Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,092)

Search Parameters:
Keywords = many-to-one topology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14486 KiB  
Article
Dynamic Optimization of Buckling Problems for Panel Structures with Stiffening Characteristics
by Yuguang Bai, Xiangmian He, Qi Deng and Dan Zhao
Appl. Sci. 2025, 15(15), 8227; https://doi.org/10.3390/app15158227 - 24 Jul 2025
Viewed by 186
Abstract
Many kinds of panel structures are proposed in aircraft design. This study presents a topology optimization method to improve the buckling resistance of panel structures. It should be noted that a popular configuration of the present panel structure is that with ribs and [...] Read more.
Many kinds of panel structures are proposed in aircraft design. This study presents a topology optimization method to improve the buckling resistance of panel structures. It should be noted that a popular configuration of the present panel structure is that with ribs and frames. Stiffening characteristics (i.e., effects of increasing structural stiffness of a panel structure with ribs and frames) are thus included during analysis of panel structures. After studying the coupling relationship between the dynamic characteristics and buckling behavior of the panel, a developed MMC (moving morphable component) method is proposed for topology optimization to improve the buckling resistance of the panel. It is seen that the coupling relationship between the dynamic characteristics and buckling behavior of the panel is mainly reflected when the compression force acts on the panel, corresponding that dynamic characteristics will vary with the load. If the load acts on the structure, the first-order natural frequency of the panel with ribs and frames in this study decreases with the increase in the load, with the optimization objective of maximizing the first-order natural frequency. Based on the coupling relationship between dynamic characteristics and buckling behavior, the critical buckling load of the panel increases as the first-order natural frequency increases. The present optimization method can reduce computational complexity without changing the accuracy of the calculation. At the same time, the coupling relationship between dynamic characteristics and buckling behavior is applied in topology optimization, which is of great significance to improve the comprehensive performance of panel structures in the engineering design process. This paper improves the dynamic characteristics and buckling resistance of panels with ribs and frames based on the improved MMC method. The proposed method effectively meets the design requirements of flight vehicle design in complex environments. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

18 pages, 2407 KiB  
Article
IFDA: Intermittent Fault Diagnosis Algorithm for Augmented Cubes Under the PMC Model
by Chongwen Yuan, Chenghao Zou, Jiong Wu, Hao Feng and Jie Li
Appl. Sci. 2025, 15(15), 8197; https://doi.org/10.3390/app15158197 - 23 Jul 2025
Viewed by 136
Abstract
Fault diagnosis technology is a crucial technique for ensuring the reliability of multiprocessor systems. Many previous studies have paid close attention to the permanent faults of systems while ignoring the rise of intermittent faults. Meanwhile, there is a lack of a rapid diagnostic [...] Read more.
Fault diagnosis technology is a crucial technique for ensuring the reliability of multiprocessor systems. Many previous studies have paid close attention to the permanent faults of systems while ignoring the rise of intermittent faults. Meanwhile, there is a lack of a rapid diagnostic algorithm tailored for intermittent faults. In this paper, we propose multiple theorems to evaluate the intermittent fault diagnosability of different topologies under the PMC model. Through these theorems, we demonstrate that the intermittent fault diagnosability of an n-dimensional augmented cube (AQn) is (2n2) when n is greater than or equal to 4. Furthermore, we present a fast intermittent fault diagnosis algorithm, which is named as IFDA, to identify the processors with intermittent fault in the networks. Finally, we evaluate the performance of the algorithm in terms of the parameters Accuracy and Precision. The simulation experimental results show that the algorithm IFDA has good performance and efficiency. Full article
Show Figures

