Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = magnetotelluric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6356 KiB  
Article
Tectonic Rift-Related Manganese Mineralization System and Its Geophysical Signature in the Nanpanjiang Basin
by Daman Cui, Zhifang Zhao, Wenlong Liu, Haiying Yang, Yun Liu, Jianliang Liu and Baowen Shi
Remote Sens. 2025, 17(15), 2702; https://doi.org/10.3390/rs17152702 - 4 Aug 2025
Viewed by 226
Abstract
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several [...] Read more.
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several medium to large deposits such as Dounan, Baixian, and Yanzijiao. However, the geological processes that control manganese mineralization in this region remain insufficiently understood. Understanding the tectonic evolution of the basin is therefore essential to unravel the mechanisms of Middle Triassic metallogenesis. This study investigates how rift-related tectonic activity influences manganese ore formation. This study integrates global gravity and magnetic field models (WGM2012, EMAG2v3), audio-frequency magnetotelluric (AMT) profiles, and regional geological data to investigate ore-controlling structures. A distinct gravity low–magnetic high belt is delineated along the basin axis, indicating lithospheric thinning and enhanced mantle-derived heat flow. Structural interpretation reveals a rift system with a checkerboard pattern formed by intersecting NE-trending major faults and NW-trending secondary faults. Four hydrothermal plume centers are identified at these fault intersections. AMT profiles show that manganese ore bodies correspond to stable low-resistivity zones, suggesting fluid-rich, hydrothermally altered horizons. These findings demonstrate a strong spatial coupling between hydrothermal activity and mineralization. This study provides the first identification of the internal rift architecture within the Nanpanjiang Basin. The basin-scale rift–graben system exerts first-order control on sedimentation and manganese metallogenesis, supporting a trinity model of tectonic control, hydrothermal fluid transport, and sedimentary enrichment. These insights not only improve our understanding of rift-related manganese formation in southeastern Yunnan but also offer a methodological framework applicable to similar rift basins worldwide. Full article
Show Figures

Figure 1

22 pages, 20436 KiB  
Article
An Adaptive Decomposition Method with Low Parameter Sensitivity for Non-Stationary Noise Suppression in Magnetotelluric Data
by Zhenyu Guo, Cheng Huang, Wen Jiang, Tao Hong and Jiangtao Han
Minerals 2025, 15(8), 808; https://doi.org/10.3390/min15080808 - 30 Jul 2025
Viewed by 136
Abstract
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In [...] Read more.
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In this study, we propose a novel, adaptive, and less parameter-dependent signal decomposition method for MT signal denoising, based on time–frequency domain analysis and the application of modal decomposition. The method uses Variational Mode Decomposition (VMD) to adaptively decompose the MT signal into several intrinsic mode functions (IMFs), obtaining the instantaneous time–frequency energy distribution of the signal. Subsequently, robust statistical methods are introduced to extract the independent components of each IMF, thereby identifying signal and noise components within the decomposition results. Synthetic data experiments show that our method accurately separates high-amplitude non-stationary interference. Furthermore, it maintains stable decomposition results under various parameter settings, exhibiting strong robustness and low parameter dependency. When applied to field MT data, the method effectively filters out non-stationary noise, leading to significant improvements in both apparent resistivity and phase curves, indicating its practical value in mineral exploration. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

