Filamentous Temperature-Sensitive Z Protein J175 Regulates Maize Chloroplasts’ and Amyloplasts’ Division and Development
Abstract
1. Introduction
2. Results
2.1. Leaf Phenotypic Identification of j175
2.2. Chloroplast Division Defect in j175
2.3. Chlorophyll Content of j175 Decreases
2.4. j175 Photosynthetic Rate Decreases
2.5. Determinations in Enzyme Activity of j175
2.6. Ear Phenotypic Identification of j175
2.7. J175 Exhibits Abnormal Development of Starch Granules and Amyloplasts
2.8. Positional Cloning and Allelic Testing Confirmed That J175 Encodes the FtsZ2-2 Protein
2.9. Subcellular Localization and Constitutive Expression of j175
2.10. Transcriptome Profiling of j175
2.11. SNPs Associated with ZmFtsZ2-2 Can Increase Starch Content
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Cultivation of Materials and Investigation of Agronomic Traits
5.2. Chlorophyll Content Measurement
5.3. Determination of Photosynthetic Rate
5.4. Enzyme Activity Assessment
5.5. Chloroplast Morphology Observation
5.6. Observation of Amyloplast and Starch Granule Morphology
5.7. Map-Based Cloning and Allelic Test
5.8. Protein Sequence Analysis
5.9. Subcellular Localization
5.10. RNA-Seq Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; MacCready, J.S.; Ducat, D.C.; Osteryoung, K.W. The molecular machinery of chloroplast division. Plant Physiol. 2018, 176, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Glynn, J.M.; Miyagishima Sy Yoder, D.W.; Osteryoung, K.W.; Vitha, S. Chloroplast division. Traffic 2007, 8, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, Y.Y. Amyloplast Division Progresses Simultaneously at Multiple Sites in the Endosperm of Rice. Plant Cell Physiol. 2009, 50, 1617. [Google Scholar]
- Zhao, F.; Jing, L.; Wang, D.; Bao, F.; Wang, G. Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Sci. Rep. 2018, 8, 6343. [Google Scholar] [CrossRef] [PubMed]
- Osteryoung, K.W.; Mcandrew, R.S. The Plastid Division Machine. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 315. [Google Scholar] [CrossRef]
- Yang, Y.; Glynn, J.M.; Olson, B.J.; Schmitz, A.J.; Osteryoung, K.W. Plastid division: Across time and space. Curr. Opin. Plant Biol. 2008, 11, 577–584. [Google Scholar] [CrossRef]
- Miyagishima, S.Y. Mechanism of Plastid Division: From a Bacterium to an Organelle. Plant Physiol. 2011, 155, 1533–1544. [Google Scholar] [CrossRef]
- Osteryoung, K.W.; Pyke, K.A. Division and Dynamic Morphology of Plastids. Annu. Rev. Plant Biol. 2014, 65, 443–472. [Google Scholar] [CrossRef]
- Miyagishima, S.Y.; Takahara, M.; Mori, T.; Kuroiwa, H.; Kuroiwa, T. Plastid Division is Driven by a Complex Mechanism that Involves Differential Transition of the Bacterial and Eukaryotic Division Rings. Plant Cell 2001, 13, 2257–2268. [Google Scholar] [CrossRef]
- Vitha, S. FtsZ Ring Formation at the Chloroplast Division Site in Plants. J. Cell Biol. 2001, 153, 111–120. [Google Scholar] [CrossRef]
- Sun, Q.; Cao, X.; Liu, Z.; An, C.; Hu, J.; Wang, Y.; Qiao, M.; Gao, T.; Cheng, W.; Zhang, Y. Structural and functional insights into the chloroplast division site regulators PARC6 and PDV1 in the intermembrane space. Proc. Natl. Acad. Sci. USA 2023, 120, e2215575120. [Google Scholar] [CrossRef] [PubMed]
