Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (562)

Search Parameters:
Keywords = maizes leaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

35 pages, 807 KiB  
Article
A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola
by Eduardo E. Eliseu, Tânia M. Lima and Pedro D. Gaspar
Sustainability 2025, 17(15), 7019; https://doi.org/10.3390/su17157019 - 1 Aug 2025
Viewed by 227
Abstract
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature [...] Read more.
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature insufficiently addresses this issue, leaving a significant gap in the evaluation of key performance indicators (KPIs) that can guide good agricultural practices (GAPs) adapted to the context of southern Angola, with the goal of promoting a more resilient and sustainable agricultural sector. So, the objective of this study is to identify and assess KPIs capable of supporting the selection of GAPs suitable for maize, potato, and tomato cultivation in the context of southern Angolan agriculture. A systematic literature review (SLR) was conducted, screening 2720 articles and selecting 14 studies that met defined inclusion criteria. Five KPIs were identified as the most relevant: gross margin, net profit, water use efficiency, nitrogen use efficiency, and machine energy. These indicators were analyzed and standardized to evaluate their contribution to sustainability across different GAPs. Results show that organic fertilizers are the most sustainable option for maize, drip irrigation for potatoes, and crop rotation for tomatoes in southern Angola because of their efficiency in low-resource environments. A clear, simple, and effective representation of the KPIs was developed to be useful in communicating to farmers and policy makers on the selection of the best GAPs in the cultivation of different crops. The study proposes a validated KPI-based methodology for assessing sustainable agricultural practices in developing regions such as southern Angola, aiming to lead to greater self-sufficiency and economic stability in this sector. Full article
Show Figures

Figure 1

14 pages, 31608 KiB  
Article
Primary Metabolic Variations in Maize Plants Affected by Different Levels of Nitrogen Supply
by The Ngoc Phuong Nguyen, Rose Nimoh Serwaa and Jwakyung Sung
Metabolites 2025, 15(8), 519; https://doi.org/10.3390/metabo15080519 - 1 Aug 2025
Viewed by 206
Abstract
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient [...] Read more.
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient levels on maize seedling growth and primary metabolite profiles. Methods: Seedlings were treated with N-modified nutrient solution, which contained 0% to 120% of the standard nitrogen level (8.5 mM). Results: Nitrogen starvation (N0) significantly reduced plant height (by 11–14%), shoot fresh weight (over 30%) compared to the optimal N supply (N100). Total leaf nitrogen content under N0–N20 was less than half of that in N100, whereas moderate N deficiency resulted in moderate reductions in growth and nitrogen content. Metabolite analysis revealed that N deficiency induced the accumulation of soluble sugars and organic acids (up to threefold), while sufficient N promoted the synthesis of amino acids related to nitrogen assimilation and protein biosynthesis. Statistical analyses (PCA and ANOVA) showed that both genotypes (MB and TYC) and tissue type (upper vs. lower leaves) influenced the metabolic response to nitrogen, with MB displaying more consistent shifts and TYC exhibiting greater variability under moderate stress. Conclusions: These findings highlight the sensitivity of maize seedlings to early nitrogen deficiency, with severity influenced by nitrogen level, tissue-specific position, and genotype; thus underscore the close coordination between physiological growth and primary metabolic pathways in response to nitrogen availability. These findings expand current knowledge of nitrogen response mechanisms and offer practical insights for improving nitrogen use efficiency in maize cultivation. Full article
Show Figures

