccharide
fractions from Rhopilema esculentum in 2021, finding that the percentage of polysaccharides
was 55.11% and the percentage of uronic acid was 2.26% [133]. The tests were performed
on C57BL/6 laboratory mice in which ulcerative colitis was induced by sodium dextran
sulfate [173]. Ayed et al. demonstrated that the venom extract of the jellyfish Pelagia
noctiluca exhibited dose-dependent anti-inflammatory activity, inhibiting NO production
in RAW264.7 cells [176]. There was no significant cytotoxicity at moderate doses, but
NO generation was reduced by 80% at even the first anti-inflammatory fraction. Jellyfish
extracts with polysaccharides reduced oxidative stress and inflammatory responses by
decreasing pro-inflammatory cytokines TNF-α, IL/1 and IL/6.

In 2018, Hwang et al. investigated the aqueous extract of Nemopilema nomurai Kishi-
nouye 1922 and proved that it exhibits anti-inflammatory activity by inhibiting COX and
iNOS expression with a blockade of the signalling pathways that suppress the activity of
lipopolysaccharide-stimulated RAW 264.7 macrophages without other cytotoxic effects.
They thus demonstrated the extract from these jellyfish can be used against inflammatory
disorders [177].

In 2015, Antioxidant activity was also studied by Leone et al. on three species of
Mediterranean jellyfish, and it was found that the content of proteins, amino acids, phenolic
compounds and fatty acids was different in each species. Remarkable antioxidant capacity
was found only in Cotylorhiza tuberculata [160]. Zhuang et al. studied the antioxidant
activity of Rhopilema esculentum [153].
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In 2019, De Domenico et al. studied the jellyfish Rhizostoma pulmo (barrel jellyfish),
which is one of the most numerous jellyfish in the Mediterranean Sea [166]. They iso-
lated several protein fractions with different molecular weights. From in vitro analyses on
cultures of human keratinocytes under oxidative stress conditions, it was found that the pro-
tein fractions showed significant antioxidant activity. Their results attest that these jellyfish
have low cytotoxicity and represent a sustainable future source of natural antioxidants.

Ding et al. studied Rhopilema esculentum, Kiahinouye 1891, which is one of the most
abundant jellyfish in the territorial waters of China but also lives in the Atlantic Ocean
and the Mediterranean Sea [156]. This jellyfish contains protein that accounts for about
50% of its total dry weight. They have evidenced a noticeable antioxidant activity and an
antihemorrhagic activity that was also evidenced by Cheng et al. [48].

Antibacterial activity has been studied little in jellyfish. However, in 2019, Stabili et al.
examined the microbiota associated with jellyfish in three distinct areas: the umbrella, oral
arms and mucus secretion of Rhizostoma pulmo species from the Ionian Sea [178]. The main
genera of microorganisms belonging to the class Mollicutes (phylum Tenericutes), Mycoplasma
and spiroplasma, were identified for all areas studied.

They found a great diversity of microorganisms associated with jellyfish mucus and
concluded that jellyfish of the phylum Cnidaria can act as vectors of bacterial pathogens.
In the same Rhizostoma pulmo species from the Mediterranean Sea, Stabili et al. analysed
aqueous extracts from jellyfish gonads and demonstrated that the oocyte lysate showed an
antibacterial lysozyme activity towards Micrococcus luteus microorganisms [123].

Tissue regeneration and anti-oxidative stress activity were studied by Migone et al. In
2022, they demonstrated that Rhizostoma pulmo jellyfish contain glycosaminoglycan (GAG)
polysaccharides that have both tissue-regenerative and anti-oxidative-stress activities [135].
Extracts from this jellyfish can be used as promoters of wound healing. Through an
in vitro line stripping assay on murine fibroblasts and human keratinocytes, Migone et al.
concluded that the biological activity is effective in promoting both migration and cell
proliferation. Jellyfish extracts also showed good protection against oxidative stress, and
polysaccharide fractions can be considered very effective in tissue regeneration treatments.
The biological activities, identified in Scyphozoan jellyfish, are systematized in Table 5.

