The Connectivity of DVcube Networks: A Survey
Abstract
1. Introduction
2. Terminology and Definitions
- Links between two nodes within the same ring: Each node in a ring is directly connected to two adjacent nodes in the same ring. Specifically, it is adjacent to the node labeled , where . This ensures that each node has exactly two connections to its immediate neighbors in the ring, maintaining the circular structure of the ring.
- Links between two nodes in different rings: Nodes in the outer ring establish links with nodes in the inner ring based on their second index. Specifically, for any node in the outer ring, there exists a direct link connecting it to node in the inner ring, where y is selected from the set . This rule ensures that each outer ring node is linked to d consecutive nodes in the inner ring, creating inter-ring connections that provide additional paths for communication and connectivity within the network.
3. The Known Results for the Connectivity of the DVcube
4. The Open Problems for the Connectivity of the DVcube
4.1. The Conjectures for the Diameter and Connectivity of Disc-Ring Networks
4.2. The Conjectures for the Connectivity of DVcube Networks
4.3. The Future Trends for the Connectivity of the DVcube
- Resolve related connectivity open in Table 4: There are many open problems for the related connectivity of the DVcube except the DQcube. In the future, the first important work is to solve these open issues to enhance the usability of the DVcube.
- Increased fault tolerance: Future DVcube designs aim to maximize node or edge connectivity, making the network more resilient to node or edge failures. Under this premise, we can first study the node or link fault tolerance of the DVcube. The hybrid fault model design of the DVcube network, which combines node and link failures, will make the DVcube more robust.
- Topology-aware algorithms: Routing, scheduling, and load-balancing algorithms will increasingly exploit the structural properties of the DVcube to enhance connectivity-aware performance. This work will be another future work in improving the practicality of the DVcube.
- Self-healing and reconfigurable architectures: In the future, we could modify the DVcube network to incorporate a self-reconfiguration mechanism, allowing the system to reorganize itself if a critical node is lost, thereby mitigating the impact of disconnections.
- Enhanced structural analysis and construction: Future research can analyze and optimize connectivity properties (e.g., edge and node connectivity) to improve the design-time and runtime reliability of the DVcube. Furthermore, we can use the hypercube variants with better diameter to combine with the disc-ring network to build a compound architecture. These invariants of the hypercube include shuffle cube, spined cube, and Z-cube (see Table 2). The efficiency of the composite network built may be better than the current DVcube. This is one of the possible future works.
5. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhuyan, L.N.; Agrawal, D.P. Generalized hypercube and hyperbus structures for a computer network. IEEE Trans. Comput. 1984, C-33, 323–333. [Google Scholar] [CrossRef]
- Choudum, S.A.; Sunitha, V. Augmented cubes. Networks 2002, 40, 71–84. [Google Scholar] [CrossRef]
- Cull, P.; Larson, S.M. The Möbius cubes. IEEE Trans. Comput. 1995, 44, 647–659. [Google Scholar] [CrossRef]
- Efe, K. The crossed cube architecture for parallel computation. IEEE Trans. Parallel Distrib. Syst. 1992, 3, 513–524. [Google Scholar] [CrossRef]
- Hilbers, P.A.J.; Koopman, M.R.J.; van de Snepscheut, J.L.A. The twisted cube. In PARLE: Parallel Architectures and Languages Europe. PARLE 1987; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany; Volume 258, pp. 152–159.
- Hsieh, S.Y.; Hsiao, T.T. The k-degree Caley graph and its topological properties. Networks 2006, 47, 26–36. [Google Scholar] [CrossRef]
- Lakshmivarahan, S.; Jwo, J.S.; Dhall, S.K. Symmetry in interconnection networks based on Caley graphs of permutation groups: A survey. Parallel Comput. 1993, 19, 361–407. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Yang, W. Reliability analysis of the augmented cubes in terms of the h-extra r-component edge-connectivity. J. Supercomput. 2024, 80, 11704–11718. [Google Scholar] [CrossRef]
- Leu, F.Y.; Tsai, K.L.; Susanto, H.; Gu, C.Y.; You, I. A fault tolerant mechanism for UE authentication in 5G networks. Mob. Netw. Appl. 2021, 26, 1650–1667. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, B.; Wang, Y.; Yu, J.; Fan, J. Enhancing fault tolerance of balanced hypercube networks by the edge partition method. Theoret. Comput. Sci. 2024, 986, 114340. [Google Scholar] [CrossRef]