14 pages, 2239 KiB  
Article
Automatic Delineation of Resistivity Contrasts in Magnetotelluric Models Using Machine Learning
by Ever Herrera Ríos, Mateo Marulanda, Hernán Arboleda, Greg Soule, Erika Lucuara, David Jaramillo, Agustín Cardona, Esteban A. Taborda, Farid B. Cortés and Camilo A. Franco
Processes 2025, 13(7), 2263; https://doi.org/10.3390/pr13072263 - 16 Jul 2025
Viewed by 310
Abstract
The precise identification of hydrocarbon-rich zones is crucial for optimizing exploration and production processes in the oil industry. Magnetotelluric (MT) surveys play a fundamental role in mapping subsurface geological structures. This study presents a novel methodology for automatically delineating resistivity contrasts in MT [...] Read more.
The precise identification of hydrocarbon-rich zones is crucial for optimizing exploration and production processes in the oil industry. Magnetotelluric (MT) surveys play a fundamental role in mapping subsurface geological structures. This study presents a novel methodology for automatically delineating resistivity contrasts in MT models by employing advanced machine learning and computer vision techniques. This approach commences with data augmentation to enhance the diversity and volume of resistivity data. Subsequently, a bilateral filter was applied to reduce noise while preserving edge details within the resistivity images. To further improve image contrast and highlight significant resistivity variations, contrast-limited adaptive histogram equalization (CLAHE) was employed. Finally, k-means clustering was utilized to segment the resistivity data into distinct groups based on resistivity values, enabling the identification of color features in different centroids. This facilitated the detection of regions with significant resistivity contrasts in the reservoir. From the clustered images, color masks were generated to visually differentiate the groups and calculate the area and proportion of each group within the pictures. Key features extracted from resistivity profiles were used to train unsupervised learning models capable of generalizing across different geological settings. The proposed methodology improves the accuracy of detecting zones with oil potential and offers scalable applicability to different datasets with minimal retraining, applicable to different subsurface environments. Ultimately, this study seeks to improve the efficiency of petroleum exploration by providing a high-precision automated framework with segmentation and contrast delineation for resistivity analysis, integrating advanced image processing and machine learning techniques. During initial analyses using only k-means, the resulting optimal value of the silhouette coefficient K was 2. After using bilateral filtering together with contrast-limited adaptive histogram equalization (CLAHE) and validation by an expert, the results were more representative, and six clusters were identified. Ultimately, this study seeks to improve the efficiency of petroleum exploration by providing a high-precision automated framework with segmentation and contrast delineation for resistivity analysis, integrating advanced image processing and machine learning techniques. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 5432 KiB  
Communication
CSAMT-Driven Feasibility Assessment of Beishan Underground Research Laboratory
by Zhiguo An, Qingyun Di, Changmin Fu and Zhongxing Wang
Sensors 2025, 25(14), 4282; https://doi.org/10.3390/s25144282 - 9 Jul 2025
Viewed by 261
Abstract
The safe disposal of high-level radioactive waste (HLW) is imperative for sustaining China’s rapidly expanding nuclear power sector, with deep geological repositories requiring rigorous site evaluation via underground research laboratories (URLs). This study presents a controlled-source audio-frequency magnetotellurics (CSAMT) survey at the Xinchang [...] Read more.
The safe disposal of high-level radioactive waste (HLW) is imperative for sustaining China’s rapidly expanding nuclear power sector, with deep geological repositories requiring rigorous site evaluation via underground research laboratories (URLs). This study presents a controlled-source audio-frequency magnetotellurics (CSAMT) survey at the Xinchang site in China’s Beishan area, a region dominated by high-resistivity metamorphic rocks. To overcome electrical data acquisition challenges in such resistive terrains, salt-saturated water was applied to transmitting and receiving electrodes to enhance grounding efficiency. Using excitation frequencies of 9600 Hz to 1 Hz, the survey achieved a 1000 m investigation depth. Data processing incorporated static effect removal via low-pass filtering and smoothness-constrained 2D inversion. The results showed strong consistency between observed and modeled data, validating inversion reliability. Borehole correlations identified a 600-m-thick intact rock mass, confirming favorable geological conditions for URL construction. The study demonstrates CSAMT’s efficacy in characterizing HLW repository sites in high-resistivity environments, providing critical geophysical insights for China’s HLW disposal program. These findings advance site evaluation methodologies for deep geological repositories, though integrated multidisciplinary assessments remain essential for comprehensive site validation. This work underscores the feasibility of the Xinchang site while establishing a technical framework that is applicable to analogous challenging terrains globally. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 8935 KiB  
Article
Miniaturizing Controlled-Source EM Transmitters for Urban Underground Surveys: A Bipolar Square-Wave Inverter Approach with SiC-MOSFETs
by Zhongping Wu, Kuiyuan Zhang, Rongbo Zhang, Zucan Lin, Meng Wang, Yongqing Wang and Qisheng Zhang
Sensors 2025, 25(13), 4183; https://doi.org/10.3390/s25134183 - 4 Jul 2025
Viewed by 305
Abstract
This paper presents a compact, high-efficiency electromagnetic transmitter for Controlled-source Audio-frequency Magnetotelluric (CSAMT) applications, operating in the 10–100 kHz range. A novel bipolar square-wave inverter topology is proposed, which directly modulates the transformer’s secondary-side AC output, eliminating conventional rectification and filtering stages. This [...] Read more.
This paper presents a compact, high-efficiency electromagnetic transmitter for Controlled-source Audio-frequency Magnetotelluric (CSAMT) applications, operating in the 10–100 kHz range. A novel bipolar square-wave inverter topology is proposed, which directly modulates the transformer’s secondary-side AC output, eliminating conventional rectification and filtering stages. This design reduces system losses (simulated efficiency > 90%) and achieves an approximately 40% reduction in both volume and weight. The power stage uses a full-bridge bipolar inverter topology with SiC-MOSFETs, combined with a high-frequency transformer for voltage gain. Simulation, laboratory testing, and EMI evaluation confirm stable square-wave generation and full compliance with EN55032 Class A standards. Field validation with a CSAMT receiver demonstrates effective signal transmission and high-resolution subsurface imaging, thereby improving the efficiency and portability of urban geophysical exploration. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