Figure 1

14 pages, 555 KiB  
Article
A Novel Hyper-Heuristic Algorithm for Bayesian Network Structure Learning Based on Feature Selection
by Yinglong Dang, Xiaoguang Gao and Zidong Wang
Axioms 2025, 14(7), 538; https://doi.org/10.3390/axioms14070538 - 17 Jul 2025
Viewed by 225
Abstract
Bayesian networks (BNs) are effective and universal tools for addressing uncertain knowledge. BN learning includes structure learning and parameter learning, and structure learning is its core. The topology of a BN can be determined by expert domain knowledge or obtained through data analysis. [...] Read more.
Bayesian networks (BNs) are effective and universal tools for addressing uncertain knowledge. BN learning includes structure learning and parameter learning, and structure learning is its core. The topology of a BN can be determined by expert domain knowledge or obtained through data analysis. However, when many variables exist in a BN, relying only on expert knowledge is difficult and infeasible. Therefore, the current research focus is to build a BN via data analysis. However, current data learning methods have certain limitations. In this work, we consider a combination of expert knowledge and data learning methods. In our algorithm, the hard constraints are derived from highly reliable expert knowledge, and some conditional independent information is mined by feature selection as a soft constraint. These structural constraints are reasonably integrated into an exponential Monte Carlo with counter (EMCQ) hyper-heuristic algorithm. A comprehensive experimental study demonstrates that our proposed method exhibits more robustness and accuracy compared to alternative algorithms. Full article
(This article belongs to the Special Issue Advances in Mathematical Optimization Algorithms and Its Applications)
Show Figures

Figure 1

19 pages, 6799 KiB  
Article
Analysis of Energy Recovery Out of the Water Supply and Distribution Network of the Brussels Capital Region
by François Nuc and Patrick Hendrick
Energies 2025, 18(14), 3777; https://doi.org/10.3390/en18143777 - 16 Jul 2025
Viewed by 229
Abstract
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s [...] Read more.
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s WSDN using four years (2019–2022) of operational data. Rather than focusing on available technologies, the analysis examines whether the real behavior of the network supports sustainable energy extraction. The approach includes network topology identification, theoretical power modeling, and detailed flow and pressure analysis. The Brussels system, composed of a Water Supply Network (WSN) and a Water Distribution Network (WDN), reveals strong disparities: the WSN offers localized opportunities for energy recovery, while the WDN presents significant operational constraints that limit economic viability. Our findings suggest that day-ahead electricity markets provide more suitable valorization pathways than flexibility markets. Most importantly, the study highlights the necessity of long-term behavioral analysis to avoid misleading conclusions based on short-term data and to support informed investment decisions in the urban water–energy nexus. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

30 pages, 14631 KiB  
Article
Unsupervised Plot Morphology Classification via Graph Attention Networks: Evidence from Nanjing’s Walled City
by Ziyu Liu and Yacheng Song
Land 2025, 14(7), 1469; https://doi.org/10.3390/land14071469 - 15 Jul 2025
Viewed by 309
Abstract
Urban plots are pivotal links between individual buildings and the city fabric, yet conventional plot classification methods often overlook how buildings interact within each plot. This oversight is particularly problematic in the irregular fabrics typical of many Global South cities. This study aims [...] Read more.
Urban plots are pivotal links between individual buildings and the city fabric, yet conventional plot classification methods often overlook how buildings interact within each plot. This oversight is particularly problematic in the irregular fabrics typical of many Global South cities. This study aims to create a plot classification method that jointly captures metric and configurational characteristics. Our approach converts each cadastral plot into a graph whose nodes are building centroids and whose edges reflect Delaunay-based proximity. The model then learns unsupervised graph embeddings with a two-layer Graph Attention Network guided by a triple loss that couples building morphology with spatial topology. We then cluster the embeddings together with normalized plot metrics. Applying the model to 8973 plots in Nanjing’s historic walled city yields seven distinct plot morphological types. The framework separates plots that share identical FAR–GSI values but differ in internal organization. The baseline and ablation experiments confirm the indispensability of both configurational and metric information. Each type aligns with specific renewal strategies, from incremental upgrades of courtyard slabs to skyline management of high-rise complexes. By integrating quantitative graph learning with classical typo-morphology theory, this study not only advances urban form research but also offers planners a tool for context-sensitive urban regeneration and land-use management. Full article
Show Figures

Figure 1

15 pages, 5296 KiB  
Article
Study on Multiple-Inverter-Drive Method for IPMSM to Improve the Motor Efficiency
by Koki Takeuchi and Kan Akatsu
World Electr. Veh. J. 2025, 16(7), 398; https://doi.org/10.3390/wevj16070398 - 15 Jul 2025
Viewed by 226
Abstract
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been [...] Read more.
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been conducted on improving the efficiency of EV power units. In this study, we propose a multiple-inverter-drive permanent magnet synchronous motor based on an 8-pole, 48-slot structure, which is commonly used as an EV motor. The proposed motor is composed of two completely independent parallel inverters and windings, and intermittent operation is possible; that is, only one inverter and one parallel winding is used depending on the situation. In the proposed motor, we compare losses including stator iron loss, rotor iron loss, and magnet eddy current loss by PWM voltage inputs for some stator winding topologies, we show that the one-side winding arrangement is the most efficient during intermittent operation, and that it is more efficient than normal operation especially in the low-speed, low-torque range. Finally, through a vehicle-driving simulation considering the efficiency map including motor loss and inverter loss, we show that the intentional use of intermittent operation can improve electrical energy consumption. Full article
Show Figures