- Parisutham, N. The impact of centrality measures in protein–protein interaction networks: Tools, databases, challenges and future directions. J. Comput. Biophys. Chem. 2024, 23, 232. [Google Scholar] [CrossRef]
- Duzen, Z.; Riveni, N.; Aktas, M.S. Analyzing the spread of misinformation on social networks: A process and software architecture for detection and analysis. Computers 2022, 12, 232. [Google Scholar] [CrossRef]
- Barry, P.; Crowley, P. Network connectivity. Modern Emb. Comput. 2012, 2012, 347–378. [Google Scholar]
- Petingi, L. Diameter-related properties of graphs and applications to network reliability theory. WSEAS Trans. Math. 2013, 12, 884–894. [Google Scholar]
- Wang, Z.; Mao, Y.; Hsieh, S.Y.; Klasing, R.; Xiao, Y. The g-extra connectivity of graph products. J. Comput. Syst. Sci. 2024, 145, 103552. [Google Scholar] [CrossRef]
- Opatrny, J.; Sotteau, D.; Srinivasan, N.; Thulasiraman, K. DCC linear congruential graphs: A new class of interconnection networks. IEEE Trans. Comput. 1996, 45, 156–164. [Google Scholar] [CrossRef]
- Hung, R.W. DVcube: A novel compound architecture of disc-ring graph and hypercube-like graph. Theoret. Comput. Sci. 2023, 498, 28–45. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. Topological properties of hypercubes. IEEE Trans. Comput. 1988, 37, 867–872. [Google Scholar] [CrossRef]
- Kung, T.L.; Chen, H.C.; Lin, C.H.; Hsu, L.H. Three types of two-disjoint-cycle-cover pancyclicity and their applications to cycle embedding in locally twisted cubes. Comput. J. 2021, 64, 27–37. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, D. The generalized 3-connectivity and 4-connectivity of crossed cube. Discuss. Math. Graph Theory 2024, 44, 791–811. [Google Scholar] [CrossRef]
- Zhao, X.; Xue, S.; Deng, Q.; Li, P. Structure connectivity and substructure connectivity of Möbius cubes. Comput. J. 2024, 67, 3207–3220. [Google Scholar] [CrossRef]
- El-Amawy, A.; Latifi, S. Properties and performance of folded hypercubes. IEEE Trans. Parallel Distrib. Syst. 1991, 2, 31–42. [Google Scholar] [CrossRef]
- Li, T.K.; Tan, J.J.M.; Hsu, L.H.; Sung, T.Y. The shuffle-cubes and their generalization. Inf. Process. Lett. 2001, 77, 35–51. [Google Scholar] [CrossRef]
- Ding, T.; Li, P.; Xu, M. The component (edge) connectivity of shuffle-cubes. Theoret. Comput. Sci. 2020, 835, 108–119. [Google Scholar] [CrossRef]
- Zhou, W.J.; Fan, J.X.; Jia, X.H.; Zhang, S.K. The spined cube: A new hypercube variant with smaller diameter. Inf. Process. Lett. 2011, 111, 561–567. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.; Qiu, K.; Lee, H. The divide-and-swap cube: A new hypercube variant with small network cost. J. Supercomput. 2019, 75, 3621–3639. [Google Scholar] [CrossRef]
- Ning, W. Connectivity and super connectivity of the divide-and-swap cube. Theoret. Comput. Sci. 2022, 842, 1–5. [Google Scholar] [CrossRef]
- Zhu, X. A hypercube variant with small diameter. J. Graph Theor. 2017, 85, 651–660. [Google Scholar] [CrossRef]
- Agrawal, D.P.; Chen, C.; Burke, J.R. Hybrid graph-based networks for multiprocessing. Telecommun. Syst. 1998, 10, 107–134. [Google Scholar] [CrossRef]
- Shen, H.Y.; Xu, C.Z.; Chen, G.H. Cycloid: A constant-degree and lookup-efficient P2P overlay network. Perform. Eval. 2006, 63, 195–216. [Google Scholar] [CrossRef]
- Shen, H.Y.; Xu, C.Z. Leveraging a compound graph based DHT for multi-attribute range queries with performance analysis. IEEE Trans. Comput. 2011, 61, 433–447. [Google Scholar] [CrossRef]
- Chen, C.; Agrawal, D.P.; Burke, J.R. dBCube: A new class of hierarchical multiprocessor interconnection networks with area efficient layout. IEEE Trans. Parallel Distrib. Syst. 1993, 4, 1332–1344. [Google Scholar] [CrossRef]
- Guo, D.; Chen, H.; He, Y.; Jin, H.; Chen, C.; Chen, H.; Shu, Z.; Huang, G. KCube: A novel architecture for interconnection networks. Inf. Process. Lett. 2010, 110, 821–825. [Google Scholar] [CrossRef]
- Yang, W.; Meng, J. Extra connectivity of hypercubes. Appl. Math. Lett. 2009, 22, 887–891. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, W.; Zhang, S. Component connectivity of hypercubes. Theoret. Comput. Sci. 2016, 640, 115–118. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, W.; Xu, L. Component edge connectivity of hypercubes. Int. J. Found. Comput. Sci. 2018, 29, 995–1001. [Google Scholar] [CrossRef]
- Mane, S.A. Structure connectivity of hypercube. Akce Int. J. Graphs Comb. 2018, 15, 49–52. [Google Scholar] [CrossRef]
