Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (610)

Search Parameters:
Keywords = marginal soils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2079 KiB  
Article
Seasonality of Arbuscular Mycorrhizal Fungal Diversity and Glomalin in Sodic Soils of Grasslands Under Contrasting Grazing Intensities
by Ileana García, Karla Cáceres-Mago and Alejandra Gabriela Becerra
Soil Syst. 2025, 9(3), 87; https://doi.org/10.3390/soilsystems9030087 (registering DOI) - 5 Aug 2025
Abstract
Arbuscular mycorrhizal fungi (AMF) taxa, glomalin protein, and hyphal density are potential indicators of soil functionality of temperate grasslands in marginal environments subject to grazing over the years. This study evaluated how the AMF community composition, glomalin protein, and hyphal density vary in [...] Read more.
Arbuscular mycorrhizal fungi (AMF) taxa, glomalin protein, and hyphal density are potential indicators of soil functionality of temperate grasslands in marginal environments subject to grazing over the years. This study evaluated how the AMF community composition, glomalin protein, and hyphal density vary in response to grazing intensity (low or high) and seasonality (spring and autumn) in sodic soils of Argentinian temperate grasslands. The AMF community was dominated by Glomeraceae species. Funneliformis geosporus and Glomus brohultii were the most abundant in both seasons and all grasslands. No AMF species were associated with a particular grazing intensity. However, Entrophospora etunicata, Glomus fuegianum, Septoglomus constrictum, and Acaulospora sp. occurred only in spring, and no species were exclusive to autumn. Hyphal density was highest in grasslands with low grazing intensity and can be considered an indicator of soil functionality. Glomalin protein was the highest in spring in all grasslands. The lower grazing intensity in grasslands with poor livestock control showed no changes in AMF diversity. The AMF community showed high adaptation to soil conditions, indicating high resilience. We concluded that longer periods of controlled grazing management are needed to improve soil conditions and, consequently, change the AMF species composition. Full article
26 pages, 6220 KiB  
Article
Estimating Urbanization’s Impact on Soil Erosion: A Global Comparative Analysis and Case Study of Phoenix, USA
by Ara Jeong, Dylan S. Connor, Ronald I. Dorn and Yeong Bae Seong
Land 2025, 14(8), 1590; https://doi.org/10.3390/land14081590 - 4 Aug 2025
Abstract
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization [...] Read more.
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization frequently leads to soil erosion. Despite recognition of this tension, the rate at which the urban growth boundary accelerates soil erosion above natural background levels has not yet been determined. Our goal here is to provide a first broad estimate of urbanization’s impact of soil erosion. By combining data on modern erosion levels with techniques for estimating long-term natural erosion rates through cosmogenic nuclide 10Be analysis, we modeled the impact of urbanization on erosion across a range of cities in different global climates, revealing an acceleration of soil erosion ~7–19x in environments with mean annual precipitation <1500 mm; growth in wetter urban centers accelerated soil erosion ~23–72x. We tested our statistical model by comparing natural erosion rates to decades of monitoring soil erosion on the margins of Phoenix, USA. A century-long expansion of Phoenix accelerated soil erosion by ~12x, an estimate that is roughly at the mid-point of model projections for drier global cities. In addition to urban planning implications of being able to establish a baseline target of natural rates of soil erosion, our findings support the urban cycle of soil erosion theory for the two USA National Science Foundation urban long-term ecological research areas of Baltimore and Phoenix. Full article
Show Figures

Figure 1

13 pages, 1092 KiB  
Article
Exogenous Application of Nano-Silicon and Melatonin Ameliorates Salinity Injury in Coix Seedlings
by Beibei Qi, Junkai Liu, Ruixue Zheng, Jiada Huang and Chao Wu
Agronomy 2025, 15(8), 1862; https://doi.org/10.3390/agronomy15081862 - 31 Jul 2025
Viewed by 108
Abstract
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous [...] Read more.
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous treatments have been demonstrated to enhance plant resilience against various biotic and abiotic stresses, the potential of nano-silicon (NaSi), melatonin (MT), and their combined application in mitigating salinity-induced damage, particularly in relation to the medicinal properties of this medicinal and edible crop, remains poorly understood. This study investigated the effects of exogenous NaSi and MT application on Coix under salinity stress using two varieties with contrasting salinity tolerances. The plants were subjected to salinity stress and treated with NaSi, MT, or a combination of both. The results revealed that salinity stress significantly impaired the agronomic traits, physiological performance, and accumulation of medicinal compounds of Coix. Exogenous MT application effectively alleviated salinity-induced damage to agronomic and physiological parameters, exhibiting superior protective effects compared to NaSi treatment. Strikingly, the combined application of MT and NaSi demonstrated synergistic effects, leading to substantial improvements in growth and physiological indices. However, the medicinal components were only marginally affected by exogenous treatments under both control and salinity-stressed conditions. Further clarification of the molecular mechanisms underlying salinity stress responses and exogenous substance-induced effects is critical to achieving a comprehensive understanding of these protective mechanisms. Full article
Show Figures