Figure 1

17 pages, 3958 KiB  
Article
ZmNLR-7-Mediated Synergistic Regulation of ROS, Hormonal Signaling, and Defense Gene Networks Drives Maize Immunity to Southern Corn Leaf Blight
by Bo Su, Xiaolan Yang, Rui Zhang, Shijie Dong, Ying Liu, Hubiao Jiang, Guichun Wu and Ting Ding
Curr. Issues Mol. Biol. 2025, 47(7), 573; https://doi.org/10.3390/cimb47070573 - 21 Jul 2025
Viewed by 295
Abstract
The rapid evolution of pathogens and the limited genetic diversity of hosts are two major factors contributing to the plant pathogenic phenomenon known as the loss of disease resistance in maize (Zea mays L.). It has emerged as a significant biological stressor [...] Read more.
The rapid evolution of pathogens and the limited genetic diversity of hosts are two major factors contributing to the plant pathogenic phenomenon known as the loss of disease resistance in maize (Zea mays L.). It has emerged as a significant biological stressor threatening the global food supplies and security. Based on previous cross-species homologous gene screening assays conducted in the laboratory, this study identified the maize disease-resistance candidate gene ZmNLR-7 to investigate the maize immune regulation mechanism against Bipolaris maydis. Subcellular localization assays confirmed that the ZmNLR-7 protein is localized in the plasma membrane and nucleus, and phylogenetic analysis revealed that it contains a conserved NB-ARC domain. Analysis of tissue expression patterns revealed that ZmNLR-7 was expressed in all maize tissues, with the highest expression level (5.11 times) exhibited in the leaves, and that its transcription level peaked at 11.92 times 48 h post Bipolaris maydis infection. Upon inoculating the ZmNLR-7 EMS mutants with Bipolaris maydis, the disease index was increased to 33.89 and 43.33, respectively, and the lesion expansion rate was higher than that in the wild type, indicating enhanced susceptibility to southern corn leaf blight. Physiological index measurements revealed a disturbance of ROS metabolism in ZmNLR-7 EMS mutants, with SOD activity decreased by approximately 30% and 55%, and POD activity decreased by 18% and 22%. Moreover, H2O2 content decreased, while lipid peroxide MDA accumulation increased. Transcriptomic analysis revealed a significant inhibition of the expression of the key genes NPR1 and ACS6 in the SA/ET signaling pathway and a decrease in the expression of disease-related genes ERF1 and PR1. This study established a new paradigm for the study of NLR protein-mediated plant immune mechanisms and provided target genes for molecular breeding of disease resistance in maize. Overall, these findings provide the first evidence that ZmNLR-7 confers resistance to southern corn leaf blight in maize by synergistically regulating ROS homeostasis, SA/ET signal transduction, and downstream defense gene expression networks. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Graphical abstract

17 pages, 6777 KiB  
Article
Filamentous Temperature-Sensitive Z Protein J175 Regulates Maize Chloroplasts’ and Amyloplasts’ Division and Development
by Huayang Lv, Xuewu He, Hongyu Zhang, Dianyuan Cai, Zeting Mou, Xuerui He, Yangping Li, Hanmei Liu, Yinghong Liu, Yufeng Hu, Zhiming Zhang, Yubi Huang and Junjie Zhang
Plants 2025, 14(14), 2198; https://doi.org/10.3390/plants14142198 - 16 Jul 2025
Viewed by 355
Abstract
Plastid division regulatory genes play a crucial role in the morphogenesis of chloroplasts and amyloplasts. Chloroplasts are the main sites for photosynthesis and metabolic reactions, while amyloplasts are the organelles responsible for forming and storing starch granules. The proper division of chloroplasts and [...] Read more.
Plastid division regulatory genes play a crucial role in the morphogenesis of chloroplasts and amyloplasts. Chloroplasts are the main sites for photosynthesis and metabolic reactions, while amyloplasts are the organelles responsible for forming and storing starch granules. The proper division of chloroplasts and amyloplasts is essential for plant growth and yield maintenance. Therefore, this study aimed to examine the J175 (FtsZ2-2) gene, cloned from an ethyl methanesulphonate (EMS) mutant involved in chloroplast and amyloplast division in maize, through map-based cloning. We found that J175 encodes a cell division protein, FtsZ (filamentous temperature-sensitive Z). The FtsZ family of proteins is widely distributed in plants and may be related to the division of chloroplasts and amyloplasts. The J175 protein is localized in plastids, and its gene is expressed across various tissues. From the seedling stage, the leaves of the j175 mutant exhibited white stripes, while the division of chloroplasts was inhibited, leading to a significant increase in volume and a reduction in their number. Measurement of the photosynthetic rate showed a significant decrease in the photosynthetic efficiency of j175. Additionally, the division of amyloplasts in j175 grains at different stages was impeded, resulting in irregular polygonal starch granules. RNA-seq analyses of leaves and kernels also showed that multiple genes affecting plastid division, such as FtsZ1, ARC3, ARC6, PDV1-1, PDV2, and MinE1, were significantly downregulated. This study demonstrates that the maize gene j175 is essential for maintaining the division of chloroplasts and amyloplasts and ensuring normal plant growth, and provides an important gene resource for the molecular breeding of maize. Full article
(This article belongs to the Special Issue Crop Genetics and Breeding)
Show Figures