- Chelvam, T.T.; Sivagami, M. Structure and substructure connectivity of circulant graphs and hypercubes. Arab J. Math. Sci. 2021, 27, 94–103. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, C.K.; Zhou, S.; Tian, S. Subgraph-based strong menger connectivity of hypercube and exchanged hypercube. Int. J. Found. Comput. Sci. 2021, 32, 305–330. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, S.; Zou, J.; Ye, C. Two kinds of conditional connectivity of hypercubes. AKCE Int. J. Graphs Comb. 2022, 19, 255–260. [Google Scholar] [CrossRef]
- Chen, Z.; Habib, M.; Lin, C.K. A novel edge connectivity based on edge partition for hypercube and folded hypercube. Appl. Math. Comput. 2024, 470, 128558. [Google Scholar] [CrossRef]
- Adams, H.; Virk, Ž. Lower bounds on the homology of vietoris–rips complexes of hypercube graphs. Bull. Malays. Math. Sci. Soc. 2024, 47, 72. [Google Scholar] [CrossRef]
- Axenovich, M. A class of graphs of zero Turán density in a hypercube. Comb. Probab. Comput. 2024, 33, 404–410. [Google Scholar] [CrossRef]
- Janzer, J.; Sudakov, B. On the Turán number of the hypercube. Forum. Math. Sigma 2024, 12, e38. [Google Scholar] [CrossRef]
- Tikhomirov, K. A remark on the Ramsey number of the hypercube. Eur. J. Comb. 2024, 120, 10394. [Google Scholar] [CrossRef]
- Tomon, T. Robust (rainbow) subdivisions and simplicial cycles. Adv. Combin. 2024, 1. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, S.; Cheng, E. The cyclic diagnosability Of hypercubes under the PMC model and the MM model. Comput. J. 2024, 67, 709–718. [Google Scholar] [CrossRef]
- Tapadia, S.A.; Shinde, N.V.; Waphare, B.N. Graph theoretic properties of good sets inhypercube. Int. J. Comput. Math. Comput. 2024, 9, 41–53. [Google Scholar]
- Jasim, A.N.; Najim, A.A. Edges deletion problem of hypercube graphs for some n. Discret. Math. Algorithms Appl. 2025, 17, 2450045. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, M.; Hsieh, S.Y.; Lee, C.W. A novel links fault tolerant analysis: g-good r-romponent edge-connectivity of interconnection networks with applications to hypercubes. IEEE Trans. Reliab. 2025, 74, 2487–2496. [Google Scholar] [CrossRef]
- Korže, D.; Vesel, A. Variety of mutual-visibility problems in hypercubes. Appl. Math. Comput. 2025, 491, 129218. [Google Scholar] [CrossRef]
- Wang, C. Spectral property of magnetic quantumwalk on hypercube. J. Math. Phys. 2025, 66, 013501. [Google Scholar] [CrossRef]
- Wang, D.; Lianchang, L. The twisted-cube connected networks. J. Comput. Sci. Technol. 1999, 14, 181–187. [Google Scholar] [CrossRef]
- Chang, C.P.; Wang, J.N.; Hsu, L.H. Topological properties of twisted cube. Inf. Sci. 1999, 113, 147–167. [Google Scholar] [CrossRef]
- Yang, M.C.; Li, T.K.; Tan, T.K.; Hsu, L.H. On embedding cycles into faulty twisted cubes. Inf. Sci. 2006, 176, 676–690. [Google Scholar] [CrossRef]
- Fan, J.; Jia, X.; Lin, X. Embedding of cycles in twisted cubes with edge-pancyclic. Algorithmica 2008, 51, 264–282. [Google Scholar] [CrossRef]
- Xu, M. Edge-pancyclicity and Hamiltonian connectivity of twisted cubes. Acta Math. Sin. Engl. Ser. 2010, 26, 1315–1322. [Google Scholar] [CrossRef]
- Fan, J.; Li, K.; Zhang, S. One-to-one communication in twisted cubes under restrictedconnectivity. Front. Comput. Sci. China 2010, 4, 489–499. [Google Scholar] [CrossRef]
- Yang, M.C. Constructing edge-disjoint spanning trees in twisted cubes. Inf. Sci. 2010, 180, 4075–4083. [Google Scholar] [CrossRef]
- Lai, P.L. Geodesic pancyclicity of twisted cubes. Inf. Sci. 2011, 181, 5321–5332. [Google Scholar] [CrossRef]
- Lai, P.L.; Hu, K.L.; Hsu, H.C. Two systematic methods for generating paths in twisted cube networks. Appl. Mech. Mater. 2013, 411-414, 2047–2050. [Google Scholar] [CrossRef]
- Lai, P.L. Paths and cycles identifying vertices in twisted cubes. Appl. Math. Comput. 2015, 259, 620–627. [Google Scholar] [CrossRef]
- Chang, J.M.; Yang, T.J.; Yang, J.S. A parallel algorithm for constructing independent spanning trees in twisted cubess. Discret. Appl. Math. 2017, 219, 74–82. [Google Scholar] [CrossRef]
- Guo, L. Reliability analysis of twisted cubes. Theoret. Comput. Sci. 2018, 707, 96–101. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, X.; Zhang, Q.; Yang, Y. Fault-tolerant path-embedding of twisted hypercube-like networks (THLNs). Mathematics 2019, 7, 1066. [Google Scholar] [CrossRef]
- Peter, C.; Jeannette, J. The zero forcing number of twisted hypercubes. arXiv 2025, arXiv:2505.01872. [Google Scholar]
- Yang, X.; Evans, D.J.; Megson, G.M. The locally twisted cubes. Int. J. Comput. Math. 2005, 82, 401–413. [Google Scholar] [CrossRef]