- Miyagishima, S.Y.; Froehlich, J.E.; Osteryoung, K.W. PDV1 and PDV2 Mediate Recruitment of the Dynamin-Related Protein ARC5 to the Plastid Division Site. Plant Cell Online 2006, 18, 2517–2530. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, K.; Kabeya, Y.; Suzuki, K.; Mori, T.; Ichikawa, T. The PLASTID DIVISION1 and 2 Components of the Chloroplast Division Machinery Determine the Rate of Chloroplast Division in Land Plant Cell Differentiation. Plant Cell 2009, 21, 1769–1780. [Google Scholar] [CrossRef]
- Liu, M.; Yu, J.; Yang, M.; Cao, L.; Chen, C. Adaptive evolution of chloroplast division mechanisms during plant terrestrialization. Cell Rep. 2024, 43, 113950. [Google Scholar] [CrossRef]
- Osteryoung, K.W.; Stokes, K.D.; Rutherford, S.M.; Lee, P.W.Y. Chloroplast Division in Higher Plants Requires Members of Two Functionally Divergent Gene Families with Homology to Bacterial FtsZ. Plant Cell Online 1998, 10, 1991–2004. [Google Scholar] [CrossRef] [PubMed]
- Stokes, K.D.; McAndrew, R.S.; Figueroa, R.; Vitha, S.; Osteryoung, K.W. Chloroplast division and morphology are differentially affected by overexpression of FtsZ1 and FtsZ2 genes in Arabidopsis. Plant Physiol. 2000, 124, 1668–1677. [Google Scholar] [CrossRef]
- Mcandrew, R.S.; Froehlich, J.E.; Vitha, S.; Osteryoung, S.K.W. Colocalization of Plastid Division Proteins in the Chloroplast Stromal Compartment Establishes a New Functional Relationship between FtsZ1 and FtsZ2 in Higher Plants. Plant Physiol. 2001, 127, 1656–1666. [Google Scholar] [CrossRef]
- de Pater, S.; Caspers, M.; Kottenhagen, M.; Meima, H.; Ter Stege, R.; de Vetten, N. Manipulation of starch granule size distribution in potato tubers by modulation of plastid division. Plant Biotechnol. J. 2006, 4, 123–134. [Google Scholar] [CrossRef]
- Balmer, Y.; Vensel, W.; Cai, N.; Manieri, W.; Schurmann, P.; Hurkman, W.; Buchanan, B. A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proc. Natl. Acad. Sci. USA 2006, 103, 2988–2993. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Merkle-Lehman, D.L.; Kung, S.D. Light-Induced Transformation of Amyloplasts into Chloroplasts in Potato Tubers. Plant Physiol. 1984, 75, 142–145. [Google Scholar] [CrossRef]
- Esch, L.; Ngai, Q.Y.; Barclay, J.E.; Mcnelly, R.; Hayta, S.; Smedley, M.; Smith, A.M.; Seung, D. Increasing amyloplast size in wheat endosperm through mutation of PARC6 affects starch granule morphology. New Phytol. 2023, 240, 224–241. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Peluso, P.; Shi, J.; Liang, T.; Stitzer, M.C.; Wang, B.; Campbell, M.S.; Stein, J.C.; Wei, X.; Chin, C.-S. Improved maize reference genome with single-molecule technologies. Nature 2017, 546, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Hofius, D.; Börnke, F.A. Photosynthesis, carbohydrate metabolism and source–sink relations. In Potato Biology and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 257–285. [Google Scholar]
- Khanna-Chopra, R. Photosynthesis in relation to crop productivity. In Probing Photosynthesis: Mechanisms, Regulation and Adaptations; CRC Press: Boca Raton, FL, USA, 2000; pp. 263–280. [Google Scholar]
- Zhu, X.-G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef]
- Luchese, C.L.; Spada, J.C.; Tessaro, I.C. Starch content affects physicochemical properties of corn and cassava starch-based films. Ind. Crops Prod. 2017, 109, 619–626. [Google Scholar] [CrossRef]
- Pyke, K.A.; Rutherford, S.M.; Robertson, E.J.; Leech, R.M. arc6, A Fertile Arabidopsis Mutant with Only Two Mesophyll Cell Chloroplasts. Plant Physiol. 1994, 106, 1169–1177. [Google Scholar] [CrossRef]