Figure 1

21 pages, 7262 KiB  
Article
Integrative Multi-Omics Analysis Reveals the Molecular Characteristics, Tumor Microenvironment, and Clinical Significance of Ubiquitination Mechanisms in Lung Adenocarcinoma
by Deyu Long, Yajing Xue, Xiushi Yu, Xue Qin, Jiaxin Chen, Jia Luo, Ketao Ma, Lili Wei and Xinzhi Li
Int. J. Mol. Sci. 2025, 26(13), 6501; https://doi.org/10.3390/ijms26136501 - 6 Jul 2025
Viewed by 476
Abstract
Ubiquitination is a dynamic and reversible post-translational modification mediated by ubiquitination regulators (UBRs), which plays an essential role in protein stability, cell differentiation and immunity. Dysregulation of UBRs can lead to destabilization of biological processes and may induce serious human diseases, including cancer. [...] Read more.
Ubiquitination is a dynamic and reversible post-translational modification mediated by ubiquitination regulators (UBRs), which plays an essential role in protein stability, cell differentiation and immunity. Dysregulation of UBRs can lead to destabilization of biological processes and may induce serious human diseases, including cancer. Many UBRs, such as E3 ubiquitin ligases and deubiquitinases (DUBs), have been identified as potential drug targets for cancer therapy. However, the potential clinical value of UBRs in lung adenocarcinoma (LUAD) remains to be elucidated. Here, we identified 17 hub UBRs from high-confidence protein–protein interaction networks of UBRs correlated with cancer hallmark-related pathways using four topological algorithms. The expression of hub UBRs is affected by copy number variation and post-transcriptional regulation, and their high expression is often detrimental to patient survival. Based on the expression profiles of hub UBRs, patients can be classified into two ubiquitination subtypes with different characteristics. These subtypes exhibit significant differences across multiple dimensions, including survival, expression level, mutation burden, female predominance, infiltration level, immune profile, and drug response. In addition, we established a scoring system for evaluating the ubiquitination status of individual LUAD patients, called the ubiquitination-related risk (UB_risk) score, and found that patients with low scores are more likely to gain advantages from immunotherapy. The results of this study emphasize the critical role of ubiquitination in the classification, tumor microenvironment and immunotherapy of LUAD. The construction of the UB_risk scoring system lays a research foundation for evaluating the ubiquitination status of individual LUAD patients and formulating precise treatment strategies from the ubiquitination level. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

48 pages, 986 KiB  
Article
A Systematic Mapping Study on Automatic Control Systems of Multi-Port dc/dc Power Converters
by Diego Vargas, Leonardo Ortega, Julio C. Caiza and Danny S. Guamán
Energies 2025, 18(13), 3445; https://doi.org/10.3390/en18133445 - 30 Jun 2025
Viewed by 326
Abstract
In the ongoing transition to renewable energy sources, power converters have become indispensable. Their prevalence is increasing, enabling efficient energy conversion, enhancing reliability and stability, and optimizing power extraction from renewable sources. Multi-port dc/dc power converters are widely used because they offer advantages [...] Read more.
In the ongoing transition to renewable energy sources, power converters have become indispensable. Their prevalence is increasing, enabling efficient energy conversion, enhancing reliability and stability, and optimizing power extraction from renewable sources. Multi-port dc/dc power converters are widely used because they offer advantages in managing multiple sources and loads. However, designing an automatic control system for these converters presents a challenge due to their complexity. Many configurations for multi-port dc/dc power converters have been proposed, featuring diverse combinations of controllers, modulation techniques, and topologies tailored to specific applications. The body of knowledge on these configurations has grown. Yet, papers have been published according to the authors’ areas of specialization, thus generating a scattered and unorganized body of knowledge and making it difficult to discern research trends and open challenges. Previous studies have attempted to organize knowledge about these configurations, but they have not established a systematic mapping process that follows a rigorous and objective methodology. This paper conducts a systematic mapping study on Automatic Control Systems of multi-port dc/dc power converters. Our study analyzed 122 papers from the 777 papers found around the topic to find and organize the body of knowledge on topology, controller, efficiency, number of elements, modulation technique, and practical applications. This systematic mapping provides a foundational framework for researchers, aiming to inspire further exploration and the development of innovative controller systems in multi-port dc/dc power converters. We found the application of machine learning techniques in dc/dc power converters constitutes an open challenge in these devices. Full article
Show Figures

