Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = magnetooptics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 239
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

14 pages, 2681 KiB  
Article
Waveguide-Assisted Magneto-Optical Effects in 1D Garnet/Co/Au Plasmonic Crystals
by Tatiana Murzina, Andrey Dotsenko, Irina Kolmychek, Vladimir Novikov, Nikita Gusev, Ilya Fedotov and Sergei Gusev
Photonics 2025, 12(7), 728; https://doi.org/10.3390/photonics12070728 - 17 Jul 2025
Viewed by 242
Abstract
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known [...] Read more.
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known for their high-quality tunable resonant optical properties. Here, we present the results of experimental and numerical studies on the functional magneto-optical (MO) response of planar 1D plasmonic crystals composed of Co/Au stripes of submicron period on the surface of a 3 μm thick rare-earth garnet layer. The experimental and numerical studies confirm that the wavelength–angular spectra of such structures contain a set of tunable resonant features in their optical and magneto-optical response, associated with the excitation of (i) surface plasmon polaritons at the Co/Au grating–garnet interface, as well as (ii) waveguide (WG) modes propagating in the garnet slab. A comparison of the MO effects in the transversal and longitudinal magnetization of the plasmonic structures is presented. We show that the most efficient Fano-type MPC magneto-optical response is realized for the WG modes of the first order for the longitudinal magnetization of the structure. Further perspectives regarding the optimization of this type of plasmonic crystal are discussed. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

12 pages, 3782 KiB  
Article
Structural, Magnetic and THz Emission Properties of Ultrathin Fe/L10-FePt/Pt Heterostructures
by Claudiu Locovei, Garik Torosyan, Evangelos Th. Papaioannou, Alina D. Crisan, Rene Beigang and Ovidiu Crisan
Nanomaterials 2025, 15(14), 1099; https://doi.org/10.3390/nano15141099 - 16 Jul 2025
Viewed by 293
Abstract
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In [...] Read more.
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In this work, we probe the mechanism of the ISHE by inserting a second ferromagnetic layer in the form of an alloy between the FM/NM system. In particular, by utilizing the co-sputtering technique, we fabricate Fe/L10-FePt/Pt ultra-thin heterostructures. We successfully grow the tetragonal phase of FePt (L10-phase) as revealed by X-ray diffraction and reflection techniques. We show the strong magnetic coupling between Fe and L10-FePt using magneto-optical and Superconducting Quantum Interference Device (SQUID) magnetometry. Subsequently, by utilizing THz time domain spectroscopy technique, we record the THz emission and thus we the reveal the efficiency of spin-to-charge conversion in Fe/L10-FePt/Pt. We establish that Fe/L10-FePt/Pt configuration is significantly superior to the Fe/Pt bilayer structure, regarding THz emission amplitude. The unique trilayer structure opens new perspectives in terms of material choices for the future spintronic THz sources. Full article
Show Figures

Figure 1

15 pages, 7651 KiB  
Article
Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping
by Nanxi Lin, Hong Zhang, Yunye Shi, Chenjun Xu, Zhuoqian Xie and Yunjin Chen
Materials 2025, 18(13), 2953; https://doi.org/10.3390/ma18132953 - 22 Jun 2025
Viewed by 303
Abstract
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure [...] Read more.
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure of BiFeO3 into a cubic phase, thereby reducing the lattice mismatch with silicon to 2.8%. High-quality, highly oriented, silicon-based cubic Sr,Ti:BiFeO3 thin films were successfully fabricated using radio frequency magnetron sputtering. Due to the induced lattice distortion, the characteristic periodic spiral spin antiferromagnetic structure of BiFeO3 was suppressed, resulting in a significant enhancement of the saturation magnetization of cubic Bi0.5Sr0.5Fe0.5Ti0.5O3 (48.0 emu/cm3), compared to that of pristine BiFeO3 (5.0 emu/cm3). Furthermore, the incorporation of Sr2+ and Ti4+ ions eliminated the birefringence effect inherent in trigonal BiFeO3, thereby inducing a pronounced magneto-optical effect in the cubic Sr,Ti:BiFeO3 thin film. The magnetic circular dichroic ellipticity (ψF) of Bi0.5Sr0.5Fe0.5Ti0.5O3 reached an impressive 2300 degrees/cm. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