- Robertson, E.J.; Rutherford, S.M.; Leech, R.M. Characterization of Chloroplast Division Using the Arabidopsis Mutant arc5. Plant Physiol. 1996, 112, 149–159. [Google Scholar] [CrossRef]
- Yoder, D.W.; Kadirjan-Kalbach, D.; Olson, B.J.S.C.; Miyagishima, S.Y.; Deblasio, S.L.; Hangarter, R.P.; Osteryoung, W.K. Effects of Mutations in Arabidopsis FtsZ1 on Plastid Division, FtsZ Ring Formation and Positioning, and FtsZ Filament Morphology In Vivo. Plant Cell Physiol. 2007, 48, 775. [Google Scholar] [CrossRef]
- Schmitz, A.J.; Glynn, J.M.; Olson, B.J.; Stokes, K.D.; Osteryoung, K.W. Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based plastid division is not essential for chloroplast partitioning or plant growth and development. Mol. Plant 2009, 2, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Nomura, H.; Komori, T.; Uemura, S.; Kanda, Y.; Shimotani, K.; Nakai, K.; Furuichi, T.; Takebayashi, K.; Sugimoto, T.; Sano, S. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat. Commun. 2012, 3, 926. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, Y.; Qu, X.; Yang, W.; Wu, Q.; Huang, L.; Jiang, Q.; Ma, J.; Zhang, Y.; Qi, P. The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function. Nat. Commun. 2024, 15, 6905. [Google Scholar] [CrossRef]
- Kawagoe, Y. The characteristic polyhedral, sharp-edged shape of compound-type starch granules in rice endosperm is achieved via the septum-like structure of the amyloplast. J. Appl. Glycosci. 2013, 60, 29–36. [Google Scholar] [CrossRef]
- Shannon, J.C.; Echeverria, E.; Boyer, C. Isolation of amyloplasts from developing endosperm of maize (Zea mays L.). In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 226–234. [Google Scholar]
- Yun, M.S.; Umemoto, T.; Kawagoe, Y. Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. Plant Cell Physiol. 2011, 56, 1068–1082. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y.; Xiao, Q.; Huang, X.; Li, C.; Gao, X.; Wang, Q.; Xiang, X.; Zhu, Y.; Wang, J. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat. Commun. 2020, 11, 5346. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-H.; Xue, S.; Le, J.; Zou, J.-J.; Wang, Y.-R. The role of Arabidopsis Actin-Related Protein 3 in amyloplast sedimentation and polar auxin transport in root gravitropism. J. Exp. Bot. 2016, 67, 5325–5337. [Google Scholar]
- Miyagishima, S.Y. Origin and evolution of the chloroplast division machinery. J. Plant Res. 2005, 118, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.T.; Yoshioka, Y.; Kazama, Y.; Hirano, T.; Niwa, Y.; Moriyama, T.; Sato, N.; Abe, T.; Yoshida, S.; Itoh, R.D. Principles of amyloplast replication in the ovule integuments of Arabidopsis thaliana. Plant Physiol. 2024, 196, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Sack, F.D. Plant Gravity Sensing. Int. Rev. Cytol. 1991, 127, 193–252. [Google Scholar]
- Sack, F.D. Plastids and gravitropic sensing. Planta 1997, 203 (Suppl. S1), S63–S68. [Google Scholar] [CrossRef]
- Chen, J.; Yu, R.; Li, N.; Deng, Z.; Zhang, X.; Zhao, Y.; Qu, C.; Yuan, Y.; Pan, Z.; Zhou, Y.; et al. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell 2023, 186, 4788. [Google Scholar] [CrossRef]
- Kiss, J.Z.; Sack, H.F.D. Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 1989, 177, 198–206. [Google Scholar] [CrossRef]