Figure 1

23 pages, 6238 KiB  
Article
The Semi-Penalized Updated Properties Model and Its Algorithm to Impose the Volume Fraction
by Amin Alibakhshi and Luis Saucedo-Mora
Materials 2025, 18(13), 2972; https://doi.org/10.3390/ma18132972 - 23 Jun 2025
Viewed by 382
Abstract
Intricate structures with minimal weight and maximum stiffness are demanded in many practical engineering applications. Topology optimization is a method for designing these structures, and the rise of additive manufacturing technologies has opened the door to their production. In a recently published paper, [...] Read more.
Intricate structures with minimal weight and maximum stiffness are demanded in many practical engineering applications. Topology optimization is a method for designing these structures, and the rise of additive manufacturing technologies has opened the door to their production. In a recently published paper, a novel topology optimization algorithm, named the Updated Properties Model (UPM), was developed with the homogenization of strain level as an objective function and an updating Young modulus as the design variable. The UPM method optimizes mechanical structures without applying any constraints. However, including constraints such as volume, mass, and/or stress in topology optimization is prevalent. This paper uses the density-dependent Young modulus concept to incorporate the volume fraction in the UPM method. We address the critical problem of constraint-aware design without the complexity of constraint-handling formulations. We show the proposed methodology’s success and functionality by plotting the algorithm’s results in two- and three-dimensional benchmark structures. Key results present that adjusting algorithmic parameters can yield both binary (single-material) and graded-material solutions, offering flexibility for different applications. These findings suggest that the UPM can effectively replicate constraint-driven outcomes without explicitly enforcing constraints. The main novelty of this work lies in extending the constraint-free UPM framework to allow for controlled material distribution using a physically meaningful update rule. This extends the applicability of the UPM beyond previous efforts in the literature. We have also created a Julia package for our proposal. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

28 pages, 4445 KiB  
Article
Link Availability-Aware Routing Metric Design for Maritime Mobile Ad Hoc Network
by Shuaiheng Huai, Tianrui Liu, Yi Jiang, Yanpeng Dai, Feng Xue and Qing Hu
J. Mar. Sci. Eng. 2025, 13(6), 1184; https://doi.org/10.3390/jmse13061184 - 17 Jun 2025
Cited by 1 | Viewed by 665
Abstract
A maritime mobile ad hoc network (M-MANET) is an essential part of the maritime communication network and plays a key role in many maritime scenarios. However, the topology of M-MANET dynamically changes with the movement of vessels, which leads to unstable link states [...] Read more.
A maritime mobile ad hoc network (M-MANET) is an essential part of the maritime communication network and plays a key role in many maritime scenarios. However, the topology of M-MANET dynamically changes with the movement of vessels, which leads to unstable link states and poses the risk of data transmission interruption. In this paper, a mobility model for small unmanned surface vessels based on smooth Gaussian semi-Markovian and a trajectory prediction method for large vessels based on a bi-directional long short-term memory network are proposed to better simulate the nodes’ movement in the M-MANET. Then, a link available based routing metric is proposed for M-MANET scenarios, which incorporates factors of mobility model and vessel trajectory. Experiments demonstrate that compared with the benchmark methods, the proposed mobility model depicts the movement characteristics of vessels more accurately, the proposed trajectory prediction method achieves higher prediction accuracy and stability, the proposed routing metric scheme has a reduction of 14.59% in end-to-end delay, a 1.54% increase in packet delivery fraction, and a 4.43% increase in network throughput on average. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