15 pages, 15202 KiB  
Article
Field Testing of a Controlled-Source Wide Frequency Range Magnetotelluric Detector Using SQUID and Inductive Magnetic Sensors
by Zucan Lin, Qisheng Zhang, Rongbo Zhang, Xiyuan Zhang, Hui Zhang, Xinchang Wang, Huiying Li, Yunheng Liu, Bojian Zhou, Jian Shao and Keyu Zhou
Sensors 2025, 25(13), 3896; https://doi.org/10.3390/s25133896 - 23 Jun 2025
Viewed by 1537
Abstract
To enhance the resolution of shallow geological structure detection, this study developed a Controlled-Source wide frequency range Magnetotelluric Detector (called CSUMT) with a frequency range spanning from 1 Hz to 1 MHz, and conducted systematic field experiments in Fengxian County, Shaanxi Province. The [...] Read more.
To enhance the resolution of shallow geological structure detection, this study developed a Controlled-Source wide frequency range Magnetotelluric Detector (called CSUMT) with a frequency range spanning from 1 Hz to 1 MHz, and conducted systematic field experiments in Fengxian County, Shaanxi Province. The CSUMT system employs a high-precision 24-bit analog-to-digital converter and is compatible with both inductive magnetic sensors and superconducting quantum interference device (SQUID) magnetic sensors, featuring wide bandwidth and high dynamic range. Comparative experiments with the commercial V8 instrument demonstrated high consistency in electric field, magnetic field, and apparent resistivity measurements, confirming the CSUMT system’s reliability in field applications. In addition, this study compared the performance of inductive and SQUID magnetic sensors in actual surveys, revealing that SQUID sensors exhibit lower noise and more stable data output, making them suitable for signal detection across a broader frequency range. The results validate the practicality of the CSUMT system in complex geological environments and provide experimental support for the appropriate selection of magnetic sensors. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

31 pages, 4555 KiB  
Article
The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits
by Farida Issatayeva, Auez Abetov, Gulzada Umirova, Aigerim Abdullina, Zhanibek Mustafin and Oleksii Karpenko
Geosciences 2025, 15(6), 190; https://doi.org/10.3390/geosciences15060190 - 22 May 2025
Viewed by 612
Abstract
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of [...] Read more.
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of the impact on the lithosphere of mantle plumes rising along TCMFCFs, intense block deformations and tectonic movements are generated; rift systems, and volcanic–plutonic belts spatially combined with them, are formed; and intrusive bodies are introduced. These processes cause epithermal ore formation as a consequence of the impact of mantle plumes rising along TCMFCF to the lithosphere. At hydrocarbon fields, they play extremely important roles in conductive and convective heat, as well as in mass transfer to the area of hydrocarbon generation, determining the relationship between the processes of lithogenesis and tectogenesis, and activating the generation of hydrocarbons from oil and gas source rock. Detection of TCMFCFs was carried out using MMSS (the method of microseismic sounding) and MTSM (the magnetotelluric sounding method), in combination with other geological and geophysical data. Practical examples are provided for mineral deposits where subvertical transcrustal columns of increased permeability, traced to considerable depths, have been found; the nature of these unique structures is related to faults of pre-Paleozoic emplacement, which determined the fragmentation of the sub-crystalline structure of the Earth and later, while developing, inherited the conditions of volumetric fluid dynamics, where the residual forms of functioning of fluid-conducting thermohydrocolumns are granitoid batholiths and other magmatic bodies. Experimental modeling of deep processes allowed us to identify the quantum character of crystal structure interactions of minerals with “inert” gases under elevated thermobaric conditions. The roles of helium, nitrogen, and hydrogen in changing the physical properties of rocks, in accordance with their intrastructural diffusion, has been clarified; as a result of low-energy impact, stress fields are formed in the solid rock skeleton, the structures and textures of rocks are rearranged, and general porosity develops. As the pressure increases, energetic interactions intensify, leading to deformations, phase transitions, and the formation of chemical bonds under the conditions of an unstable geological environment, instability which grows with increasing gas saturation, pressure, and temperature. The processes of heat and mass transfer through TCMFCFs to the Earth’s surface occur in stages, accompanied by a release of energy that can manifest as explosions on the surface, in coal and ore mines, and during earthquakes and volcanic eruptions. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