Figure 1

27 pages, 5140 KiB  
Article
How Do Nematode Communities and Soil Properties Interact in Riparian Areas of Caatinga Under Native Vegetation and Agricultural Use?
by Juliana M. M. de Melo, Elvira Maria R. Pedrosa, Iug Lopes, Thais Fernanda da S. Vicente, Thayná Felipe de Morais and Mário Monteiro Rolim
Diversity 2025, 17(8), 514; https://doi.org/10.3390/d17080514 - 25 Jul 2025
Viewed by 259
Abstract
Global interest in nematode communities and their ecological relationships as unique and complex soil ecosystems has remarkably increased in recent years. As they have a representative role in the soil biota, nematodes present great potential to help understand soil health through analyzing their [...] Read more.
Global interest in nematode communities and their ecological relationships as unique and complex soil ecosystems has remarkably increased in recent years. As they have a representative role in the soil biota, nematodes present great potential to help understand soil health through analyzing their food chains in different environments. The objective of this study was to analyze the spatial and dynamic distributions of nematode communities and soil properties in two riparian areas of the Caatinga biome: one with native vegetation and the other with a history of agricultural use (modified). The study was carried out in a semi-arid region of Brazil in Parnamirim, PE. In both areas, sampling grids of 60 m × 40 m were established to obtain data on soil moisture, organic matter, particle size, electrical conductivity, and pH, as well as metabolic activity and ecological indices of nematode communities. There was a greater abundance and diversity of nematodes in riparian soils with native vegetation compared to in the modified area due to agricultural use and the dominance of exotic and invasive species. In both areas, bacterivores and plant-parasitic nematodes were dominant, with the genus Acrobeles and Tylenchorhynchus as the main contributors to the community. In the modified area, soil variables (fine sand, clay, and pH) positively influenced Fu4 and PP4 guilds, while in the area with native vegetation, moisture and organic matter exerted a greater influence on Om4, PP5, and Ba3 guilds. Kriging maps showed the soil variables were more concentrated in the center in the areas with native vegetation, in contrast to the area with modified vegetation, where they concentrated more on the margins. The functional guilds in the native vegetation did not exhibit a gradual increase towards the regions close to the riverbank, unlike in the modified area. The presence of plant-parasitic nematodes, especially of the genus Tylenchorhynchus, indicates the need for greater attention in the management of these ecosystems. The study contributes to understanding the interactions between nematode communities and soil in riparian areas of the Caatinga biome, emphasizing the importance of preserving native vegetation to maintain the diversity and balance of this ecosystem, in addition to highlighting the need for appropriate management practices in areas with a history of agricultural use, aiming to conserve soil biodiversity. Full article
(This article belongs to the Special Issue Distribution, Biodiversity, and Ecology of Nematodes)
Show Figures

Figure 1

12 pages, 1597 KiB  
Article
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Viewed by 275
Abstract
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects [...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure. Full article
Show Figures