- Wang, S.; Ren, Y. The h-extra connectivity and diagnosability of locally twisted cubes. IEEE Access 2019, 7, 102113–102118. [Google Scholar] [CrossRef]
- Shalini, A.J.; Abraham, J.; Arockiaraj, M. A linear time algorithm for embedding locally twisted cube into grid network to optimize the layout. Discret. Appl. Math. 2020, 286, 10–18. [Google Scholar] [CrossRef]
- Chang, X.; Ma, J.; Yang, D.W. Symmetric property and reliability of locally twisted cubes. Discret. Appl. Math. 2021, 288, 257–269. [Google Scholar] [CrossRef]
- Kung, T.L.; Lin, C.K.; Hung, C.N. On the neighborhood-connectivity of locally twisted cube networks. In Innovative Mobile and Internet Services in Ubiquitous Computing: Proceedings of the 15th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2021), Asan, Republic of Korea, 1–3 July 2021; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2022; Volume 279, pp. 257–269. [Google Scholar]
- Kung, T.L.; Teng, Y.H.; Lin, C.K. Super fault-tolerance assessment of locally twisted cubes based on the structure connectivity. Theor. Comput. Sci. 2021, 889, 25–40. [Google Scholar] [CrossRef]
- Pan, Z.; Cheng, B.; Fang, J.; Zhang, H. A parallel algorithm to construct node-independent spanning trees on the line graph of locally twisted cube. In Proceedings of the 2021 12th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Xi’an, China, 10–12 December 2021; pp. 9–13. [Google Scholar]
- Wang, J. The generalized 3-connectivity of two kinds of regular networks. Theoret. Comput. Sci. 2021, 893, 183–190. [Google Scholar] [CrossRef]
- Hua, X.; Zhao, Q. The h-faulty-block connectivity of n-dimensional locally twisted cube. J. Interconnect. Netw. 2025, 2024, 2450024. [Google Scholar] [CrossRef]
- Efe, K. A variation on the hypercube with lower diameter. IEEE Trans. Comput. 1991, 40, 1312–1316. [Google Scholar] [CrossRef]
- Kulasinghe, P. Connectivity of the crossed cube. Inf. Process. Lett. 1997, 61, 221–226. [Google Scholar] [CrossRef]
- Efe, K.; Blackwell, P.K.; Slough, W.; Shiau, T. Topological properties of the crossed cube architecture. Parallel Comput. 1994, 20, 1763–1775. [Google Scholar] [CrossRef]
- Chang, C.P.; Sung, T.Y.; Hsu, L.H. Edge congestion and topological properties of crossed cubes. IEEE Trans. Parallel Distrib. Syst. 2000, 11, 64–80. [Google Scholar] [CrossRef]
- Fan, J.; Lin, X.; Jia, X. Optimal path embedding in crossed cubes. IEEE Trans. Parallel Distrib. Syst. 2005, 16, 1190–1200. [Google Scholar] [CrossRef]
- Fan, J.; Lin, X.; Jia, X. Node-pancyclicity and edge-pancyclicity of crossed cubes. Inf. Process. Lett. 2005, 93, 133–138. [Google Scholar] [CrossRef]
- Fan, J.; Jia, X. Embedding meshes into crossed cubes. Inf. Sci. 2007, 177, 3151–3160. [Google Scholar] [CrossRef]
- Wang, D. On embedding Hamiltonian cycles in crossed cubes. IEEE Trans. Parallel Distrib. Syst. 2008, 19, 334–346. [Google Scholar] [CrossRef]
- Chen, H.C.; Kung, T.L.; Hsu, L.H. Embedding a Hamiltonian cycle in the crossed cube with two required vertices in the fixed positions. Appl. Math. Comput. 2011, 217, 10058–10065. [Google Scholar] [CrossRef]
- Wang, D. Hamiltonian embedding in crossed cubes with failed links. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 2117–2124. [Google Scholar] [CrossRef]
- Dong, Q.; Yang, X.; Zhao, J.; Tang, Y.Y. Embedding a family of disjoint 3D meshes into a crossed cube. Inf. Sci. 2008, 178, 2396–2405. [Google Scholar] [CrossRef]
- Chang, C.P.; Wu, C.C. Conditional fault diameter of crossed cubes. J. Parallel Distrib. Comput. 2009, 69, 91–99. [Google Scholar] [CrossRef]
- Wang, D. Constructing optimal subnetworks for the crossed cube network. Networks 2012, 60, 86–93. [Google Scholar] [CrossRef]
- Dong, Q.; Zhou, J.; Fu, Y.; Yang, X. Embedding a mesh of trees in the crossed cube. Inf. Process. Lett. 2012, 112, 599–603. [Google Scholar] [CrossRef]
- Chen, H.C.; Kung, T.L.; Zou, Y.H.; Mao, H.W. The fault-tolerant Hamiltonian problems of crossed cubes with path faults. IEICE T. Inf. Syst. 2015, E98D, 2116–2122. [Google Scholar] [CrossRef]
- Hung, C.N.; Lin, C.K.; Hsu, L.H.; Cheng, E.; Lipták, L. Strong fault-Hamiltonicity for the crossed cube and its extensions. Parallel Process. Lett. 2017, 27, 1750005. [Google Scholar] [CrossRef]
- Guo, L. Component connectivity of crossed cubes. WSEAS Trans. Math. 2017, 16, 290–294. [Google Scholar]
- Guo, L. Reliability measures of crossed cube networks. In Proceedings of the 2018 International Conference on Information Networking (ICOIN’18), Chiang Mai, Thailand, 10–12 January 2018; pp. 804–806. [Google Scholar]