23 pages, 5966 KiB  
Article
A Magnetotelluric Signal Acquisition and Monitoring System Based on a Cloud Platform
by Qi Luo, Weibin Sun, Rujun Chen, Xiaoli Mi and Hongchun Yao
Appl. Sci. 2025, 15(10), 5598; https://doi.org/10.3390/app15105598 - 16 May 2025
Viewed by 375
Abstract
This study designed and implemented an magnetotelluric signal acquisition and monitoring system (CMT) based on an Internet of Things (IoT) cloud platform. By integrating magnetotelluric monitoring stations, control terminals, and cloud servers, a real-time and efficient monitoring network was constructed. The hardware part [...] Read more.
This study designed and implemented an magnetotelluric signal acquisition and monitoring system (CMT) based on an Internet of Things (IoT) cloud platform. By integrating magnetotelluric monitoring stations, control terminals, and cloud servers, a real-time and efficient monitoring network was constructed. The hardware part of the system adopts a multi-module collaborative design, including signal conditioning circuits, FPGA control modules, DSP processing units, and embedded subsystems, achieving high-precision acquisition and processing of magnetotelluric signals. The software part employs a layered architecture, developing acquisition software, terminal control software, and a cloud platform monitoring system, which support multi-protocol communication, data parsing, and remote interaction. Through server stress testing, consistency testing, and cloud platform functional verification, the results showed that the system performs well under pressure even with limited server hardware bandwidth, with controllable consistency errors compared to the commercial device MTU-5A, and has stable field acquisition performance. The study validated the system’s advantages in real-time performance, reliability, and scalability, providing a feasible technical solution for the field of magnetotelluric monitoring. In the future, the system will be applied to geothermal monitoring. Full article
Show Figures

Figure 1

22 pages, 6467 KiB  
Article
Integrated Geophysical Signatures of the Jiaodong Region in China and Their Implications for Deep Architecture and Gold Metallogenic Systems
by Haiyang Kuang, Jiayong Yan, Kun Zhang, Wenlong Tang, Chao Fu, Jiangang Liang, Guoli Zhang and Yuexin You
Minerals 2025, 15(4), 417; https://doi.org/10.3390/min15040417 - 17 Apr 2025
Cited by 1 | Viewed by 481
Abstract
The Jiaodong region ranks as the world’s third-largest gold metallogenic province, where Late Mesozoic gold mineralization exhibits close genetic connections with cratonic destruction and multi-stage plate tectonic interactions. This study systematically deciphers the deep-seated architecture and metallogenic controls through integrated analysis of gravity, [...] Read more.
The Jiaodong region ranks as the world’s third-largest gold metallogenic province, where Late Mesozoic gold mineralization exhibits close genetic connections with cratonic destruction and multi-stage plate tectonic interactions. This study systematically deciphers the deep-seated architecture and metallogenic controls through integrated analysis of gravity, aeromagnetic, and magnetotelluric datasets. The key findings demonstrate the following: (1) Bouguer gravity anomalies reveal a “two uplifts flanking a central depression” tectonic framework, reflecting superimposed effects from Yangtze Plate subduction and Pacific Plate rollback; (2) zoned aeromagnetic anomalies suggest that the Sanshandao–Jiaojia–Zhaoyuan–Pingdu Metallogenic Belt extends seaward with significant exploration potential; (3) magnetotelluric inversion identifies three lithosphere penetrating conductive zones, confirming the Jiaojia and Zhaoyuan–Pingdu faults as crust mantle fluid conduits, while the Taocun–Jimo fault marks the North China–Sulu Block boundary; and (4) metallogenic materials derive from hybrid sources of deep Yangtze Plate subduction and mantle upwelling, with gold enrichment controlled by intersections of NE-trending faults and EW-oriented basement folds. Integrated geophysical signatures indicate that the northwestern Jiaodong offshore area (north of Sanshandao) holds supergiant gold deposit potential. This research provides critical constraints for the craton destruction type gold mineralization model. Full article
Show Figures