20 pages, 23355 KiB  
Article
Unveiling Thickness-Dependent Oxidation Effect on Optical Response of Room Temperature RF-Sputtered Nickel Ultrathin Films on Amorphous Glass: An Experimental and FDTD Investigation
by Dylan A. Huerta-Arteaga, Mitchel A. Ruiz-Robles, Srivathsava Surabhi, S. Shiva Samhitha, Santhosh Girish, María J. Martínez-Carreón, Francisco Solís-Pomar, A. Martínez-Huerta, Jong-Ryul Jeong and Eduardo Pérez-Tijerina
Materials 2025, 18(12), 2891; https://doi.org/10.3390/ma18122891 - 18 Jun 2025
Viewed by 493
Abstract
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research [...] Read more.
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research is to investigate the temporal oxidation of RF-sputtered Ni ultrathin films on Corning glass under ambient atmospheric conditions and its impact on their structural, surface, and optical characteristics. Controlled film thicknesses were achieved through precise manipulation of deposition parameters, enabling the analysis of oxidation-induced modifications. Atomic force microscopy (AFM) revealed that films with high structural integrity and surface uniformity are exhibiting roughness values (Rq) from 0.679 to 4.379 nm of corresponding thicknesses ranging from 4 to 85 nm. Scanning electron microscopy (SEM) validated the formation of Ni grains interspersed with NiO phases, facilitating SPR-like effects. UV-visible spectroscopy is demonstrating thickness-dependent spectral (plasmonic peak) shifts. Finite Difference Time Domain (FDTD) simulations corroborate the observed thickness-dependent optical absorbance and the resultant shifts in the absorbance-induced plasmonic peak position and bandgap. Increased NiO presence primarily drives the enhancement of electromagnetic (EM) field localization and the direct impact on power absorption efficiency, which are modulated by the tunability of the plasmonic peak position. Our work demonstrates that controlled fabrication conditions and optimal film thickness selection allow for accurate manipulation of the Ni oxidation process, significantly altering their optical properties. This enables the tailoring of these Ni films for applications in transparent conductive electrodes (TCEs), magneto-optic (MO) devices, spintronics, wear-resistant coatings, microelectronics, and photonics. Full article
Show Figures

Graphical abstract

9 pages, 1798 KiB  
Article
Magnetoplasmonic Resonators Designed with Hexagonally Arrayed Au/BIG Bilayer Nanodisks on Au Thin Film Layers for Enhanced MOKE and Refractive Index Sensing
by Ziqi Wang, Xiaojian Cui and Yujun Song
Coatings 2025, 15(5), 601; https://doi.org/10.3390/coatings15050601 - 18 May 2025
Viewed by 404
Abstract
A kind of magnetoplasmonic resonators is numerically designed with hexagonally arrayed Au/bismuth iron garnet (BIG) bilayer nanodiscks on Au thin film layers. Multi-physics coupling calculation on their magnetoplasmonic resonance features suggest that there exists a strong resonant coupling between the surface plasmon excited [...] Read more.
A kind of magnetoplasmonic resonators is numerically designed with hexagonally arrayed Au/bismuth iron garnet (BIG) bilayer nanodiscks on Au thin film layers. Multi-physics coupling calculation on their magnetoplasmonic resonance features suggest that there exists a strong resonant coupling between the surface plasmon excited by the hexagonal grating and the waveguide modes induced by Au-BIG-Au, which can significantly enhance the transverse magneto-optical Kerr effect. Interestingly, a new type of circular oscillating can be induced in the optical-transparent BIG layers as the thickness of BIG layers is between 2 nm and 22 nm. This circular oscillating exhibits a distinct thickness-dependent feature, which can be attributed to the near field interference of the excited localized plasmon resonance between the two interfaces formed by the middle BIG nanodiscs in the top Au nanodisks and the bottom Au thin film layers according to the simulation. These unique magnetoplasmonic features endow this kind of magnetoplasmonic resonators with a greatly enhanced refractive index sensing property, with a calculated figure of merit (FOM) value of up to 7527 RIU−1. Full article
Show Figures