- Nishimura, T.; Mori, S.; Shikata, H.; Nakamura, M.; Hashiguchi, Y.; Abe, Y.; Hagihara, T.; Yoshikawa, H.Y.; Toyota, M.; Higaki, T. Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 2023, 381, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Guil, S.; Wang, Y. LAZing around: The intricate dance of amyloplast sedimentation and gravity sensing in plants. Mol. Plant 2023, 16, 1887–1889. [Google Scholar] [CrossRef] [PubMed]
- Gillikin, J.W.; Zhang, F.; Coleman, C.E.; Bass, H.W.; Larkins, B.A.; Boston, R.S. A defective signal peptide tethers the floury-2 zein to the endoplasmic reticulum membrane. Plant Physiol. 1997, 114, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.J.; Burr, F.A.; Burr, B. Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 1987, 238, 960–963. [Google Scholar] [CrossRef]
- Kim, C.S.; Hunter, B.G.; Kraft, J.; Boston, R.S.; Yans, S.; Jung, R.; Larkins, B.A. A defective signal peptide in a 19-kD α-zein protein causes the unfolded protein response and an opaque endosperm phenotype in the maize De*-B30 mutant. Plant Physiol. 2004, 134, 380–387. [Google Scholar] [CrossRef]
- Wang, G.; Qi, W.; Wu, Q.; Yao, D.; Zhang, J.; Zhu, J.; Wang, G.; Wang, G.; Tang, Y.; Song, R. Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiol. 2014, 165, 582–594. [Google Scholar] [CrossRef]
- Nie, S.; Wang, B.; Ding, H. Genome assembly of the Chinese maize elite inbred line RP125 and its EMS mutant collection provide new resources for maize genetics research and crop improvement. Plant J. 2021, 108, 40–54. [Google Scholar] [CrossRef]
- Echeverria, E.; Boyer, C.; Liu, K.-C.; Shannon, J. Isolation of amyloplasts from developing maize endosperm. Plant Physiol. 1985, 77, 513–519. [Google Scholar] [CrossRef]
- Matsushima, R.; Hisano, H. Imaging amyloplasts in the developing endosperm of barley and rice. Sci. Rep. 2019, 9, 3745. [Google Scholar] [CrossRef]
- Denyer, K.; Pike, M. Isolation of amyloplasts. Curr. Protoc. Cell Biol. 2008, 38, 21–23. [Google Scholar] [CrossRef]
- Aboul, F.; Oraby, S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull. Natl. Res. Cent. 2019, 43, 25. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Ren, W. Gene-indexed mutations in maize. Mol. Plant 2018, 11, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, H.; He, X.; Zhang, H.; Cai, D.; Mou, Z.; He, X.; Li, Y.; Liu, H.; Liu, Y.; Hu, Y.; et al. Filamentous Temperature-Sensitive Z Protein J175 Regulates Maize Chloroplasts’ and Amyloplasts’ Division and Development. Plants 2025, 14, 2198. https://doi.org/10.3390/plants14142198
Lv H, He X, Zhang H, Cai D, Mou Z, He X, Li Y, Liu H, Liu Y, Hu Y, et al. Filamentous Temperature-Sensitive Z Protein J175 Regulates Maize Chloroplasts’ and Amyloplasts’ Division and Development. Plants. 2025; 14(14):2198. https://doi.org/10.3390/plants14142198
Chicago/Turabian StyleLv, Huayang, Xuewu He, Hongyu Zhang, Dianyuan Cai, Zeting Mou, Xuerui He, Yangping Li, Hanmei Liu, Yinghong Liu, Yufeng Hu, and et al. 2025. "Filamentous Temperature-Sensitive Z Protein J175 Regulates Maize Chloroplasts’ and Amyloplasts’ Division and Development" Plants 14, no. 14: 2198. https://doi.org/10.3390/plants14142198
APA StyleLv, H., He, X., Zhang, H., Cai, D., Mou, Z., He, X., Li, Y., Liu, H., Liu, Y., Hu, Y., Zhang, Z., Huang, Y., & Zhang, J. (2025). Filamentous Temperature-Sensitive Z Protein J175 Regulates Maize Chloroplasts’ and Amyloplasts’ Division and Development. Plants, 14(14), 2198. https://doi.org/10.3390/plants14142198