Figure 1

26 pages, 1676 KiB  
Article
Water and Nitrogen Dynamics of Mungbean as a Summer Crop in Temperate Environments
by Sachesh Silwal, Audrey J. Delahunty, Ashley J. Wallace, Sally Norton, Alexis Pang and James G. Nuttall
Agronomy 2025, 15(7), 1711; https://doi.org/10.3390/agronomy15071711 - 16 Jul 2025
Viewed by 251
Abstract
Mungbean is grown as a summer crop in subtropical climates globally. The global demand for mungbean is increasing, and opportunities exist to expand production regions to more marginal environments, such as southern Australia, as an opportunistic summer crop to help meet the growing [...] Read more.
Mungbean is grown as a summer crop in subtropical climates globally. The global demand for mungbean is increasing, and opportunities exist to expand production regions to more marginal environments, such as southern Australia, as an opportunistic summer crop to help meet the growing global demand. Mungbean has the potential to be an opportunistic summer crop when an appropriate sowing window coincides with sufficient soil water. This expansion from subtropical to temperate climates will pose challenges, including low temperatures, a longer day length and a low and variable water supply. To assess mungbean suitability to temperate, southern Australian summer rainfall patterns and soil water availability, we conducted field experiments applying a range of water treatments across four locations with contrasting rainfall patterns within the state of Victoria (in southern Australia) in 2020–2021 and 2021–2022. The water treatments were applied prior to sowing (60 mm), the vegetative stage (40 mm) and the reproductive stage (40 mm) in a factorial combination at each location. Two commercial cultivars, Celera II-AU and Jade-AU, were used. Water scarcity during flowering and the pod-filling stages were important factors constraining yield. Analysis of yield components showed that increasing water availability at critical growth stages, viz. the vegetative and reproductive stages, of mungbean was associated with increases in total biomass, HI and grain number in addition to increased water use and water use efficiency (WUE). Average WUEs ranged from 1.3 to 7.6 kg·ha−1·mm−1. The maximum potential WUE values were 6.4 and 5.1 kg·ha−1·mm−1 for Celera II-AU and Jade-AU across the sites, with the estimated soil evaporation values (x-intercept) of 83 and 74 mm, respectively. Nitrogen fixation was variable, with %Ndfa values ranging from 9.6 to 76.8%, and was significantly affected by soil water availability. This study emphasises the importance of water availability during the reproductive phase for mungbean yield. The high rainfall zones within Victoria have the potential to grow mungbean as an opportunistic summer crop. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

23 pages, 1142 KiB  
Review
Impact of Nitrogen Fertiliser Usage in Agriculture on Water Quality
by Opeyemi Adebanjo-Aina and Oluseye Oludoye
Pollutants 2025, 5(3), 21; https://doi.org/10.3390/pollutants5030021 - 14 Jul 2025
Viewed by 433
Abstract
Agriculture relies on the widespread application of nitrogen fertilisers to improve crop yields and meet the demands of a growing population. However, the excessive use of these fertilisers has led to significant water quality challenges, posing risks to aquatic life, ecosystems, and human [...] Read more.
Agriculture relies on the widespread application of nitrogen fertilisers to improve crop yields and meet the demands of a growing population. However, the excessive use of these fertilisers has led to significant water quality challenges, posing risks to aquatic life, ecosystems, and human health. This study examines the relationship between synthetic nitrogen fertiliser usage and water pollution while identifying gaps in existing research to guide future studies. A systematic search across databases (Scopus, Web of Science, and Greenfile) identified 18 studies with quantitative data, synthesised using a single-group meta-analysis of means. As the data were continuous, the mean was used as the effect measure, and a random-effects model was applied due to varied study populations, with missing data estimated through statistical assumptions. The meta-analysis found an average nitrate concentration of 34.283 mg/L (95% confidence interval: 29.290–39.276), demonstrating the significant impact of nitrogen fertilisers on water quality. While this average remains marginally below the thresholds set by the World Health Organization (50 mg/L NO3) and EU Nitrate Directive, it exceeds the United States Environmental Protection Agency limit (44.3 mg/L NO3), signalling potential health risks, especially in vulnerable or unregulated regions. The high observed heterogeneity (I2 = 100%) suggests that factors such as soil type, agricultural practices, application rate, and environmental conditions influence nitrate levels. While agriculture is a key contributor, other anthropogenic activities may also affect nitrate concentrations. Future research should comprehensively assess all influencing factors to determine the precise impact of nitrogen fertilisers on water quality. Full article
Show Figures