Figure 1

9 pages, 8350 KiB  
Communication
Asymmetry Analysis of the Autler–Townes Doublet in the Trap-Loss Fluorescence Spectroscopy of Cesium MOT with Single-Step Rydberg Excitation
by Xiaokai Hou, Yuewei Wang, Jun He and Junmin Wang
Photonics 2025, 12(5), 412; https://doi.org/10.3390/photonics12050412 - 24 Apr 2025
Viewed by 426
Abstract
The Autler–Townes (AT) doublet, a fundamental manifestation of quantum interference effects, serves as a critical tool for studying the dynamic behavior of Rydberg atoms. Here, we investigate the asymmetry of the Autler–Townes (AT) doublet in the trap-loss fluorescence spectroscopy (TLFS) of cesium (Cs) [...] Read more.
The Autler–Townes (AT) doublet, a fundamental manifestation of quantum interference effects, serves as a critical tool for studying the dynamic behavior of Rydberg atoms. Here, we investigate the asymmetry of the Autler–Townes (AT) doublet in the trap-loss fluorescence spectroscopy (TLFS) of cesium (Cs) atoms confined in a magneto-optical trap (MOT) with single-step Rydberg excitation using a 319-nm ultraviolet (UV) laser. A V-type three-level system involving the ground state 6S1/2 (F = 4), excited state 6P3/2 (F = 5), and Rydberg state (nP3/2 (mJ = +3/2)) is theoretically modeled to analyze the nonlinear dependence of the AT doublet’s asymmetry and interval on the cooling laser’s detuning. Experiments reveal that as the cooling laser detuning Δ1 decreases from −15 MHz to −10 MHz, the AT doublet exhibits increasing symmetry, while its interval shows a nonlinear decrease. Theoretical simulations based on the density matrix equation and Lindblad master equation align closely with experimental data, confirming the model’s validity. This study provides insights into quantum interference dynamics in multi-level systems and offers a systematic approach for optimizing precision measurements in cold atom spectroscopy. Full article
Show Figures

Figure 1

15 pages, 8651 KiB  
Article
Rotating Polarization Magnetometry
by Szymon Pustelny and Przemysław Włodarczyk
Sensors 2025, 25(9), 2682; https://doi.org/10.3390/s25092682 - 24 Apr 2025
Viewed by 515
Abstract
Precise magnetometry is vital in numerous scientific and technological applications. At the forefront of sensitivity, optical atomic magnetometry, particularly techniques utilizing nonlinear magneto-optical rotation (NMOR), enables ultraprecise measurements across a broad field range. Despite their potential, these techniques reportedly lose sensitivity in higher [...] Read more.
Precise magnetometry is vital in numerous scientific and technological applications. At the forefront of sensitivity, optical atomic magnetometry, particularly techniques utilizing nonlinear magneto-optical rotation (NMOR), enables ultraprecise measurements across a broad field range. Despite their potential, these techniques reportedly lose sensitivity in higher magnetic fields, which is attributed to the alignment-to-orientation conversion (AOC) process. In our study, we utilized light with continuously rotating linear polarization to avoid the AOC, which produced robust optical signals and achieving high magnetometric sensitivity over a dynamic range nearly three times greater than Earth’s magnetic field. We demonstrated that employing rotating polarization surpasses other NMOR techniques that use modulated light. Our findings also indicate that the previously observed signal deterioration was not due to the AOC, suggesting an alternative cause for this decline. Full article
(This article belongs to the Special Issue Atomic Magnetic Sensors)
Show Figures