Figure 1

26 pages, 23697 KiB  
Article
Molecular Mechanisms Underlying Salt Tolerance in Maize: A Combined Transcriptome and Metabolome Analysis
by Shaoqi Ren, Tianhang Bai, Yaqi Ma, Yingjie Zhao, Jiabin Ci, Xuejiao Ren, Zhenyuan Zang, Chengqian Ma, Ruyi Xiong, Xinyao Song, Wei Yang and Weiguang Yang
Plants 2025, 14(13), 2031; https://doi.org/10.3390/plants14132031 - 2 Jul 2025
Viewed by 498
Abstract
Maize (Zea mays L.) is one of the most important food crops. Salt stress can hinder crop growth and development, but the molecular mechanisms underlying maize’s response to salt tolerance remain unclear. In this study, we conducted comparative transcriptome, metabolome, and physiological [...] Read more.
Maize (Zea mays L.) is one of the most important food crops. Salt stress can hinder crop growth and development, but the molecular mechanisms underlying maize’s response to salt tolerance remain unclear. In this study, we conducted comparative transcriptome, metabolome, and physiological analyses of a salt-tolerant maize inbred line (J1285) subjected to different NaCl concentrations during the seedling stage. The results demonstrated that, with increasing salt concentration, seedling growth parameters and antioxidant enzyme activities (SOD, POD, CAT) exhibited initially increases before subsequently decreasing, peaking at 50–150 mmol/L. Transcriptome data analysis revealed that the experimental groups subjected to 50, 100, 150, and 200 mmol/L treatments had 375, 1043, 2504, and 2328 differentially expressed genes (DEGs) compared to the control group, respectively. Additionally, through GO and KEGG analysis, we found that the DEGs were primarily enriched in the MAPK signaling pathway and plant hormone signal transduction, especially the abscisic acid (ABA) signaling pathway, both of which play instrumental roles in orchestrating the maize response to salt-induced stress. Transcription factors involved in the salt stress response, including WRKY, TIFY, bZIP, and bHLH, were identified. Metabolomic data analysis revealed that the experimental groups subjected to 50, 100, 150 and 200 mmol/L treatments had 44, 335, 278, and 550 differentially expressed metabolites (DEMs) compared to the control group, respectively. The DEMs were mainly enriched in metabolic pathways and the biosynthesis of secondary metabolites. Transcriptomics and metabolomics combined analysis were performed on J1285 seedling leaves, and it was found that the co-enrichment pathways included starch and sucrose metabolism, linoleic acid metabolism, α-linolenic acid metabolism, phenylpropanoid biosynthesis pathway, etc. Collectively, these results will aid in identifying resistance genes and elucidating the molecular mechanisms underlying salt tolerance for maize. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 4961 KiB  
Article
Maize and Pea Root Interactions Promote Symbiotic Nitrogen Fixation, Thereby Accelerating Nitrogen Assimilation and Partitioning in Intercropped Pea
by Yali Sun, Zefeng Wu, Falong Hu, Hong Fan, Wei He, Lianhao Zhao, Congcong Guo, Xiaoyuan Bao, Qiang Chai and Cai Zhao
Agronomy 2025, 15(7), 1615; https://doi.org/10.3390/agronomy15071615 - 1 Jul 2025
Viewed by 426
Abstract
Cereal/legume intercropping enhances legume nodulation and improves nitrogen use efficiency (NUE) in cereal crops. This facilitation of symbiotic nitrogen fixation (SNF) in intercropped legumes involves a complex eco-physiological mechanism driven by multiple factors. Among them, interspecific root interactions (IRIs) are a key factor [...] Read more.
Cereal/legume intercropping enhances legume nodulation and improves nitrogen use efficiency (NUE) in cereal crops. This facilitation of symbiotic nitrogen fixation (SNF) in intercropped legumes involves a complex eco-physiological mechanism driven by multiple factors. Among them, interspecific root interactions (IRIs) are a key factor influencing SNF in intercropped legumes. Currently, it remains unclear whether and how IRIs modulate SNF to affect NUE and yield formation in legume species. In this study, maize/pea intercropping with different types of root separation [no barrier (NB) and plastic barrier (PB)] and pea monocropping (IP) were simulated in a nitrogen (N)-free nutrient matrix in pots, and the SNF, N metabolism, and N partitioning were investigated. We demonstrated that IRIs optimize SNF performance. N assimilation is positively regulated following increases in enzyme activity and gene expression in intercropped roots and nodules. Furthermore, IRIs facilitate amino acid (AA) export from nodules to roots and shoots, which is followed by an increase in AA levels in leaves (source) and leaf exudates (sink). Overall, intensive SNF drives N metabolism and alters source-to-sink N partitioning, thereby increasing NUE (by 23%) and yield (by 15%) in intercropped pea. This study reveals the positive roles of IRIs to the NUE and yield and provides useful reference material for increasing N contents derived from SNF to maximize NUE and crop yields in intercropped legumes. Full article
Show Figures