Figure 1

24 pages, 7270 KiB  
Article
The Application of Controlled-Source Audio-Frequency Magnetotellurics Numerical Simulations in the Exploration and Electrical Structure Interpretation of the Jinding Lead–Zinc Deposit
by Lincheng Zhang, Jingtian Tang, Jiayong Lin and Xiao Xiao
Appl. Sci. 2025, 15(8), 4303; https://doi.org/10.3390/app15084303 - 14 Apr 2025
Viewed by 401
Abstract
In the field of mineral exploration, geophysical method selection often relies on experience, yet research on ore deposit geophysical models remains insufficient. Addressing this gap, a new exploration model was proposed based on the Jinding lead–zinc mining area, which was integrated as follows: [...] Read more.
In the field of mineral exploration, geophysical method selection often relies on experience, yet research on ore deposit geophysical models remains insufficient. Addressing this gap, a new exploration model was proposed based on the Jinding lead–zinc mining area, which was integrated as follows: geophysical model–numerical simulation–exploration method selection–field experiments–electrical structure. Firstly, based on geological models and rock–ore resistivity data, a three-dimensional geophysical electrical model of the mining area was constructed for the first time. Secondly, in response to the demands of deep mineral exploration, the CSAMT method with a large exploration depth was initially selected. Then, the coupled finite element–infinite element method was employed to perform forward modeling on the three-dimensional model in order to verify the effectiveness of the CSAMT exploration. Subsequently, the CSAMT exploration experiment was conducted in the Jinding mining area to verify its true effectiveness. During CSAMT data acquisition, high-quality data were obtained through new signal-to-noise ratio experiments and different acquisition time experiments, which built a solid foundation for the reliability of the inversion results. Finally, through CSAMT data processing and inversion interpretation, the electrical distribution at a depth of 1 km below the mining area was obtained. The electrical characteristics of the lithologic system in the mining area were revealed by interpreting the electrical structure characteristics of the survey lines, which provided reliable data support for understanding the geological genesis and metallogenic model in the Jinding lead–zinc deposit. The new exploration model proposed in this study, along with measures to improve data acquisition quality, could serve as a valuable reference for geophysical exploration personnel. Full article
Show Figures

Figure 1

22 pages, 25835 KiB  
Article
A Precise Prediction Method for Subsurface Temperatures Based on the Rock Resistivity–Temperature Coupling Model
by Ri Wang, Guoshu Huang, Jian Yang, Lichao Liu, Wang Luo and Xiangyun Hu
Remote Sens. 2025, 17(8), 1331; https://doi.org/10.3390/rs17081331 - 8 Apr 2025
Viewed by 450
Abstract
The accuracy of deep temperature predictions is critical to the precision of geothermal resource exploration, assessment, and the effectiveness of their development and utilization. However, the existing methods encounter significant challenges in predicting the distribution characteristics of deep temperature fields with both efficiency [...] Read more.
The accuracy of deep temperature predictions is critical to the precision of geothermal resource exploration, assessment, and the effectiveness of their development and utilization. However, the existing methods encounter significant challenges in predicting the distribution characteristics of deep temperature fields with both efficiency and accuracy. Many of these methods rely on empirical formulas to approximate the relationship between geophysical parameters and temperature. Unfortunately, such approximations often introduce substantial errors, undermining the reliability and precision of the predictions. We present an advanced prediction methodology for deep temperature fields based on the rock resistivity–temperature coupling model (RRTCM). By converting the fixed parameters in the empirical formulas to variables dependent on the formation depth, we establish a dynamic model that correlates rock resistivity with temperature on the basis of limited constrained borehole data. We then input the 2D magnetotelluric inversion results into the model, and the subsurface temperature distribution can be predicted indirectly with high precision on the basis of the resistivity–temperature coupling relationship. We validated this method in the Xiong’an New Area, China, and the determination coefficient (R2) of maximum temperature prediction reached 98.88%. The sensitivity analysis indicates that the prediction accuracy is positively correlated with the number and depth of the constrained boreholes and negatively correlated with the sampling interval of the well logging data. This method robustly supports geothermal resource development and enhances the understanding of geothermal field formation mechanisms. Full article
(This article belongs to the Special Issue Electromagnetic Modeling of Geophysical Prospecting in Remote Sensing)
Show Figures