Figure 1

13 pages, 4942 KiB  
Article
The Influence of a Constant Magnetic Field on a Vertical Combined Magnetic Field in Magneto-Optical Imaging
by Nvjie Ma, Xiangdong Gao, Yanxi Zhang, Shichao Gu and Jinyang Liu
Metals 2025, 15(4), 340; https://doi.org/10.3390/met15040340 - 21 Mar 2025
Viewed by 299
Abstract
The extension direction of welding defects is random and uncontrollable, while magneto-optical imaging detection has a good imaging effect on defects perpendicular to the magnetic field direction. At present, magneto-optical detection methods may fail to detect small weld defects parallel to the direction [...] Read more.
The extension direction of welding defects is random and uncontrollable, while magneto-optical imaging detection has a good imaging effect on defects perpendicular to the magnetic field direction. At present, magneto-optical detection methods may fail to detect small weld defects parallel to the direction of the magnetic field. To overcome this problem, a non-destructive testing method based on magneto-optical imaging under a vertical combined magnetic field (VCMF) is proposed. The paper first establishes a simulation model to compare and analyze the magnetic leakage characteristics of cross grooves under a constant magnetic field (CMF), an alternating magnetic field (AMF), a rotating magnetic field (RMF), a parallel combined magnetic field (PCMF), and VCMF excitation, proving that detection does not easily fail under VCMF. Secondly, by changing the size of the CMF in the VCMF simulation model, it was found that, as the CMF intensity increases, a new maximum value will appear on the side of the defect contour close to the sample area. This maximum value increases with the increase of the CMF intensity, which can lead to misjudgment of the defect contour, that is, false contours. Finally, magneto-optical imaging was used to verify the imaging effect of weld defects under VCMFs. The results indicate that more comprehensive defect information can be detected under VCMFs. When the maximum value of the excitation current of the AMF is at least 12 times the excitation current of the CMF, there will be no false contour defects. Full article
Show Figures

Figure 1

24 pages, 4959 KiB  
Article
Feature of Nonlinear Electromagnetic Properties and Local Atomic Structure of Metals in Two Systems of Nanocomposites Cox(MgF2)100−x and (CoFeZr)x(MgF2)100−x
by Evelina Pavlovna Domashevskaya, Sergey Alexandrovich Ivkov, Elena Alexandrovna Ganshina, Lyubov Vladimirovna Guda, Valeriy Grigoryevich Vlasenko and Alexander Victorovich Sitnikov
Nanomaterials 2025, 15(6), 463; https://doi.org/10.3390/nano15060463 - 19 Mar 2025
Viewed by 447
Abstract
Based on modern concepts of the nonlinear percolation mechanisms of electrical and magnetic properties in granular metal–dielectric nanocomposites, the authors present for the first time a comparative analysis of their own results of a comprehensive study of nonlinear electromagnetic properties in two nanocomposite [...] Read more.
Based on modern concepts of the nonlinear percolation mechanisms of electrical and magnetic properties in granular metal–dielectric nanocomposites, the authors present for the first time a comparative analysis of their own results of a comprehensive study of nonlinear electromagnetic properties in two nanocomposite systems: metal–dielectric Cox(MgF2)100−x and alloy–dielectric (CoFeZr)x(MgF2)100−x, obtained by ion-beam sputtering of composite targets in a wide range of different compositions. For the first time, the features of the influence of atomic composition and structural-phase transitions on nonlinear magnetoresistive, magnetic, and magneto-optical properties in two systems are presented in comparison, one of which, Cox(MgF2)100−x, showed soft magnetic properties, and the second, (CoFeZr)x(MgF2)100−x, hard magnetic properties, during the transition from the superparamagnetic to the ferromagnetic state. Moreover, for the first time, the concentration dependences of the oscillating fine structure of XANES K-absorption edges of Co atoms in the first system and Co and Fe atoms in the second system are presented, which undergo changes at the percolation thresholds in each of the two systems and thus confirm the nonlinear nature of the electromagnetic properties changes in each of the two systems at the atomic level. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