Figure 1

28 pages, 4353 KiB  
Article
Genetic Dissection of Drought Tolerance in Maize Through GWAS of Agronomic Traits, Stress Tolerance Indices, and Phenotypic Plasticity
by Ronglan Li, Dongdong Li, Yuhang Guo, Yueli Wang, Yufeng Zhang, Le Li, Xiaosong Yang, Shaojiang Chen, Tobias Würschum and Wenxin Liu
Int. J. Mol. Sci. 2025, 26(13), 6285; https://doi.org/10.3390/ijms26136285 - 29 Jun 2025
Viewed by 508
Abstract
Drought severely limits crop yield every year, making it critical to clarify the genetic basis of drought tolerance for breeding of improved varieties. As drought tolerance is a complex quantitative trait, we analyzed three phenotypic groups: (1) agronomic traits under well-watered (WW) and [...] Read more.
Drought severely limits crop yield every year, making it critical to clarify the genetic basis of drought tolerance for breeding of improved varieties. As drought tolerance is a complex quantitative trait, we analyzed three phenotypic groups: (1) agronomic traits under well-watered (WW) and water-deficit (WD) conditions, (2) stress tolerance indices of these traits, and (3) phenotypic plasticity, using a multi-parent doubled haploid (DH) population assessed in multi-environment trials. Genome-wide association studies (GWAS) identified 130, 171, and 71 quantitative trait loci (QTL) for the three groups of phenotypes, respectively. Only one QTL was shared among all trait groups, 25 between stress indices and agronomic traits, while the majority of QTL were specific to their group. Functional annotation of candidate genes revealed distinct pathways of the three phenotypic groups. Candidate genes under WD conditions were enriched for stress response and epigenetic regulation, while under WW conditions for protein synthesis and transport, RNA metabolism, and developmental regulation. Stress tolerance indices were enriched for transport of amino/organic acids, epigenetic regulation, and stress response, whereas plasticity showed enrichment for environmental adaptability. Transcriptome analysis of 26 potential candidate genes showed tissue-specific drought responses in leaves, ears, and tassels. Collectively, these results indicated both shared and independent genetic mechanisms underlying drought tolerance, providing novel insights into the complex phenotypes related to drought tolerance and guiding further strategies for molecular breeding in maize. Full article
Show Figures

