Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = magnetoelectric nanocomposites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4727 KB  
Review
Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics
by Sujoy Saha, Sabita Acharya, Ying Liu, Peng Zhou, Michael R. Page and Gopalan Srinivasan
Appl. Sci. 2025, 15(9), 5162; https://doi.org/10.3390/app15095162 - 6 May 2025
Cited by 1 | Viewed by 1372
Abstract
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a [...] Read more.
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a key factor that determines the strength of magneto-electric (ME) coupling, is much higher than for bulk or thin-film composites. Core–shell nano- and microcomposites of the ferroic phases are the preferred structures, since they are free of any clamping due to substrates that are present in nanobilayers or nanopillars on a substrate. This review concerns recent efforts on ME coupling in coaxial fibers of spinel or hexagonal ferrites for the magnetic phase and PZT or barium titanate for the ferroelectric phase. Several recent studies on the synthesis and ME measurements of fibers with nickel ferrite, nickel zinc ferrite, or cobalt ferrite for the spinel ferrite and M-, Y-, and W-types for the hexagonal ferrites were considered. Fibers synthesized by electrospinning were found to be free of impurity phases and had uniform core and shell structures. Piezo force microscopy (PFM) and scanning microwave microscopy (SMM) measurements of strengths of direct and converse ME effects on individual fibers showed evidence for strong coupling. Results of low-frequency ME voltage coefficient and magneto-dielectric effects on 2D and 3D films of the fibers assembled in a magnetic field, however, were indicative of ME couplings that were weaker than in bulk or thick-film composites. A strong ME interaction was only evident from data on magnetic field-induced variations in the remnant ferroelectric polarization in the discs of the fibers. Follow-up efforts aimed at further enhancement in the strengths of ME coupling in core–shell composites are also discussed in this review. Full article
(This article belongs to the Special Issue Applied Electronics and Functional Materials)
Show Figures

Figure 1

16 pages, 2966 KB  
Article
Finite Element Analysis of Strain-Mediated Direct Magnetoelectric Coupling in Multiferroic Nanocomposites for Material Jetting Fabrication of Tunable Devices
by William Paul Flynn, Sean Garnsey, Amar S. Bhalla and Ruyan Guo
J. Compos. Sci. 2025, 9(5), 228; https://doi.org/10.3390/jcs9050228 - 1 May 2025
Viewed by 1601
Abstract
Magnetoelectric composites enable strain-mediated coupling between magnetic and electric fields, supporting applications in sensors, actuators, and tunable devices. This study presents a finite element modeling framework for simulating the direct magnetoelectric effect in core–shell and layered nanocomposites fabricated by material jetting (inkjet printing). [...] Read more.
Magnetoelectric composites enable strain-mediated coupling between magnetic and electric fields, supporting applications in sensors, actuators, and tunable devices. This study presents a finite element modeling framework for simulating the direct magnetoelectric effect in core–shell and layered nanocomposites fabricated by material jetting (inkjet printing). The model incorporates nonlinear magnetostrictive behavior of cobalt ferrite nanoparticles and size-dependent piezoelectric properties of barium titanate, allowing efficient simulation of complex interfacial strain transfer. Results show a strong dependence of coupling on field orientation, particle arrangement, and interfacial geometry. Simulations of printed droplet geometries, including coffee ring droplet morphologies, reveal enhanced performance through increased surface area and directional alignment. These findings highlight the potential of material jetting for customizable, high-performance magnetoelectric devices and provide a foundation for simulation-guided design. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

21 pages, 11097 KB  
Article
A thorough Investigation of Rare-Earth Dy3+ Substituted Cobalt-Chromium Ferrite and Its Magnetoelectric Nanocomposite
by Ram H. Kadam, Ravi Shitole, Santosh B. Kadam, Kirti Desai, Atul P. Birajdar, Vinod K. Barote, Khalid Mujasam Batoo, Sajjad Hussain and Sagar E. Shirsath
Nanomaterials 2023, 13(7), 1165; https://doi.org/10.3390/nano13071165 - 24 Mar 2023
Cited by 64 | Viewed by 3259
Abstract
The stoichiometric compositions of a ferrite system with a chemical formula CoCr0.5DyxFe1.5−xO4 where x = 0.0, 0.025, 0.05, 0.075 and 0.1 were prepared by the sol-gel auto-combustion method. The structural, morphological and magnetic properties were studied [...] Read more.
The stoichiometric compositions of a ferrite system with a chemical formula CoCr0.5DyxFe1.5−xO4 where x = 0.0, 0.025, 0.05, 0.075 and 0.1 were prepared by the sol-gel auto-combustion method. The structural, morphological and magnetic properties were studied by the X-ray diffraction (XRD), infra-red spectroscopy (IR), scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer. XRD analysis confirmed the cubic spinel structure of the prepared samples without the presence of any impurity and secondary phases. Selected area electron diffraction and IR measurements gives further confirmation to the XRD observations. Considering that strain mechanism, elastic properties and cation distribution play a major role for controlling the magnetic properties and therefore these properties were precisely evaluated through reliable methodologies such as XRD and IR data. The cation distribution was determined by the X-ray diffraction data which are further supported by the magnetization studies. Magnetoelectric properties of CoCr0.5DyxFe1.5−xO4 + BaTiO3 have also been investigated. The mechanisms involved are discussed in the manuscript. Full article
(This article belongs to the Special Issue Perspectives in Magnetoelectric and Magnetic Nanomaterials)
Show Figures