14 pages, 3162 KiB  
Article
Integrated Low-Loss, High-Isolation, and Broadband Magneto-Optical Isolator with TE-Mode Input
by Li Liu, Jia Zhao and Chen Zhang
Micromachines 2025, 16(3), 315; https://doi.org/10.3390/mi16030315 - 9 Mar 2025
Cited by 1 | Viewed by 1158
Abstract
High-performance optical isolators are key components in photonic integrated circuits, with significant applications in nonlinear optical systems. We propose a design for a TE-mode optical isolator based on the AlGaAs-on-insulator platform. The isolator consists of non-reciprocal phase shift (NRPS) waveguides, reciprocal phase shift [...] Read more.
High-performance optical isolators are key components in photonic integrated circuits, with significant applications in nonlinear optical systems. We propose a design for a TE-mode optical isolator based on the AlGaAs-on-insulator platform. The isolator consists of non-reciprocal phase shift (NRPS) waveguides, reciprocal phase shift (RPS) waveguides, and multi-mode interference (MMI) couplers achieving low loss, high isolation, and wide bandwidth. Numerical simulations show that, at a wavelength of 1550 nm, the device provides a bandwidth of 91 nm at 30 dB isolation. The confinement factors for a magneto-optical (MO) waveguide were analyzed, and a detailed loss analysis revealed a total loss of 1.47 dB and a figure of merit (FoM) of 2.76 rad/dB. The manufacturing tolerances of the isolator are discussed referring to the requirement of stability and reliability in practical applications. This study provides an optimized design for high-performance TE-mode optical isolators in integrated photonic systems, which are well-suited for efficient and stable nonlinear optical applications. Full article
Show Figures

Figure 1

6 pages, 1677 KiB  
Proceeding Paper
Magneto-Optical Investigation of Surface Magnetization in Comparison with Bulk Magnetization
by Hermann Tetzlaff, Martin Wortmann and Andrea Ehrmann
Phys. Sci. Forum 2024, 10(1), 9; https://doi.org/10.3390/psf2024010009 - 4 Mar 2025
Viewed by 498
Abstract
Exchange-biased specimens were produced by molecular beam epitaxy (MBE) of ferromagnetic (FM) Co-on-CoO substrates after the substrates had been irradiated by heavy ions to induce defects in the antiferromagnet (AFM). Measurements were obtained at different temperatures for different sample orientations with respect to [...] Read more.
Exchange-biased specimens were produced by molecular beam epitaxy (MBE) of ferromagnetic (FM) Co-on-CoO substrates after the substrates had been irradiated by heavy ions to induce defects in the antiferromagnet (AFM). Measurements were obtained at different temperatures for different sample orientations with respect to the external magnetic field. While the EB was relatively small, measurements of the bulk magnetization at low temperatures revealed unusually shaped hysteresis loops. The surface magnetization, however, showed simple, nearly rectangular hysteresis loops. This study focuses on the advantage of complementary information on surface and bulk magnetization from optical and non-optical measurement methods. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Photonics)
Show Figures

Figure 1

12 pages, 8770 KiB  
Article
Optimization of Magnetoplasmonic Behavior in Ag/Fe Bilayer Nanostructures Towards Refractometric Sensing
by João Pedro Miranda Carvalho, Bernardo S. Dias, Luís C. C. Coelho and José M. M. M. de Almeida
Sensors 2025, 25(5), 1419; https://doi.org/10.3390/s25051419 - 26 Feb 2025
Viewed by 530
Abstract
Magneto-optic surface plasmon resonances (MOSPRs) rely on the interaction of magnetic fields with surface plasmon polaritons (SPP) to modulate plasmonic bands with magnetic fields and enhance magneto-optical activity. In the present work, a study on the magnetoplasmonic behavior of Ag/Fe bilayers is carried [...] Read more.
Magneto-optic surface plasmon resonances (MOSPRs) rely on the interaction of magnetic fields with surface plasmon polaritons (SPP) to modulate plasmonic bands with magnetic fields and enhance magneto-optical activity. In the present work, a study on the magnetoplasmonic behavior of Ag/Fe bilayers is carried out by VIS-NIR spectroscopy and backed with SQUID measurements, determining the thickness-dependent magnetization of thin-film samples. The MOSPR sensing properties of Ag/Fe planar bilayers are simulated using Berreman’s matrix formalism, from which an optimized structure composed of 15 nm of Ag and 12.5 nm of Fe is obtained. The selected structure is fabricated and characterized for refractive index (RI) sensitivity, reaching 4946 RIU−1 and returning an effective enhancement of refractometric sensitivity after magneto-optical modulation. A new optimized and cobalt-free magnetoplasmonic Ag/Fe bilayer structure is studied, fabricated, and characterized for the first time towards refractometric sensing, to the best of our knowledge. This configuration exhibits potential for enhancing refractometric sensitivity via magneto-optical modulation, thus paving the way towards a simpler, more accessible, and safe type of RI sensor with potential applications in chemical sensors and biosensors. Full article
Show Figures