Figure 1

18 pages, 18889 KiB  
Article
A Handheld Multispectral Device for Assessing Leaf Nitrogen Concentrations in Maize
by Felipe Hermínio Meireles Nogueira, Adunias dos Santos Teixeira, Sharon Gomes Ribeiro, Luís Clênio Jario Moreira, Odílio Coimbra da Rocha Neto, Fernando Bezerra Lopes and Ricardo Emílio Ferreira Quevedo Nogueira
Sensors 2025, 25(13), 3929; https://doi.org/10.3390/s25133929 - 24 Jun 2025
Viewed by 519
Abstract
This study presents the MSPAT (Multispectral Soil Plant Analysis Tool), a device designed for assessing leaf nitrogen concentrations in maize crops under field conditions. The MSPAT includes the AS7265x sensor, which has 18 bands and covers the spectrum from 410 to 940 nm. [...] Read more.
This study presents the MSPAT (Multispectral Soil Plant Analysis Tool), a device designed for assessing leaf nitrogen concentrations in maize crops under field conditions. The MSPAT includes the AS7265x sensor, which has 18 bands and covers the spectrum from 410 to 940 nm. This device was designed to be portable, using the ESP32 microcontroller and incorporating such functionalities as data storage on a MicroSD card, communication with a smartphone via Wi-Fi, and geolocation of acquired data. The MSPAT was evaluated in an experiment conducted at the Federal University of Ceará (UFC), where maize was subjected to different doses of nitrogen fertiliser (0, 60, 90, 120, 150, and 180 kg·ha−1 N). Spectral readings were taken at three phenological stages (V5, V10, and R2) using the MSPAT, an SPAD-502 chlorophyll meter, and a FieldSpec PRO FR3 spectroradiometer. After the optical measurements were taken, the nitrogen concentrations in the leaves were determined in a laboratory by using the Kjeldahl method. The data analysis included the calculation of normalised ratio indices (NRIs) using linear regression and the application of multivariate statistical methods (PLSR and PCR) for predicting leaf nitrogen concentrations (LNCs). The best performance for the MSPAT index (NRI) was obtained using the 900 nm and the 560 nm bands (R2 = 0.64) at stage V10. In the validation analysis, the MSPAT presented an R2 of 0.79, showing performance superior to that of SPAD-502, which achieved an R2 of 0.70. This confirms the greater potential of the MSPAT compared to commercial equipment and makes it possible to obtain results similar to those obtained using the reference spectroradiometer. The PLSR model with data from the FieldSpec 3 provided important validation metrics when using reflectance data with first-derivative transformation (R2 = 0.88, RMSE = 1.94 and MAE = 1.28). When using the MSPAT, PLSR (R2 = 0.75, RMSE = 2.77 and MAE = 2.26) exhibited values of metrics similar to those for PCR (R2 = 0.75, RMSE = 2.78 and MAE = 2.26). This study validates the use of MSPAT as an effective tool for monitoring the nutritional status of maize to optimize the use of nitrogen fertilisers. Full article
(This article belongs to the Special Issue Hyperspectral Sensing: Imaging and Applications)
Show Figures