Figure 1

61 pages, 5489 KiB  
Review
Unlocking the Sublime: A Review of Native Australian Citrus Species
by Joel B. Johnson, Natasha L. Hungerford, Yasmina Sultanbawa and Michael E. Netzel
Foods 2025, 14(14), 2425; https://doi.org/10.3390/foods14142425 - 9 Jul 2025
Viewed by 1754
Abstract
Citrus fruit are well-known for their characteristic flavour and nutritional value. Global citrus production has increased by 528% between 1961 and 2021, and in Australia, citrus is the most exported fresh fruit product by volume. There are six described Citrus species endemic to [...] Read more.
Citrus fruit are well-known for their characteristic flavour and nutritional value. Global citrus production has increased by 528% between 1961 and 2021, and in Australia, citrus is the most exported fresh fruit product by volume. There are six described Citrus species endemic to Australia: C. australasica (Australian finger lime), C. australis (round lime), C. garrawayi (Mount White lime), C. glauca (desert lime), C. gracilis (Humpty Doo lime), and C. inodora (Russell River lime). Australian Citrus possess unique flavours, aromas, and phytochemical profiles, suggesting a potential use as novelty crops and/or ‘functional foods’. Furthermore, the native Australian Citrus germplasm is a valuable source of desirable traits in citrus breeding, including drought, cold, heat, salinity, and disease resistance. These may help solve some challenges facing citrus growers globally, including disease, a declining soil quality, changing climates, and narrowing profit margins. However, many Australian citrus species’ nutritional value, chemical composition, and bioactive properties remain unknown. This review focuses on these under-investigated native Citrus species, their distribution, production, physiology, disease tolerance, traditional use, taxonomy, flavour, nutritional composition, bioactivity, and commercial production. It concludes with a perspective on the future of these native species in the Australian and global citrus context. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

21 pages, 4553 KiB  
Article
A Quantitative Assessment of the Impacts of Land Use and Natural Factors on Water Quality in the Red River Basin, China
by Changming Chen, Xingcan Chen, Hong Tang, Xuekai Feng, Yu Han, Yuan He, Liqin Yan, Yangyidan He, Liling Yang and Kejian He
Water 2025, 17(13), 1968; https://doi.org/10.3390/w17131968 - 30 Jun 2025
Viewed by 438
Abstract
The quality of water in the Red River is a complex interplay between human-induced changes and inherent natural variables. This research utilized the snapshot sampling approach, garnering water quality data from 45 sampling sites in the Red River and crafting 24 environmental indicators [...] Read more.
The quality of water in the Red River is a complex interplay between human-induced changes and inherent natural variables. This research utilized the snapshot sampling approach, garnering water quality data from 45 sampling sites in the Red River and crafting 24 environmental indicators related to land use and inherent natural determinants at the catchment scale. Through Spearman rank correlation and redundancy analyses, relationships among land use, natural variables, and water quality were elucidated. Our variance partitioning revealed differentiated impacts of land use and natural factors on water quality. Pivotal findings indicated superior water quality in the Red River, driven mainly by land use dynamics, which showed a distinct geomorphic gradient. Specific land use attributes, like cropland patch density, grassland’s largest patch index, and urban metrics, were pivotal in explaining variations in parameters such as total nitrogen, ammonia, and temperature. Notably, the configuration of land use had a more profound influence on water quality than merely its components. In terms of natural influences, while topography played a dominant role in shaping water quality, other factors like soil and weather had marginal impacts. Elevation was notably linked with metrics like total phosphorus and suspended solids, whereas precipitation and slope significantly determined electrical conductivity and chlorophyll-a models. In sum, incorporating both land use configurations and natural determinants offers a more comprehensive understanding of water quality disparities in the Red River’s ecosystem. For holistic water quality management, the focus should not only be on the major contributors like croplands and urban areas but also on underemphasized areas like grasslands. Tweaking cropland distribution, recognizing the intertwined nature of land use and natural elements, and tailoring land management based on topographical variations are essential strategies moving forward. Full article
Show Figures