Figure 1

10 pages, 1261 KiB  
Article
Optical Absorption and Luminescence Spectra of Terbium Gallium Garnet TbGaG and Terbium Aluminum Garnet TbAlG
by Nosirjon S. Bozorov, Ismailjan M. Kokanbayev, Akmaljon M. Madaliev, Mavzurjon X. Kuchkarov, Muxtarjan Meliboev, Kobiljon K. Kurbonaliev, Ravshan R. Sultonov, Khayrullo F. Makhmudov, Feruza O. Dadaboyeva, Nargiza Z. Mamadalieva and Shakhlo R. Kukanbaeva
Inorganics 2025, 13(2), 61; https://doi.org/10.3390/inorganics13020061 - 17 Feb 2025
Viewed by 596
Abstract
In this paper, we investigate the optical absorption and luminescence spectra of rare-earth garnets activated by the terbium (Tb3+) ion, as well as their magneto-optical properties. Crystals of terbium gallium garnet (TbGaG) and terbium aluminum garnet (TbAlG) are considered. The focus [...] Read more.
In this paper, we investigate the optical absorption and luminescence spectra of rare-earth garnets activated by the terbium (Tb3+) ion, as well as their magneto-optical properties. Crystals of terbium gallium garnet (TbGaG) and terbium aluminum garnet (TbAlG) are considered. The focus is on the physical and optical properties and structural features of the energy levels of rare-earth ions in the crystal field of garnets. This work highlights the importance of studying intraconfigurational 4f-4f and interconfigurational 4f-5d transitions, as well as the influence of the crystal field on the magnetic and optical properties of materials. Integrated methods are used, including absorption spectroscopy, luminescence and magneto-optical studies, which allows us to obtain detailed information on the excited states of rare-earth ions. The experimental results show the presence of significant Zeeman shifts, as well as anisotropy of the absorption and luminescence spectra, depending on the orientation of the crystal lattice and the external magnetic field. This work contributes to our understanding of the mechanisms of light absorption and emission in rare-earth garnets, which may facilitate the development of new optoelectronic devices based on them. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

12 pages, 1490 KiB  
Communication
Temporal Faraday and Other Magneto-Optic Effects
by José Tito Mendonça
Photonics 2025, 12(2), 139; https://doi.org/10.3390/photonics12020139 - 9 Feb 2025
Viewed by 807
Abstract
We consider temporal optical effects in the presence of static fields, and more generally in anisotropic optical media, such as magnetized materials. Magneto-optical effects are due not just to phase shifts between the different eigenmodes, as in static media, but also to temporal [...] Read more.
We consider temporal optical effects in the presence of static fields, and more generally in anisotropic optical media, such as magnetized materials. Magneto-optical effects are due not just to phase shifts between the different eigenmodes, as in static media, but also to temporal variations in the frequency and mode amplitudes. Faraday rotations, Cotton–Mouton effects and other polarimetric processes due to static magnetic or electric fields are discussed. Examples of magneto-plasmas are compared with those in nonlinear Kerr media. These temporal processes could be of general interest in plasma physics and photonics. Full article
Show Figures

Figure 1

Back to TopTop