Figure 1

26 pages, 1726 KiB  
Article
Growth-Promoting Effects of Ten Soil Bacterial Strains on Maize, Tomato, Cucumber, and Pepper Under Greenhouse Conditions
by Jovana Anđelković, Tatjana Mihajilov Krstev, Ivica Dimkić, Nikola Unković, Dalibor Stanković and Nataša Joković
Plants 2025, 14(12), 1874; https://doi.org/10.3390/plants14121874 - 18 Jun 2025
Cited by 1 | Viewed by 614
Abstract
Beneficial interactions between plants and bacteria are crucial in agricultural practices, as bacteria can improve soil fertility, promote plant growth, and protect plants from pathogens. This study aimed to molecularly identify and characterize soil bacterial isolates and evaluate their effect on the growth [...] Read more.
Beneficial interactions between plants and bacteria are crucial in agricultural practices, as bacteria can improve soil fertility, promote plant growth, and protect plants from pathogens. This study aimed to molecularly identify and characterize soil bacterial isolates and evaluate their effect on the growth of maize (Zea mays L.), tomato (Solanum lycopersici L.), cucumber (Cucumis sativus L.), and pepper (Capsicum annuum L.) under greenhouse conditions. Plant growth parameters, including plant height, root length, and fresh (FW) and dry (DW) weights, were measured. Additionally, pigment extraction and element content analysis using leaves were performed. Among the isolates, the most effective strain in the greenhouse experiment was Bacillus safensis SCF6, which significantly enhanced plant height and fresh weight across all tested plants, with the greatest influence observed in maize plant height (439.42 ± 6.42 mm), fresh weight (14.07 ± 0.87 g plant−1 FW), and dry weight (1.43 ± 0.17 g plant−1 DW) compared to the control (364.67 ± 10.33 mm, 9.20 ± 1.16 g plant−1 FW, and 0.92 ± 0.15 g plant−1 DW, respectively). Other strains also demonstrated notable results, with Microbacterium testaceum SCF4, Bacillus mojavensis SCF8, and Pseudomonas putida SCF9 showing the highest plant growth-promoting effects on pepper, tomato, and cucumber, respectively. Pseudomonas putida SCF9 demonstrated strong antifungal activity against Monilinia laxa, with a percentage of mycelial growth inhibition (PGI) of 72.62 ± 2.06%, while Bacillus subtilis SCF1 exhibited effects against Botrytis cinerea (PGI = 69.57 ± 4.35%) and Cercospora sp. (PGI = 63.11 ± 1.12%). The development and application of beneficial bacterial inoculants or their formulated products can contribute to environmentally friendly farming practices and global food security. Full article
(This article belongs to the Special Issue Advances in Microbial Solutions for Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 710 KiB  
Review
Valorization of Maize Stover into Biogas for Heat and Power Generation: A South African Perspective
by Reckson Kamusoko and Patrick Mukumba
Fermentation 2025, 11(6), 338; https://doi.org/10.3390/fermentation11060338 - 11 Jun 2025
Viewed by 1483
Abstract
Maize (Zea mays) is one of the most cultivated crops in South Africa, serving as a staple food, stock feed, and a key element in several industrial applications. It contributes significantly to the growth of the South African agricultural economy. The [...] Read more.
Maize (Zea mays) is one of the most cultivated crops in South Africa, serving as a staple food, stock feed, and a key element in several industrial applications. It contributes significantly to the growth of the South African agricultural economy. The cultivation of maize generates a large amount of agricultural waste, mainly in the form of maize stover (MS), which encapsulates leaves, stalks, cobs, and husks. Approximately 5.15 metric tons (Mt) yr−1 of MS are generated in South Africa. This corresponds to an energy potential of 94 PJ. There is immense potential to surpass the annual yield of MS by 126% up to about 11.66 Mt yr−1 through practices such as zero tillage and improved agricultural production systems. MS may pose a serious threat to the environment if not managed in a sustainable and eco-friendly manner. Valorization of MS into biogas presents an excellent opportunity to effectively control biomass waste while contributing to renewable energy production and mitigating dependence on depleting fossil fuels. However, MS continues to be overlooked as a sustainable bioenergy resource due to its lignocellulosic structure. This study explores the potential of converting MS into biogas for heat and power generation, addressing both energy needs and waste management in South Africa. The purpose is to provide knowledge that will inform researchers, innovators, industrialists, policy makers, investors, and other key stakeholders interested in renewable energy systems. Collaborative efforts among multiple stakeholders are vital to leverage biogas as a technology to promote socio-economic development in South Africa. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorization)
Show Figures