20 pages, 9532 KiB  
Article
On Predicting Optimal Structural Topologies in the Presence of Random Loads
by Bogdan Bochenek and Katarzyna Tajs-Zielińska
Materials 2025, 18(12), 2819; https://doi.org/10.3390/ma18122819 - 16 Jun 2025
Viewed by 415
Abstract
Topology optimization has been present in modern engineering for several decades, becoming an important tool for solving design problems. Today, it is difficult to imagine progress in engineering design without the search for new approaches to the generation of optimal structural topologies and [...] Read more.
Topology optimization has been present in modern engineering for several decades, becoming an important tool for solving design problems. Today, it is difficult to imagine progress in engineering design without the search for new approaches to the generation of optimal structural topologies and the development of efficient topological optimization algorithms. The generation of topologies for structures under random loads is one of many research problems where topology optimization is present. It is important to predict the topologies of structures in the case of load uncertainty, since random load changes can significantly affect resulting topologies. This paper proposes an easy-to-implement numerical approach that allows the prediction of the resulting topologies of structures. The basic idea is to transform a random loads case into the deterministic problem of multiple loads. The concept of equivalent load scheme (ELS) is introduced. Instead of generating hundreds of loads applied at random, the selection of a few representative load cases allows the reduction of the numerical effort of the computations. The numerical implementation of proposed concepts is based on the cellular automaton mimicking colliding bodies, which has been recently introduced as an efficient structural topology generator. The examples of topology optimization under randomly applied loads, performed for both plane and spatial structures, have been selected to illustrate the proposed concepts. Confirmed by results of numerical simulations, the efficiency, versatility and ease of implementation of the proposed concept can make an original contribution to research in topological optimization under loads applied in a random manner. Full article
Show Figures

Figure 1

22 pages, 564 KiB  
Article
New Exploration of Phase Portrait Classification of Quadratic Polynomial Differential Systems Based on Invariant Theory
by Joan Carles Artés, Laurent Cairó and Jaume Llibre
AppliedMath 2025, 5(2), 68; https://doi.org/10.3390/appliedmath5020068 - 12 Jun 2025
Viewed by 700
Abstract
After linear differential systems in the plane, the easiest systems are quadratic polynomial differential systems in the plane. Due to their nonlinearity and their many applications, these systems have been studied by many authors. Such quadratic polynomial differential systems have been divided into [...] Read more.
After linear differential systems in the plane, the easiest systems are quadratic polynomial differential systems in the plane. Due to their nonlinearity and their many applications, these systems have been studied by many authors. Such quadratic polynomial differential systems have been divided into ten families. Here, for two of these families, we classify all topologically distinct phase portraits in the Poincaré disc. These two families have already been studied previously, but several mistakes made there are repaired here thanks to the use of a more powerful technique. This new technique uses the invariant theory developed by the Sibirskii School, applied to differential systems, which allows to determine all the algebraic bifurcations in a relatively easy way. Even though the goal of obtaining all the phase portraits of quadratic systems for each of the ten families is not achievable using only this method, the coordination of different approaches may help us reach this goal. Full article
Show Figures

Figure 1

34 pages, 568 KiB  
Review
The Connectivity of DVcube Networks: A Survey
by Ruo-Wei Hung
Mathematics 2025, 13(11), 1836; https://doi.org/10.3390/math13111836 - 30 May 2025
Viewed by 384
Abstract
Analyzing network connectivity is important for evaluating the robustness, efficiency, and overall performance of various architectural designs. By examining the intricate interactions among nodes and their connections, researchers can determine a network’s resilience to failures, its capacity to support efficient information flow, and [...] Read more.
Analyzing network connectivity is important for evaluating the robustness, efficiency, and overall performance of various architectural designs. By examining the intricate interactions among nodes and their connections, researchers can determine a network’s resilience to failures, its capacity to support efficient information flow, and its adaptability to dynamic conditions. These insights are critical across multiple domains—such as telecommunications, computer science, biology, and social networks—where optimizing connectivity can significantly enhance functionality and reliability. In the literature, there are many variations of connectivity to measure network resilience and fault tolerance. In this survey, we focus on connectivity, tightly super connectivity, and h-extra connectivity within DVcube networks—a compound architecture combining disk-ring and hypercube-like topologies. Additionally, we identify several open problems to encourage further exploration in future research. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