- Kung, T.L.; Chen, H.C. Optimizing Hamiltonian panconnectednessfor the crossed cube architecture. Appl. Math. Comput. 2018, 331, 287–296. [Google Scholar]
- Cheng, B.; Fan, J.; Lyu, Q.; Zhou, J.; Liu, Z. Constructing independent spanning trees with height n on the n-dimensional crossed cube. Future Gener. Comp. Sy. 2018, 87, 404–415. [Google Scholar] [CrossRef]
- Pai, K.J.; Chang, R.S.; Wu, R.Y.; Chang, J.M. Three completely independent spanning trees of crossed cubes with application to secure-protection routing. Inf. Sci. 2020, 541, 516–530. [Google Scholar] [CrossRef]
- Pan, Z.; Cheng, D. Structure connectivity and substructure connectivity of the crossed cube. Theoret. Comput. Sci. 2020, 814–825, 67–80. [Google Scholar] [CrossRef]
- Zou, J.; Ye, C.; Wu, M.; Zhang, S. Fractional matching preclusion for crossed cubes. Util. Math. 2020, 116, 125–137. [Google Scholar]
- Kung, T.L. Exact assessment of the super Pk-connectivity for the crossed cube interconnection network. J. Supercomput. 2022, 78, 15857–15881. [Google Scholar] [CrossRef]
- Pai, K.J.; Wu, R.Y.; Peng, S.L.; Chang, J.M. Three edge-disjoint Hamiltonian cycles in crossed cubes with applications to fault-tolerant data broadcasting. J. Supercomput. 2023, 79, 4126–4145. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, J.; Qi, D.; Lin, W. The twisted crossed cube. Concurr. Comp.-Pract. E. 2015, 28, 1507–1526. [Google Scholar] [CrossRef]
- Adhikari, N.; Tripathy, C.R. The folded crossed cube: A new interconnection network for parallel systems. Int. J. Comput. Appl. 2010, 4, 43–50. [Google Scholar] [CrossRef]
- Cai, X.; Vumar, E. The super connectivity of folded crossed cubes. Inf. Process. Lett. 2019, 142, 52–56. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, S.; Mamut, A. The g-extra connectivity of folded crossedcubes. J. Parallel Distrib. Comput. 2022, 166, 139–146. [Google Scholar] [CrossRef]
- Zhang, Q.; Lipták, L.; Cheng, E. Component connectivity of augmented cubes. Theoret. Comput. Sci. 2023, 952, 113784. [Google Scholar] [CrossRef]
- Ma, M.; Liu, G.; Xu, J.M. The super connectivity of augmented cubes. Inf. Process. Lett. 2008, 106, 59–63. [Google Scholar] [CrossRef]
- Ma, M.; Tan, X.; Xu, J.M.; Liu, G. A note on “The super connectivity of augmented cubes”. Inf. Process. Lett. 2009, 109, 592–593. [Google Scholar] [CrossRef]
- Cheng, E.; Lipták, L.; Qiu, K.; Shen, Z.; Vangipuram, A. On the g-extra connectivity of augmented cubes. Theoret. Comput. Sci. 2023, 970, 114059. [Google Scholar] [CrossRef]
- Ba, L.; Wu, H.; Zhang, H. Star-structure connectivity of folded hypercubes and augmented cubes. J. Supercomput. 2023, 79, 3257–3276, Erratum in J. Supercomput. 2023, 79, 5872. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, S. An O(log2N) algorithm for reliability assessment of augmented cubes based on h-extra edge-connectivity. J. Supercomput. 2023, 78, 6739–6751. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, L.; Yang, W. Reliability analysis of the augmented cubesin terms of the extra edge-connectivity andthe component edge-connectivity. J. Parallel Distrib. Comput. 2021, 147, 121–131. [Google Scholar] [CrossRef]
- Kan, S.; Fan, J.; Cheng, B.; Wang, X.; Zhou, J. Structure fault-tolerance of the augmented cube. J. Internet Technol. 2021, 21, 1733–1746. [Google Scholar]
- Shinde, A.; Borse, Y.M. On edge-fault tolerance in augmented cubes. J. Interconnect. Netw. 2020, 20, 2050013. [Google Scholar] [CrossRef]
- Mane, S.A.; Kandekar, S.A. Pendant 3-tree-connectivity of augmented cubes. J. Supercomput. 2024, 80, 19395–19413. [Google Scholar] [CrossRef]
- Liang, J.; Chen, F.; Zhang, Q.; Xie, M. T/t-diagnosability and t/k-diagnosability for augmented cube networks. IEEE Access 2018, 6, 35029–35041. [Google Scholar] [CrossRef]
- Lin, C.K.; Tung-Yang, H.; Tan, J.J.M.; Hsu, L.H. Super spanning connectivity of augmented cubes. Ars Comb. 2012, 104, 161–177. [Google Scholar]
- Hsu, H.C.; Chiang, L.C.; Tan, J.J.M.; Hsu, L.H. Fault hamiltonicity of augmented cubes. Parallel Comput. 2005, 32, 131–145. [Google Scholar] [CrossRef]
- Cheng, B.; Fan, J.; Lyu, Q.; Lin, C.K.; Li, X.; Chen, G. Constructing node-independent spanning trees in augmented cubes. Fundam. Informaticae 2020, 176, 103–128. [Google Scholar] [CrossRef]
- Cheng, B.; Fan, J.; Lyu, Q.; Lin, C.K.; Wang, Y.; Wang, G. An improved algorithm to construct edge-independent spanning trees in augmented cubes. Discret. Appl. Math. 2020, 277, 103–128. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, H.; Fan, J. Edge-independent spanning trees in augmented cubes. Theoret. Comput. Sci. 2017, 670, 23–32. [Google Scholar] [CrossRef]