Table 5. Biological activity of jellyfish. Biomaterials for wound management.

Biological Activity Jellyfish Species Biological Active
Compounds Mechanism of Action References

Immunomodulator activity

Nemopilema nomurai
Kishinouye 1922 Jellyfish collagen extracts

Stimulates production of immunoglobulins
(Igs) and cytokines by human hybridoma
cells and human peripheral
blood lymphocytes.

[172]

Tumour necrosis factor-α (TNF-α),
interferon (IFN-) and transforming growth
factor (TGF)- are amplified in hPBL cells.

[171,173]

Chrysaora quinquecirrha Jellyfish extract Produces an increase in phagocytic
cell activity. [11]

Anticoagulant activity Rhizostoma pulmo Tentacle extract
They demonstrate very strong
fibrinogenolytic activity by cleaving the
chains of the fibrinogen molecule.

[174,175]

Antihaemorrhagic activity Rhopilema esculentum Collagen extract
Haemostatic action of collagen fibres which
can achieve a physical matrix by binding
coagulation factors, rapidly forming a clot.

[48]
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Table 5. Cont.

Biological Activity Jellyfish Species Biological Active
Compounds Mechanism of Action References

Anti-inflammatory activity

Rhopilema esculetum Polysaccharides
Very good results achieved by decreasing
pro-inflammatory cytokines TNF-α, IL/1
and IL/6

[133]

Pelagia noctiluca Aqueous jellyfish extract
(polysaccharides)

Fractions from jellyfish venom inhibit NO
generation in RAW 264.7 cells treated with
interferon gamma
(IFN-G)/lipopolysaccharide. They found
that the extracted fractions reduced NO
generation by 80%.

[176]

Nemopilema nomurai,
Kishinouye 1922 Aqueous protein extract

The aqueous extract of Nemopilema nomurai
has been shown to be a therapeutic
anti-inflammatory agent by inhibiting COX
and iNOS expression through a blockade of
signaling pathways that suppress
macrophage activity.

[177]

Oxidative anti-stress activity Rhizostoma pulmo Glycosaminoglycans (GAG) RP-JSP exerted substantial protection
against oxidative stress. [135]

Antioxidant activity

Aurelia aurita
Cotylorhizatuberculata
Rhizostoma pulmo
Rhopilema esculentum

Aqueous and hydroalcoholic
extract

A remarkable antioxidant capacity was
identified in the hydrolyzed protein
fractions for all three species.
Higher antioxidant activity is attributed to
intrinsic protein components in C.
tuberculata species compared to the other
two species.

[160,166]

It has antioxidant and anti-obesity
properties and helps to restore muscles. [153,156]

Antibacterial activity Rhizostoma pulmo Aqueous extract from gonads

R. pulmo oocyte lysate exhibited increased
lysozyme antibacterial activity on
Micrococcus luteus microorganisms. A
remarkable antibacterial activity was
thus confirmed.

[178]

Jellyfish in the phylum Cnidaria can act as
vectors for bacterial pathogens. [123]

Tissue regeneration activity Rhizostoma pulmo Jellyfish extracts
Glycosaminoglycans (GAGs)

They are used as wound-healing promoters,
demonstrated by an in vitro scratch assay
on murine fibroblast and human
keratinocyte cell lines.
Promotes both cell migration
and proliferation.

[135]

The wound-healing process has preoccupied the scientific world, both with respect to
understanding the mechanisms and in designing and making biomaterials to be used in
healing. Both polysaccharides and collagen are essential constituents in the development
of biomaterials used in wound healing treatments. Chattopadhyay et al. argued the
importance of collagen in wound treatment due to its low antigenicity and biocompatibility
with most tissues [70].