Figure 1

22 pages, 20345 KiB  
Article
A Three-Dimensional Feature Space Model for Soil Salinity Inversion in Arid Oases: Polarimetric SAR and Multispectral Data Synergy
by Ilyas Nurmemet, Yilizhati Aili, Yang Xiang, Aihepa Aihaiti, Yu Qin and Bilali Aizezi
Agronomy 2025, 15(7), 1590; https://doi.org/10.3390/agronomy15071590 - 29 Jun 2025
Viewed by 278
Abstract
Effective soil salinity monitoring is crucial for sustainable land management in arid regions. Most current studies face limitations by relying solely on single-source data. This study presents a novel three-dimensional (3D) optical-radar feature space model combining Gaofen-3 polarimetric synthetic aperture radar (SAR) and [...] Read more.
Effective soil salinity monitoring is crucial for sustainable land management in arid regions. Most current studies face limitations by relying solely on single-source data. This study presents a novel three-dimensional (3D) optical-radar feature space model combining Gaofen-3 polarimetric synthetic aperture radar (SAR) and Sentinel-2 multispectral data for China’s Yutian Oasis. The random forest (RF) feature selection algorithm identified three optimal parameters: Huynen_vol (volume scattering component), RVI_Freeman (radar vegetation index), and NDSI (normalized difference salinity index). Based on the interactions of these three optimal features within the 3D feature space, we constructed the Optical-Radar Salinity Inversion Model (ORSIM). Subsequent validation using measured soil electrical conductivity (EC) data (May–June 2023) demonstrated strong model performance, with ORSIM achieving R2 = 0.75 and RMSE = 7.57 dS/m. Spatial analysis revealed distinct salinity distribution patterns: (1) Mildly salinized areas clustered in the central oasis region, and (2) severely salinized zones predominated in northern low-lying margins. This spatial heterogeneity strongly correlated with local topography-higher elevation (south) to desert depression (north) gradient. The 3D feature space approach advances soil salinity monitoring by overcoming traditional 2D limitations while providing an accurate, transferable framework for arid ecosystem management. Furthermore, this study significantly expands the application potential of SAR data in soil salinization research. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 1606 KiB  
Article
Tree Clearing for Coffee Production Threatens the Tropical Cloud Montane Forests of the Dominican Republic and Haiti, with Implications for Soil Fertility
by Luis G. García-Montero, Marisol Fragela, Stervins Alexis and Gonzalo Almendros
Agriculture 2025, 15(13), 1402; https://doi.org/10.3390/agriculture15131402 - 29 Jun 2025
Viewed by 379
Abstract
Tropical montane cloud forests (TMCFs) are biodiversity hotspots that have been increasingly cleared to cultivate coffee under full sun exposure, replacing traditional shaded agroforestry systems. This study evaluated the impact of TMCF clearing on soil quality by analyzing 108 samples from undisturbed primary [...] Read more.
Tropical montane cloud forests (TMCFs) are biodiversity hotspots that have been increasingly cleared to cultivate coffee under full sun exposure, replacing traditional shaded agroforestry systems. This study evaluated the impact of TMCF clearing on soil quality by analyzing 108 samples from undisturbed primary and secondary forests and deforested coffee plantations in the Dominican Republic and Haiti. Our findings indicate that forest clearing has a substantial adverse impact on soil nutrient status. Soils from undisturbed plots had total organic carbon (TOC) concentrations 4.83 units higher than those from cleared plots. Nitrogen levels were reduced by 28–61%, and available potassium declined by 23–51% in soils that had been cleared. Conversely, the available phosphorus levels exhibited a modest increase (ranging from 23% to 27%) following the clearing process, presumably attributable to diminished plant uptake and augmented mineralization in conditions characterized by diminished organic matter. However, given that phosphorus is not a limiting factor for coffee growth, this marginal gain does not compensate for the broader degradation of soil fertility. The study emphasizes that allowing TMCFs to be used for sun-grown coffee results in long-term nutrient depletion through erosion and leaching, which poses a threat to both the productivity of the soil and the ecological integrity of these valuable forest systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