- Hung, R.W. Constructing two edge-disjoint hamiltonian cycles and two-equal path cover in augmented cubes. IAENG Int. J. Comput. Sci. 2012, 39, 42–49. [Google Scholar]
- Wang, W.W.; Ma, M.J.; Xu, J.M. Fault-tolerant pancyclicity of augmented cubes. Inf. Process. Lett. 2007, 103, 52–56. [Google Scholar] [CrossRef]
- Kandekar, S.A.; Borse, Y.M.; Waphare, B.N. Decomposition of augmented cubes into regular connected pancyclic subgraphs. J. Parallel Distrib. Comput. 2020, 141, 55–70. [Google Scholar] [CrossRef]
- Cheng, D. Two-disjoint-cycle-cover pancyclicity of augmented cubes. Discrete Appl. Math. 2025, 371, 240–246. [Google Scholar] [CrossRef]
- Qiao, H.; Meng, J. Two-disjoint-cycle-cover vertex pancyclicity of augmented cubes. Theoret. Comput. Sci. 2023, 958, 113860. [Google Scholar] [CrossRef]
- Zhou, S.J.; Xu, M. Two-disjoint-cycle-cover pancyclicity of augmented cbes. J. Oper. Res. Soc. China 2023, 1–19. [Google Scholar] [CrossRef]
- Wang, S. The diagnosability of Möbius cubes for the g-extra condition. Theoret. Comput. Sci. 2022, 908, 76–88. [Google Scholar] [CrossRef]
- Fan, J. Diagnosability of the Möbius cubes. IEEE Trans. Parallel Distrib. Syst. 1998, 9, 923–928. [Google Scholar]
- Fan, J. Hamilton-connectivity and cycle-embedding of the Möbius cubes. Inf. Process. Lett. 2002, 82, 113–117. [Google Scholar] [CrossRef]
- Tsai, C.H. Embedding of meshes in Möbius cubes. Theoret. Comput. Sci. 2008, 401, 181–190. [Google Scholar] [CrossRef]
- Cheng, B.; Fan, J.; Jia, X.; Zhang, S.; Chen, B. Constructive algorithm of independent spanning trees on möbius cubes. Comput. J. 2013, 56, 1347–1362. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, J.; Jia, X. Complete binary trees embeddings in Möbius cubes. J. Comput. Syst. Sci. 2016, 82, 260–281. [Google Scholar] [CrossRef]
- Kocik, D.; Hirai, Y.; Kaneko, K. Node-to-set disjoint paths problem in a möbius cube. IEICE Trans. Inf. Syst. 2016, E99D, 708–713. [Google Scholar] [CrossRef]
- Kocik, D.; Kaneko, K. Node-to-node disjoint paths problem in mobius cubes. IEICE Trans. Inf. Syst. 2017, E100D, 1837–1843. [Google Scholar] [CrossRef]
- Ichida, H.; Kaneko, K. Set-to-set disjoint paths problem in Möbius cubes. IEEE Access 2022, 10, 83075–83084. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Xu, X.; Zhang, P. (n-2)-fault-tolerant edge-pancyclicity of Möbius cubes MQn. Ars Comb. 2024, 161, 29–47. [Google Scholar] [CrossRef]
- Xu, J.M.; Xu, M.; Zhu, Q. The super connectivity of shuffle-cubes. Inf. Process. Lett. 2005, 96, 123–127. [Google Scholar] [CrossRef]
- Xu, M.; Hu, X.; Shang, S. The conditional diagnosability of shuffle-cubes. J. Syst. Sci. Complex. 2010, 23, 81–90. [Google Scholar] [CrossRef]
- Lin, L.; Xu, L.; Zhou, S. Conditional diagnosability and strong diagnosability of shuffle-cubes under the comparison model. Int. J. Comput. Math. 2015, 92, 230–249. [Google Scholar] [CrossRef]
- Li, J.; Lin, L.; Huang, Y.; Yu, H.; Chen, R. The (t, k)-diagnosability of shuffle-cubes under PMC model. Int. J. Comput. Math. Comput. Syst. Theory 2019, 2, 111–126. [Google Scholar] [CrossRef]
- Lu, H.; Deng, K.; Yang, X. Symmetric properties and two variants of shuffle-cubes. IEEE Trans. Parallel Distrib. Syst. 2025, 36, 1282–1293. [Google Scholar] [CrossRef]
- Cheng, G.L.; Zhu, Q.; Wang, X.K. On the reliability and fault tolerance of spined cubes. In Proceedings of the 2012 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR 2012), Xi’an, China, 15–17 July 2012; pp. 313–316. [Google Scholar]
- Arockiaraj, M.; Shalini, A.J.; Nancy Delaila, J. Embedding algorithm of spined cube into grid structure and its wirelength computation. Theoret. Comput. Sci. 2022, 905, 69–86. [Google Scholar] [CrossRef]
- Yang, D.W.; Xu, Z.; Feng, Y.Q.; Lee, J. Symmetric property and edge-disjoint Hamiltonian cycles of the spined cube. Appl. Math. Comput. 2023, 452, 128075. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, S.; Liu, J.; Liu, X. Structure and substructure connectivity of divide-and-swap cube. Theoret. Comput. Sci. 2021, 880, 20–36. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, S.; Liu, X.; Yu, Z. Reliability of divide-and-swap cube based on r-component connectivity and diagnosability. J. Interconnect. Netw. 2022, 22, 2142021. [Google Scholar] [CrossRef]
- Zhao, S.L.; Chang, J.M. Reliability assessment of the divide-and-swap cube in terms of generalized connectivity. Theoret. Comput. Sci. 2023, 943, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; You, L.; Han, Y.; Xiao, R. One-to-one node disjoint paths on divide-and-swap cubes. Int. J. Comput. Math. Comput. Syst. Theory 2024, 9, 183–201. [Google Scholar] [CrossRef]