Figure 1

16 pages, 17089 KiB  
Article
Tar Spot on Maize: Impact of Soil Types and Environmental Conditions on the Survival of Phyllachora maydis in the Subtropical Climate of Florida
by Vitor A. S. Moura, Larissa C. Ferreira, Marcio F. R. Resende and Katia V. Xavier
J. Fungi 2025, 11(6), 443; https://doi.org/10.3390/jof11060443 - 11 Jun 2025
Viewed by 3191
Abstract
Tar spot, caused by Phyllachora maydis, is an established maize disease in the Midwest of the United States but remains an emerging concern in Florida. While this pathogen can overwinter on plant residue, its survival in Florida’s subtropical environment is not well [...] Read more.
Tar spot, caused by Phyllachora maydis, is an established maize disease in the Midwest of the United States but remains an emerging concern in Florida. While this pathogen can overwinter on plant residue, its survival in Florida’s subtropical environment is not well understood. This study evaluated how environmental factors affect the germination of P. maydis ascospores and stroma integrity. Symptomatic maize leaves were incubated under four conditions: Histosol soil (muck), Krome soil (rocky), 4 °C, and 23 °C. Extensive leaf decomposition occurred in both soil types, with most plant material degraded after eight weeks, while the stroma maintained its structure. Despite this, ascospore germination declined across all conditions. After eight weeks, ascospores incubated at 4 °C retained 25% viability, while those at 23 °C had the lowest germination (0.7%). Ascospores from leaves buried in soil exhibited low viability (1–6%), with no significant differences between soil types (p=0.9944). Weather analysis revealed that increased temperature reduced germination rates, while higher humidity enhanced them. These findings suggest that P. maydis displays limited survivability under Florida-like conditions, with germination rates declining over time. Therefore, cultural practices such as tillage, already employed by corn producers in Florida, may be effective in reducing sources of P. maydis inoculum. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

16 pages, 1810 KiB  
Article
Occurrence and Genetic Variation of Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae), a Newly Emerging Pest, Among Hosts in Northeast China
by Wei Sun, Xiuhua Zhang, Jiachun Zhou and Yuebo Gao
Insects 2025, 16(6), 605; https://doi.org/10.3390/insects16060605 - 8 Jun 2025
Viewed by 1113
Abstract
The northeast region of China plays a crucial role in crop production. The leaf beetle Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae) has emerged as a potential threat to food security in the region. With a wide distribution spanning Asia and Russia, this beetle [...] Read more.
The northeast region of China plays a crucial role in crop production. The leaf beetle Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae) has emerged as a potential threat to food security in the region. With a wide distribution spanning Asia and Russia, this beetle affects various crops. However, limited information is available regarding its occurrence patterns and genetic diversity among major crops in the region. Based on systematic observations across various hosts, coupled with genetic variation analysis using mitochondrial DNA markers, the main results were as follows. Leaf beetle occurrence varied among hosts, peaking from late July to mid-August, with maize and soybean fields exhibiting higher infestation rates compared with other crops. Notably, late-cultivated maize fields harbored the highest beetle numbers due to the species’ preference for young leaves. The host transfer trajectory may have originated in soybean and weeds, with subsequent alternation between host plants and other crops, before the final migration to cabbage and late-cultivated maize fields. Genetic analysis revealed nine COI haplotypes, four COII haplotypes, eleven Cytb haplotypes, and twenty-one combined haplotypes. No clear relationship existed between genetic diversity and occurrence, and no distinct host-based genetic patterns emerged from neighbor-joining tree and haplotype network analyses. High gene flow rates were observed, likely contributing to decreased genetic variation. An analysis of molecular variance results indicated major genetic variation within populations, although genetic distance and haplotype distribution indicated divergence among host populations. These results provide foundational data for developing effective M. hieroglyphica pest management strategies. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Figure 1