Collagen-based dressings from sources other than jellyfish have long been used for
covering burn wounds and treating ulcers, and collagen powder promotes cell recruitment,
activates the wound healing phase and supports new tissue growth with a function similar to
that of collagen sponges, as shown by Parenteau-Bareil et al. and Ramshaw et al. [179,180].

Wan et al. have described marine collagens, other compounds and composites of
different organisms of marine origin as promising biomaterials for wound healing and
other medical applications [181]. Recently, biomaterials from marine sources have received
increasing attention. In this way, extracted collagen from Grey mullet fish were used to
obtain new pharmaceutical formulations for applications in tissue remodelling [182]. Sirbu
et al. obtained marine chitosan polymers gels from Black Sea stone crabs with applications
in wound healing [183]. Prelipcean et al. used marine collagen topical formulations in
wound-healing applications [184].

In 2021, Gaspar-Pintiliescu et al. extracted gelatine and collagen hydrolysate from
Sparus aurata fish, which are important and valuable alternatives to mammalian-derived
products [185]. In 2019, they obtained gelatine extracted from the marine snail Rapana
venosa for topical applications in wound healing [186]. The wound-healing products must
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be made in such a way as to facilitate and accelerate the healing process by protecting
the wound from external contaminating factors and avoiding the loss of tissue moisture.
Nudelman et al. demonstrated that biomass can be used in tissue engineering due to the
biocompatibility of these biomaterials. By incorporating silver nanoparticles into these
scaffolds, they can achieve the antibacterial properties demonstrated in tests of rapid
wound healing [187].

Wound dressings are the most commonly used materials and can be made with
various structures, such as micro- and nanoparticles, films, sponges, fibres or natural
polymer hydrogels (see Figure 7).
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Pustlauk et al. proposed hybrid biomaterials composed of fibrillated jellyfish collagen
and alginate hydrogels [188].

Figure 8 shows the circuit of collagen extract, gelatine and collagen peptides as well
as the possible uses of these composites in wound healing and other biomedical appli-
cations [161]. These new biomaterials are intended for use in tissue engineering and for
articular cartilage repair.
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Hybrids biomaterials of jellyfish collagen and alginates are more stable compared to
pure hydrogels. Ahmed et al. demonstrated the potential of jellyfish collagen scaffolds for
use as a valuable material in the wound-healing process [189].

5. Conclusions

Wound healing is a real issue that has attracted the world’s attention. The process con-
stantly requires innovative treatments in order to ensure healing and reduce pain. It is also
important for healthcare systems to reduce the costs involved in treating these conditions.

In recent years, there has been a real trend towards the use of natural products in
wound-healing treatments. Biomaterials from the marine environment, although proven to
be applicable, are still an underused resource. There are still reserves that are not widely
used. In this sense, this paper discusses jellyfish, not as an unwanted resource as they have
long been perceived, but as a resource of biocompounds of interest in wound healing due
to their content of polysaccharides and collagen peptides.

In this regard, this study reviews the existing data on jellyfish, corroborates the
scientific information on their taxonomy, life cycle and distribution in the European seas
with the types of biocompounds identified so far in different jellyfish species, namely,
GaG-type polysaccharides and collagen peptides derived from collagen type I and III. For
practical use, more studies are needed to overcome the uncertainties related to the structure,
extraction difficulties and cytotoxicity of extracts, which hinder the development of new
therapeutic solutions. New strategies are needed at a European level to organise jellyfish
fishing activities: not for food, as is the case in Asian countries, but for their use as sources
of natural bioactive compounds with biomedical applications.

As a conclusion, due to the marine bioactive compounds they possess, jellyfish may
pave the way for new applications in medical therapy based on the use of polysaccharide
structures and collagen peptide extracts from jellyfish in the production of biomaterials, new
pharmaceutical formulations, the production of nutraceuticals and in tissue engineering.
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Igs Immunoglobulins
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