13 pages, 1451 KiB  
Article
Effects of 5-Methyl-2′-Deoxycytidine in G-Quadruplex Forming Aptamers d(G3C)4 and d[GCG2(CG3)3C]: Investigating the Key Role of the Loops
by Veronica Esposito, Daniela Benigno, Carla Aliberti, Camilla Esposito, Elisabetta Panza, Antonella Virgilio and Aldo Galeone
Biomolecules 2025, 15(6), 753; https://doi.org/10.3390/biom15060753 - 23 May 2025
Viewed by 771
Abstract
T40214 (STAT) and its recently investigated analogue STATB are G-quadruplex (G4) forming aptamers characterized by an unusually high percentage of C. The therapeutic potential of T40214 relies on its ability to inhibit the signalling pathway of STAT3, a protein frequently overexpressed in tumor [...] Read more.
T40214 (STAT) and its recently investigated analogue STATB are G-quadruplex (G4) forming aptamers characterized by an unusually high percentage of C. The therapeutic potential of T40214 relies on its ability to inhibit the signalling pathway of STAT3, a protein frequently overexpressed in tumor cells. STAT adopts a dimeric 5′-5′ end-stacked quadruplex structure, characterized by parallel strands, three G-tetrads and three propeller-shaped loops formed by a cytidine residue. STATB folds in a very similar structure, apart from an additional cytidine bulge loop. Many studies suggest that thermal stability and topology of G4 can be significantly affected by C methylation, thus resulting in altered interaction of G4-binding proteins with these structures. Considering this, two series of STAT and STATB analogues containing a single 5-methyl-2′-deoxycytidine (mC) residue instead of canonical C nucleotide in the loop have been prepared and investigated by a combination of spectroscopic and electrophoretic techniques. CD, NMR and PAGE data clearly indicate that all derivatives adopt dimeric G4 strictly similar to that assumed by parent aptamers, but with higher stabilities. Furthermore, the resistance to nucleases and the antiproliferative activity of these mC-containing derivatives against HCT116 (human colorectal carcinoma) and T24 (human bladder carcinoma) cell lines have been evaluated. In most of the cases, STAT and STATB derivatives inhibit cell proliferation to different extents, although to a lesser degree than the unmodified parent sequences. All the data highlight the key role of the loops and indicate mC as a useful tool to contribute favorably to the stability of G4-forming aptamers without alteration of their topology, required for the biological activity. Full article
Show Figures

Figure 1

26 pages, 2368 KiB  
Article
Connectivity Analysis in VANETS with Dynamic Ranges
by Kenneth Okello, Elijah Mwangi and Ahmed H. Abd El-Malek
Telecom 2025, 6(2), 33; https://doi.org/10.3390/telecom6020033 - 21 May 2025
Viewed by 420
Abstract
Vehicular Ad Hoc Networks (VANETs) serve as critical platforms for inter-vehicle communication within constrained ranges, facilitating information exchange. However, the inherent challenge of dynamic network topology poses persistent disruptions, hindering safety and emergency information exchange. An alternative generalised statistical model of the channel [...] Read more.
Vehicular Ad Hoc Networks (VANETs) serve as critical platforms for inter-vehicle communication within constrained ranges, facilitating information exchange. However, the inherent challenge of dynamic network topology poses persistent disruptions, hindering safety and emergency information exchange. An alternative generalised statistical model of the channel is proposed to capture the varying transmission range of the vehicle node. The generalised model framework uses simple wireless fading channel models (Weibull, Nakagami-m, Rayleigh, and lognormal) and the large vehicle obstructions to model the transmission range. This approach simplifies analysis of connection of vehicular nodes in environments were communication links are very unstable from obstructions from large vehicles and varying speeds. The connectivity probability is computed for two traffic models—free-flow and synchronized Gaussian unitary ensemble (GUE)—to simulate vehicle dynamics within a multi-lane road, enhancing the accuracy of VANET modeling. Results show that indeed the dynamic range distribution is impacted at shorter inter-vehicle distances and vehicle connectivity probability is lower with many obstructing vehicles. These findings offer valuable insights into the overall effects of parameters like path loss exponents and vehicle density on connectivity probability, thus providing knowledge on optimizing VANETs in diverse traffic scenarios. Full article
(This article belongs to the Special Issue Performance Criteria for Advanced Wireless Communications)
Show Figures

Figure 1

Back to TopTop