14 pages, 10283 KiB  
Article
Improving Leaf GOGAT Activity After the Post-Silking Period Contributes to High Grain Yield with Reduced Nitrogen in N-Efficient Maize
by Haoyu Li, Yanbing Wang, Jian Wang, Meng Zhang, Wenbo Liu, Xiangling Li and Xiaohu Lin
Agronomy 2025, 15(6), 1379; https://doi.org/10.3390/agronomy15061379 - 4 Jun 2025
Viewed by 382
Abstract
Breeding and cultivating low-N-efficient maize varieties to obtain high yields with less N fertilizer is important for addressing food demands and environmental pollution. However, few studies have investigated the physiological characteristics of low-N-efficient maize varieties. Therefore, we performed an experiment over four years [...] Read more.
Breeding and cultivating low-N-efficient maize varieties to obtain high yields with less N fertilizer is important for addressing food demands and environmental pollution. However, few studies have investigated the physiological characteristics of low-N-efficient maize varieties. Therefore, we performed an experiment over four years to test two maize varieties (low-N-efficient variety: JNK728, and high-N-efficient variety: XY335) and five N application rates (N120: 120 kg·ha−1, N180: 180 kg·ha−1, N240: 240 kg·ha−1, N300: 300 kg·ha−1, and N360: 360 kg·ha−1). The optimal N application rates for JNK728 and XY335 were N180 and N300, which obtained the highest yields (11,754 and 12,752 kg·ha−1, respectively), N uptake efficiencies (1.32 and 0.93 kg·kg−1), and N harvest index (67.94% and 61.98%), compared with other N application rates. The key period for plant N accumulation was the R1–R6 stage, which contributed 35.2–49.7% and 40.8–53.8% to plant N accumulation at the maturation stage in JNK728 and XY335, respectively. In addition, N accumulation in the grain accounted for more than half (51.8–63.2%) of the total N accumulation in plants, and the leaf N transport amount after the post-silking stage was the primary source of grain N accumulation in both JNK728 and XY335. We also explored the key enzymes and genes related to the N transport amount and efficiency in leaves in the two maize varieties, and found that GOGAT was the key enzyme and GOGAT2 was the key gene for JNK728, whereas the AS enzyme and AS1 and AS3 genes were most important for XY335. Therefore, we suggest that molecular breeding programs should focus on the GOGAT2 gene in low-N-efficient maize varieties, and cultivation techniques should aim to improve the GOGAT enzyme activity after the post-silking period to achieve high yields and N utilization efficiencies with less N fertilizer. Full article
Show Figures

Figure 1

18 pages, 2424 KiB  
Article
Transcriptome and Metabolome Analysis of the Leaf Colour Mutation Mechanism in a Light-Green Leaf Mutant of Maize
by Dan Li, Kuangzheng Qu, Dianrong Ma, Zhenxing Zhu and Xiaochun Lu
Agronomy 2025, 15(6), 1364; https://doi.org/10.3390/agronomy15061364 - 31 May 2025
Cited by 1 | Viewed by 488
Abstract
Leaf colour is a valuable morphological phenotype for studying plant metabolism and physiology. To elucidate the mutation mechanism of leaf colour variation in maize, we compared the ethyl methylsulfonate (EMS)-induced maize mutant zmpgl, which has light green leaves, with the wild-type maize [...] Read more.
Leaf colour is a valuable morphological phenotype for studying plant metabolism and physiology. To elucidate the mutation mechanism of leaf colour variation in maize, we compared the ethyl methylsulfonate (EMS)-induced maize mutant zmpgl, which has light green leaves, with the wild-type maize line B73. At the seedling stage, the zmpgl mutant presented distinct light green leaf colouration. Comprehensive analyses revealed that both the photosynthetic parameters and pigment contents of the mutant seedlings were significantly lower than those of the wild-type seedlings. Transmission electron microscopy of the mutant leaves revealed alterations in the chloroplast structure, which consequently impaired the photosynthetic efficiency and accumulation of organic matter. Through integrated transcriptomic and metabolomic profiling, we identified differentially expressed genes (DEGs) and differentially abundant metabolites associated with the zmpgl phenotype. These molecular components were associated with pathways related to plant metabolism, chloroplast structure-associated hormone signalling, and redox homeostasis. Further investigation revealed a significant differential expression of genes involved in several critical biological processes, including tetrapyrrole synthesis, lipid metabolism (related to leaf photosynthesis), amino acid metabolism (associated with chlorophyll synthesis and the light response), and abscisic acid (ABA) biosynthesis. These processes are crucial for plant photosynthesis, respiration, and catalytic functions. This study not only provides a valuable resource for further investigation of plant photosynthetic systems but also establishes a foundational framework for the comprehensive functional characterisation of genes involved in the leaf colour change in the zmpgl mutant. These findings contribute to our understanding of the molecular basis of leaf colour variation and its impact on photosynthetic performance in maize. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

Back to TopTop