32 pages, 6094 KiB  
Article
A Study of the Soil–Wall–Indoor Air Thermal Environment in a Solar Greenhouse
by Zhi Zhang, Yu Li, Liqiang Wang, Weiwei Cheng and Zhonghua Liu
Sensors 2025, 25(13), 4041; https://doi.org/10.3390/s25134041 - 28 Jun 2025
Viewed by 324
Abstract
Greenhouses offer optimal environments for crop cultivation during the winter months. The rationale for this study was identified as the synergistic exchange of air between the soil, the wall, and the indoor environment within the greenhouse (referring to the coupling law of the [...] Read more.
Greenhouses offer optimal environments for crop cultivation during the winter months. The rationale for this study was identified as the synergistic exchange of air between the soil, the wall, and the indoor environment within the greenhouse (referring to the coupling law of the temperature fields of the three elements in space and time, including the direction of heat transfer and the consistency of the temperature zoning), thereby maintaining a more optimal temperature. However, there is a paucity of research on the impact of different spans on the thermal environment in solar greenhouses and even fewer studies on the synergistic law of changes in soil-wall indoor air in solar greenhouses with different spans. In this study, two solar greenhouses with different spans were analyzed through a combination of experiments as follows: K-means classification optimized using the grey wolf optimizer (GWO), computational fluid dynamics (CFD) simulations, and long short-term memory (LSTM) prediction models. The two solar greenhouses, designated as S1 and S2, had spans of 11 m and 10 m, respectively. The results are as follows: In two greenhouses when the span and temperature were the same, the indoor air temperature and soil temperature of the S1 greenhouse were lower than those of the S2 greenhouse; there was an isothermal layer in the north wall of greenhouses S1 and S2 (a stable area where the temperature change over time is less than 0.5 °C), the horizontal distance between the isothermal layer on the inside of the greenhouse wall and the inside of the wall was more than 400 mm, and that of the outside of the greenhouse wall was more than 200 mm; within the solar greenhouse, this study identified that heat was emitted from the inner surface of the wall (at 0 mm from the inner surface) toward the outer surface of the wall (at 0 mm from the outer surface), as well as at a horizontal distance of 200 mm from the inner surface of the wall. The temperature data from 0:00 to 8:00 at night were selected for the purpose of analyzing the temperature synergistic change in soil-wall indoor air in the S1 greenhouse. The temperature change can be classified into four categories according to K-means classification, which was optimized based on the grey wolf algorithm. The categories were as follows: high-temperature region, medium-high temperature region, medium-low temperature region, and low-temperature region. The low-temperature region spanned the range of X = (800, 3000) mm, and its height range was Y = (−150, 1200) mm. The CFD model and LSTM prediction model have been shown to be superior, and the findings of this study offer a theoretical basis for the optimization of thermal environment control in solar greenhouses. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

22 pages, 4991 KiB  
Article
Delineating Soil Management Zones for Site-Specific Nutrient Management in Cocoa Cultivation Areas with a Long History of Pesticide Usage
by Isong Abraham Isong, Denis Michael Olim, Olayinka Ibiwumi Nwachukwu, Mabel Ifeoma Onwuka, Sunday Marcus Afu, Victoria Oko Otie, Peter Ereh Oko, Brandon Heung and Kingsley John
Land 2025, 14(7), 1366; https://doi.org/10.3390/land14071366 - 28 Jun 2025
Viewed by 517
Abstract
Delineating soil management zones in cocoa cultivation areas can help optimize production and minimize ecological and environmental risks. This research assessed the spatial distribution of heavy metal concentration and soil fertility indicators in Cross River State, Nigeria, to delineate soil management zones (MZs). [...] Read more.
Delineating soil management zones in cocoa cultivation areas can help optimize production and minimize ecological and environmental risks. This research assessed the spatial distribution of heavy metal concentration and soil fertility indicators in Cross River State, Nigeria, to delineate soil management zones (MZs). A total of n = 63 georeferenced, composite soil samples were collected at the 0–30 cm depth increment, air-dried, and subjected to physicochemical analysis. The soil data were subjected to principal component analysis (PCA), and the selected principal components (PCs) were used for fuzzy c-means clustering analysis to delineate the MZs. The result indicated that soil pH varied from 4.8 (strongly acidic) to 6.3 (slightly acidic), with high average organic carbon contents. The degree of contamination was low, while the ecological risk indicator (RI) of the environment under cocoa cultivation ranged from low risk (RI = 18.24) to moderate risk (RI = 287.15), with moderate risk areas mostly found in patches around the central and upper regions. Higher pH was associated with increased levels of exchangeable Ca, Mg, and K, and TN and OC. Strong spatial dependence was observed for silt, pH, OC, Mg, Zn, Cu, Pb, Cd, Cr, and DC. The result showed the first six principal components (PCs) with eigenvalues >1 accounting for 83.33% of the cumulative variance, and three MZs were derived via the selected six PCs using fuzzy c-means clustering analysis. The results of this study further indicated that MZ3 had the highest pH (6.06), TN (0.24%), OC (2.79%), exchangeable Ca (10.62 cmol/kg), Mg (4.01 cmol/kg), and K (0.12 cmol/kg). These were significantly (p < 0.05) higher than those observed in MZ2 and MZ1, and they represent the most fertile parts of the study area. Furthermore, 40.6% of the study area had marginal soil (i.e., soil under MZ2). Full article
Show Figures