Graphical abstract

19 pages, 10618 KiB  
Article
Dynamic Error Bat Algorithm: Theory and Application to Magnetotelluric Inversion
by Shuai Qiao, Yue Yang, Zikun Zhou, Shiwen Li, Chuncheng Li, Xiaoping Liu and Xueqiu Wang
Minerals 2025, 15(4), 359; https://doi.org/10.3390/min15040359 - 29 Mar 2025
Viewed by 361
Abstract
Metallic minerals and some nonmetallic deposits (such as gas hydrate and natural gas) exhibit significant resistivity contrast with their surrounding rocks. Therefore, magnetotelluric (MT) sounding, which is highly sensitive to low-resistivity anomalies, offers a unique advantage in identifying these mineral resources. For metallogenic [...] Read more.
Metallic minerals and some nonmetallic deposits (such as gas hydrate and natural gas) exhibit significant resistivity contrast with their surrounding rocks. Therefore, magnetotelluric (MT) sounding, which is highly sensitive to low-resistivity anomalies, offers a unique advantage in identifying these mineral resources. For metallogenic systems in sedimentary environments with approximately layered structures, we propose the Dynamic Error Bat Algorithm (DEBA), which integrates the cooling strategy, the dynamized fit error function, and the Bat Algorithm. DEBA enhances the breadth of global exploration in the early iteration stages while focusing on the depth of local exploitation in the later stages, yielding a more effective fitting outcome and better identification of electrical interfaces. Validity and noise immunity tests on typical synthetic models prove the robustness of DEBA. For broadband MT stations from the central Songliao Basin, we observed that the model derived from three-dimensional inversion did not provide an ideal layering effect for the shallow structure. Notably, the apparent resistivity and phase curves of these MT stations are similar, suggesting that the shallow structure in the study area has approximately one-dimensional (1-D) features, a conclusion that was further supported by phase tensor analysis. To gain a clearer understanding of the shallow structure, we applied DEBA to perform an averaged 1-D inversion. The subsequent results reveal a low-resistivity layer, which may be attributed to metallic sulfides or saline fluids. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

18 pages, 3900 KiB  
Article
Resolving Subsurface Structure with Magnetotelluric Method in the Urban Area of Pingtung County, Southwestern Taiwan
by Haiyina Hasbia Amania, Ping-Yu Chang, Ding-Jiun Lin, Jordi Mahardika Puntu and Yekti Widyaningrum
Appl. Sci. 2025, 15(7), 3687; https://doi.org/10.3390/app15073687 - 27 Mar 2025
Viewed by 893
Abstract
This study presents the results of the Magnetotelluric (MT) survey aimed at resolving the subsurface structures in the northern part of the Pingtung Plain. Data analysis was conducted using ten local observation stations and one remote reference station. Due to the significant noise [...] Read more.
This study presents the results of the Magnetotelluric (MT) survey aimed at resolving the subsurface structures in the northern part of the Pingtung Plain. Data analysis was conducted using ten local observation stations and one remote reference station. Due to the significant noise of the urban environment, the process of obtaining high-quality results proved to be challenging. The impact of such noise on the transfer function estimation is demonstrated, emphasizing the need for careful data selection and processing to mitigate its effects. The results reveal a distinct low–high–low-resistivity trend in the subsurface, with the Quaternary–Neogene sediment boundary estimated to be up to 500 m deep. Additionally, this study maps depths of up to 4 km, where it indicates possible faulting structures below the study area, which may be related to the previously assumed structures south of the study area. Given the limited, available deep subsurface information of the study area, these findings offer a preliminary understanding of the subsurface characteristics of the northern Pingtung Plain, which may contribute to ongoing research on the geological characteristics of the region while taking into account the importance of addressing urban noise when interpreting MT data. Full article
(This article belongs to the Special Issue Applied Geophysical Imaging and Data Processing)
Show Figures