- Zhou, Q.; Fan, J.; Wang, Y.; Cheng, B.; Wang, G. High fault-tolerant performance of the divide-and-swap cube network. Theoret. Comput. Sci. 2024, 1019, 114834. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Y.; Jiang, J.; You, L. Node-to-set disjoint paths problem in divide-and-swap cube. J. Supercomput. 2025, 81, 393. [Google Scholar] [CrossRef]
- Liu, H.; Hu, X.; Gao, S. The g-good neighbor conditional diagnosability of twisted hypercubes under the PMC and MM* model. Appl. Math. Comput. 2018, 332, 484–492. [Google Scholar] [CrossRef]
- Qi, H.; Zhu, X. The fault-diameter and wide-diameter of twisted hypercubes. Discrete Appl. Math. 2018, 235, 154–160. [Google Scholar] [CrossRef]
- Dudek, A.; Pérez-Giménez, X.; Prałat, P.; Qi, H.; West, D.; Zhu, X. Randomly twisted hypercubes. Eur. J. Comb. 2018, 70, 364–373. [Google Scholar] [CrossRef]
- Li, D.; Hu, X.; Liu, H. Structure connectivity and substructure connectivity of twisted hypercubes. Theoret. Comput. Sci. 2019, 796, 169–179. [Google Scholar] [CrossRef]
- Zhang, S.; Li, D.; Liu, H. On g-extra conditional diagnosability of twisted hypercubes under MM* model. Int. J. Found. Comput. Sci. 2020, 31, 445–459. [Google Scholar] [CrossRef]
- Loh, P.K.K.; Hsu, W.J.; Pan, Y. The exchanged hypercube. IEEE Trans. Parallel Distrib. Syst. 2005, 16, 866–874. [Google Scholar] [CrossRef]
- Ma, M.J. The connectivity of exchanged hypercubes. Discrete Math. Algorithms Appl. 2010, 2, 213–220. [Google Scholar] [CrossRef]
- Ma, M.J.; Zhu, L.Y. The super connectivity of exchanged hypercubes. Inf. Process. Lett. 2011, 111, 360–364. [Google Scholar] [CrossRef]
- Li, K.Q.; Mu, Y.P.; Li, K.Q.; Min, G.Y. Exchanged crossed cube: A novel interconnection network for parallel computation. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 2211–2219. [Google Scholar] [CrossRef]
- Ning, W.; Feng, X.; Wang, L. The connectivity of exchanged crossed cube. Inf. Process. Lett. 2015, 115, 394–396. [Google Scholar] [CrossRef]
- Ning, W. The super connectivity of exchanged crossed cube. Inf. Process. Lett. 2016, 116, 80–84. [Google Scholar] [CrossRef]
- Ning, W. The h-connectivity of exchanged crossed cube. Theoret. Comput. Sci. 2017, 696, 65–68, Erratum in Theoret. Comput. Sci. 2018, 705, 118–121. [Google Scholar] [CrossRef]
- Niu, B.; Zhou, S.; Tian, T.; Zhang, Q. The wide diameter and fault diameter of exchanged crossed cube. Int. J. Found. Comput. Sci. 2024, 35, 435–451. [Google Scholar] [CrossRef]
- Ning, W.; Guo, L. The generalized 3-connectivity of exchanged crossed cube. Int. J. Found. Comput. Sci. 2024, 35, 975–985. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Sun, Q.; Guo, C.; Zhao, H.; Wu, X.; Wang, A. The g-good-neighbor conditional diagnosability of exchanged crossed cube under the MM* model. Symmetry 2024, 14, 2376. [Google Scholar] [CrossRef]
- Ning, W.; Ki, H. The generalized measure of edge fault tolerance in exchanged crossed cube. Theoret. Comput. Sci. 2021, 861, 80–84. [Google Scholar] [CrossRef]
- Liu, X.; Fan, W.; He, J.; Han, J.; Chi, C.H. Reliability assessment of multiprocessor system based on exchanged crossed cube networks. Concurr. Comput. Pract. Exp. 2024, 37, e8325. [Google Scholar] [CrossRef]
- Qin, X.W.; Hao, R.X. Hamiltonian properties of some compound networks. Discret. Appl. Math. 2018, 239, 174–182. [Google Scholar] [CrossRef]
- Lv, M.; Zhou, S.; Liu, J.; Sun, X.; Lian, G. Fault diagnosability of DQcube under the PMC model. Discret. Appl. Math. 2019, 259, 180–192. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, J. Faulty diagnosability and g-extra connectivity of DQcube. Int. J. Parallel Emergent Distrib. Syst. 2021, 36, 189–198. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, J. Reliability of DQcube based on g-extra conditional fault. Comput. J. 2021, 64, 1393–1400. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, S.; Liu, J.; Zhou, Q.; Yu, Z. Reliability evaluation of DQcube based on g-good neighbor and g-component fault pattern. Discret. Appl. Math. 2021, 305, 179–190. [Google Scholar] [CrossRef]
- Liu, W. Reliability of DQcube networks under the condition of r-component. J. Interconnect. Netw. 2023, 23, 2251048. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, S.; Liu, Z.; Liu, Z. Cluster connectivity and super cluster connectivity of DQcube. Comput. J. 2023, 66, 826–841. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, S.; Zhang, Q.; Tian, T. Fault tolerance of composite graph based on disc-ring and folded hypercube. Theoret. Comput. Sci. 2023, 958, 113856. [Google Scholar]
- Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Macmillan: London, UK; Elsevier: New York, NY, USA, 1976. [Google Scholar]