Figure 1

27 pages, 10572 KiB  
Article
Temporal Hydrological Responses to Progressive Land Cover Changes and Climate Trends in a Plateau Lake Basin in Southwest China
by Zhengduo Bao, Yuxuan Wu, Weining He, Nian She, Hua Shao and Chao Fan
Water 2025, 17(13), 1890; https://doi.org/10.3390/w17131890 - 25 Jun 2025
Viewed by 383
Abstract
The reducing streamflow is a major concern in the Yilong Lake Basin (YLB), which supplies water for agriculture and the growing population in the basin and to maintain the health of the regional ecosystem. The YLB has experienced remarkable land use/land cover change [...] Read more.
The reducing streamflow is a major concern in the Yilong Lake Basin (YLB), which supplies water for agriculture and the growing population in the basin and to maintain the health of the regional ecosystem. The YLB has experienced remarkable land use/land cover change (LUCC) and climate change (CC) in recent years. To understand the drivers of the streamflow change in this basin, the effects of the land use change and climate variation on the temporal flow variability were studied using the Soil and Water Assessment Tool (SWAT). The calibration and validation results indicated that the SWAT simulated the streamflow well. Then the streamflow responses to the land use change between 2010 and 2020 and climate change with future climate projections (SSP245, SSP370, and SSP585) were evaluated. Results showed that the LUCC in the YLB caused a marginal decline in the annual streamflow at the whole basin scale but significantly altered rainfall–runoff relationships and intra-annual discharge patterns; e.g., monthly streamflows decreased by up to 3% in the dry season under the surface modification, with subbasins of the YLB exhibiting divergent responses attributed to spatial heterogeneity in land surface transitions. Under future climate scenarios, streamflow projections revealed general declining trends with significant uncertainties, particularly under high-emission pathways, e.g., SSP370 and SSP585, in which the streamflow could be projected to reduce by up to 5.9% in the mid-future (2031–2045). In addition, droughts were expected to intensify, exacerbating seasonal water stress in the future. It suggests that integrated water governance should synergize climate-resilient land use policies with adaptive infrastructure to address regional water resources challenges. Full article
Show Figures

Figure 1

13 pages, 1307 KiB  
Article
Superior Wheat Yield and Profitability in Conservation Agriculture with Diversified Rotations vs. Conventional Tillage in Cold Arid Climates
by Harun Cicek, Mia Schoeber, Irfan Gültekin, Tae Hoon Kim, Alexander Heer, Fevzi Partigöç, Rifat Zafer Arısoy, Şeref Aksoyak, Fatih Özdemir and Amritbir Riar
Land 2025, 14(7), 1331; https://doi.org/10.3390/land14071331 - 23 Jun 2025
Viewed by 435
Abstract
Wheat productivity in dry regions of the world such as Central Asia and the Mediterranean is experiencing significant declines due to erratic weather events. Conservation agriculture (CA) has been promoted as a promising alternative for drylands to address climate-change-induced water scarcity and soil [...] Read more.
Wheat productivity in dry regions of the world such as Central Asia and the Mediterranean is experiencing significant declines due to erratic weather events. Conservation agriculture (CA) has been promoted as a promising alternative for drylands to address climate-change-induced water scarcity and soil degradation. A long-term experiment in the Central Anatolian region of Türkiye compared CA and conventional tillage (CT) using diversified two- and four-year rotations. All rotations outperformed the wheat–wheat control, with the highest yields in wheat–fallow and wheat–lentil rotations. Four-year rotations generally yielded more than two-year ones under both CA and CT, except wheat–fallow and wheat–lentil, which matched four-year results. In two-year-rotations, yield differences between CA and CT were largest in wheat–wheat and wheat–lentil, with CA increasing yields by around 50% and 60% for chickpea and lentil, respectively. Chickpea and lentil also had a similar positive effect on wheat yield in four-year rotations. All rotations were more profitable under CA than CT, with chickpea and lentil rotations achieving the highest gross margin. Soil organic matter content was significantly greater under CA compared to CT within each two-year crop rotation. Our study clearly demonstrated the advantages of CA over CT in terms of production, soil quality and economics. Full article
Show Figures

Figure 1

Back to TopTop