Figure 1

18 pages, 8412 KiB  
Article
Geophysics and Geochemistry Reveal the Formation Mechanism of the Kahui Geothermal Field in Western Sichuan, China
by Zhilong Liu, Gaofeng Ye, Huan Wang, Hao Dong, Bowen Xu and Huailiang Zhu
Minerals 2025, 15(4), 339; https://doi.org/10.3390/min15040339 - 25 Mar 2025
Viewed by 432
Abstract
This study investigated the formation mechanism of the Kahui Geothermal Field in Western Sichuan, China, using geophysical and geochemical approaches to elucidate its geological structure and geothermal origins. This study employed a combination of 2D and 3D inversion techniques involved in natural electromagnetic [...] Read more.
This study investigated the formation mechanism of the Kahui Geothermal Field in Western Sichuan, China, using geophysical and geochemical approaches to elucidate its geological structure and geothermal origins. This study employed a combination of 2D and 3D inversion techniques involved in natural electromagnetic methods (magnetotelluric, MT, and audio magnetotelluric, AMT) along with the analysis of hydrogeochemical samples to achieve a comprehensive understanding of the geothermal system. Geophysical inversion revealed a three-layer resistivity structure within the upper 2.5 km of the study area. A geological interpretation was conducted on the resistivity structure model, identifying two faults, the Litang Fault and the Kahui Fault. The analysis suggested that the shallow part of the Kahui Geothermal Field is controlled by the Kahui Fault. Hydrochemical analysis showed that the water chemistry of the Kahui Geothermal Field is of the HCO3−Na type, primarily sourced from atmospheric precipitation. The deep heat source of the Kahui Geothermal Field was attributed to the partial melting of the middle crust, driven by the upwelling of mantle fluids. This process provides the necessary thermal energy for the geothermal system. Atmospheric precipitation infiltrates through tectonic fractures, undergoes deep circulation and heating, and interacts with the host rocks. The heated fluids then rise along faults and mix with shallow cold water, ultimately emerging as hot springs. Full article
Show Figures

Figure 1

16 pages, 12450 KiB  
Article
Investigation and Evaluation of Geothermal Resources in Northern Shanxi Province, China
by Zhongxu Lu, Yang Yang, Yajun Mo, Haizhi Liao and Youlian Cai
Energies 2025, 18(6), 1494; https://doi.org/10.3390/en18061494 - 18 Mar 2025
Viewed by 402
Abstract
In this study, survey methods including seismic techniques and controlled-source audio-frequency magnetotelluric, drilling, and pumping tests were employed to investigate the geothermal systems and their formation mechanisms in northern Shanxi Province, China. The following characteristics were observed: (1) Geothermal resources in northern Shanxi [...] Read more.
In this study, survey methods including seismic techniques and controlled-source audio-frequency magnetotelluric, drilling, and pumping tests were employed to investigate the geothermal systems and their formation mechanisms in northern Shanxi Province, China. The following characteristics were observed: (1) Geothermal resources in northern Shanxi Province are primarily located in Archean metamorphic rocks and fracture zone aquifer groups. The direct heat source is likely uncooled magma chambers in the middle-upper crust, whereas the overlying layers consist of Quaternary, Neogene, and Paleogene deposits. (2) The high-temperature geothermal system is of the convective-conductive type: atmospheric precipitation and surface water infiltrate pore spaces and fault fractures to reach thermal storage, where they are heated. Hot water then rises along the fracture channels and emerges as shallow hot springs, and ongoing extensional tectonic activity has caused asthenospheric upwelling. The partial melting of the upper mantle forms basic basaltic magma, which ascends to the middle-upper crust and forms multiple magma chambers. Their heat is transferred to the shallow subsurface, causing geothermal anomalies. (3) Borehole YG-1 findings revealed that these geothermal resources are primarily static reserves. Our findings provide a foundation for further geothermal development in the region, including the strategic deployment of wells to improve geothermal energy extraction. Full article
Show Figures

Figure 1

Back to TopTop