- Dekker, A.H.; Colbert, B. The symmetry ratio of a network. In Proceedings of the Australasian Symposium on Theory of Computing (CATS’05), Newcastle, NSW, Australia, 1 January 2005; pp. 13–20. [Google Scholar]
- Bae, M.M.; Bose, B. Edge disjoint Hamiltonian cycles in k-ary n-cubes and hypercubes. IEEE Trans. Comput. 2003, 52, 1271–1284. [Google Scholar] [CrossRef]
- Yang, M.C. Edge-fault-tolerant node-pancyclicity of twisted cubes. Inf. Process. Lett. 2009, 109, 1206–1210. [Google Scholar] [CrossRef]
- Huang, W.T.; Tan, J.M.; Hung, C.N.; Hsu, L.H. Fault-tolerant Hamiltonicity of twisted cubes. J. Parallel Distrib. Comput. 2002, 62, 591–604. [Google Scholar] [CrossRef]
- Yang, X.; Megson, G.M.; Evans, D.J. Locally twisted cubes are 4-pancyclic. Appl. Math. Lett. 2004, 17, 919–925. [Google Scholar] [CrossRef]
- Wang, S.; Ma, X. The g-extra connectivity and diagnosability of crossed cubes. Appl. Math. Comput. 2018, 336, 60–66. [Google Scholar] [CrossRef]
Hypercube-Like Network | Diameter | (Node) Connectivity () |
---|---|---|
hypercube | n [18] | n [18] |
twisted cube | [5] | n [53,54] |
locally twisted cube | [67] | n [68] |
crossed cube | [4,76] | n [77] |
twisted crossed cube | [101] | n [101] |
folded crossed cube | [102] | [102] |
augmented cube | [2] | [2] |
Möbius cube | [3] | n [3] |
shuffle cube | [23] | n [23] |
spined cube | [25] | n [25] |
divide–swap cube | [26] | [27] |
Z-cube | [28] | n [28] |
Symbol | Definition | Details |
---|---|---|
the diameter of network G | Equation (1) | |
the connectivity of G | the minimum number of nodes in G that must be removed to disconnect G | |
the edge connectivity of G | the minimum number of edges in G that must be removed to disconnect G | |
the h-extra connectivity of G | the minimum number of nodes in G whose removal results in G being disconnected, and each remaining connected component has at least nodes | |
the tightly super connectivity of G | the minimum number of nodes in G whose removal results in exactly two components, one of which is an isolated node | |
a disc-ring network | Definition 1 | |
a compound network constructed from and n-dimensional hypercube-like network | Definition 1 | |
n-dimensional hypercube | Definition 2 | |
DQcube | a compound network built from and , where Equation (2) satisfies and Figure 2 depicts constructed from and | |
n-dimensional twisted cube | Definition 4 | |
DTcube | a compound network constructed from and , where Equation (2) satisfies, n is odd, and Figure 6 depicts a part of constructed from and | |
n-dimensional locally twisted cube | Definition 5 | |
DLcube | a compound network constructed from and , where Equation (2) satisfies and Figure 8 depicts a part of constructed from and | |
n-dimensional crossed cube | Definition 6 | |
DCcube | a compound network constructed from and , where Equation (2) satisfies and Figure 10 depicts a part of constructed from and |
Network G | Order (# of Nodes) | Size (# of Links) | Node Degree | Diameter | Node Connectivity () | h-Extra Connectivity () |
---|---|---|---|---|---|---|
disc-ring | [17] | ? | ? | |||
hypercube | n | n [18] | n [18] | [34] | ||
twisted cube | n | [5] | n [53,54] | ? | ||
locally twisted cube | n | [67] | n [68] | [68] | ||
crossed cube | n | [4,76] | n [77] | [182] | ||
DQcube | [17] | [169] | [170] | |||
DTcube | [17] | ? | ? | |||
DLcube | [17] | ? | ? | |||
DCcube | [17] | ? | ? |
Network G | Diameter | Node Connectivity | Edge Connectivity | Tightly Super Connectivity | h-Extra Connectivity |
---|---|---|---|---|---|
disc-ring | or (??) | (??) | (??) | (??) | (??) |
hypercube | n [18] | n | n | n | [34] |
twisted cube | [5] | n [53,54] | n [53] | n | ?? |
locally twisted cube | [67] | n [68] | n | n | [68] |
crossed cube | [4,76] | n [77] | n | n | [182] |
DQcube | (??) | [169] | (??) | [169] | [170] |
DTcube | (??) | (??) | (??) | (??) | (??) |
DLcube | (??) | (??) | (??) | (??) | (??) |
DCcube | (??) | (??) | (??) | (??) | (??) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, R.-W. The Connectivity of DVcube Networks: A Survey. Mathematics 2025, 13, 1836. https://doi.org/10.3390/math13111836
Hung R-W. The Connectivity of DVcube Networks: A Survey. Mathematics. 2025; 13(11):1836. https://doi.org/10.3390/math13111836
Chicago/Turabian StyleHung, Ruo-Wei. 2025. "The Connectivity of DVcube Networks: A Survey" Mathematics 13, no. 11: 1836. https://doi.org/10.3390/math13111836
APA StyleHung, R.-W. (2025). The Connectivity of DVcube Networks: A Survey. Mathematics, 13(11), 1836. https://doi.org/10.3390/math13111836