Figure 1

10 pages, 1250 KB  
Article
Magnetoresistive Properties of Nanocomposites Based on Ferrite Nanoparticles and Polythiophene
by Roma Wirecka, Krzysztof Maćkosz, Antoni Żywczak, Mateusz Marek Marzec, Szczepan Zapotoczny and Andrzej Bernasik
Nanomaterials 2023, 13(5), 879; https://doi.org/10.3390/nano13050879 - 26 Feb 2023
Cited by 9 | Viewed by 2628
Abstract
In the presented study, we have synthesized six nanocomposites based on various magnetic nanoparticles and a conducting polymer, poly(3-hexylthiophene-2,5-diyl) (P3HT). Nanoparticles were either coated with squalene and dodecanoic acid or with P3HT. The cores of the nanoparticles were made of one of three [...] Read more.
In the presented study, we have synthesized six nanocomposites based on various magnetic nanoparticles and a conducting polymer, poly(3-hexylthiophene-2,5-diyl) (P3HT). Nanoparticles were either coated with squalene and dodecanoic acid or with P3HT. The cores of the nanoparticles were made of one of three different ferrites: nickel ferrite, cobalt ferrite, or magnetite. All synthesized nanoparticles had average diameters below 10 nm, with magnetic saturation at 300 K varying between 20 to 80 emu/g, depending on the used material. Different magnetic fillers allowed for exploring their impact on the conducting properties of the materials, and most importantly, allowed for studying the influence of the shell on the final electromagnetic properties of the nanocomposite. The conduction mechanism was well defined with the help of the variable range hopping model, and a possible mechanism of electrical conduction was proposed. Finally, the observed negative magnetoresistance of up to 5.5% at 180 K, and up to 1.6% at room temperature, was measured and discussed. Thoroughly described results show the role of the interface in the complex materials, as well as clarify room for improvement of the well-known magnetoelectric materials. Full article
(This article belongs to the Special Issue Hybrid Magnetic Nanomaterials)
Show Figures

Figure 1

21 pages, 9845 KB  
Article
Synthesis and Functional Characterization of CoxFe3−xO4-BaTiO3 Magnetoelectric Nanocomposites for Biomedical Applications
by Timur R. Nizamov, Abdulkarim A. Amirov, Tatiana O. Kuznetsova, Irina V. Dorofievich, Igor G. Bordyuzhin, Dmitry G. Zhukov, Anna V. Ivanova, Anna N. Gabashvili, Nataliya Yu. Tabachkova, Alexander A. Tepanov, Igor V. Shchetinin, Maxim A. Abakumov, Alexander G. Savchenko and Alexander G. Majouga
Nanomaterials 2023, 13(5), 811; https://doi.org/10.3390/nano13050811 - 22 Feb 2023
Cited by 20 | Viewed by 4121
Abstract
Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of [...] Read more.
Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3−xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3−xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0–14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25–400 μg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine. Full article
(This article belongs to the Special Issue Nanostructured Magnetic Materials and Technologies for Green Future)
Show Figures

Graphical abstract

17 pages, 2678 KB  
Article
Magnetoelectric Coupling in Room Temperature Multiferroic Ba2EuFeNb4O15/BaFe12O19 Epitaxial Heterostructures Grown by Laser Ablation
by Thameur Hajlaoui, Catalin Harnagea and Alain Pignolet
Nanomaterials 2023, 13(4), 761; https://doi.org/10.3390/nano13040761 - 17 Feb 2023
Cited by 1 | Viewed by 2662
Abstract
Multiferroic thin films are a promising class of multifunctional materials, since they allow the integration of multiple functionalities within a single device. In order to overcome the scarcity of single phase multiferroics, it is crucial to develop novel multiferroic heterostructures, combining good ferroelectric [...] Read more.
Multiferroic thin films are a promising class of multifunctional materials, since they allow the integration of multiple functionalities within a single device. In order to overcome the scarcity of single phase multiferroics, it is crucial to develop novel multiferroic heterostructures, combining good ferroelectric and ferromagnetic properties as well as a strong coupling between them. For this purpose, Ba2EuFeNb4O15/BaFe12O19 multiferroic magnetoelectric bilayers have been epitaxially grown on niobium doped SrTiO3 (100) single crystal substrates by pulsed laser deposition. The simultaneous presence of both ferroelectric and magnetic properties—due, respectively, to the Ba2EuFeNb4O15 and BaFe12O19 components—was demonstrated at room temperature, attesting the multiferroic nature of the heterostructure. More interestingly, a strong magnetoelectric coupling was demonstrated (i) by manipulating the ferroelectric properties via an external magnetic field, and conversely, (ii) by tuning the magnetic properties via an external electric field. This strong magnetoelectric coupling shows the high interdependence of both ferroic orders in the Ba2EuFeNb4O15/BaFe12O19 heterostructure, mediated by elastic (epitaxial) strain at the interfaces. Full article
Show Figures

Figure 1

22 pages, 4314 KB  
Article
Boosting Magnetoelectric Effect in Polymer-Based Nanocomposites
by Alexander Omelyanchik, Valentina Antipova, Christina Gritsenko, Valeria Kolesnikova, Dmitry Murzin, Yilin Han, Andrei V. Turutin, Ilya V. Kubasov, Alexander M. Kislyuk, Tatiana S. Ilina, Dmitry A. Kiselev, Marina I. Voronova, Mikhail D. Malinkovich, Yuriy N. Parkhomenko, Maxim Silibin, Elena N. Kozlova, Davide Peddis, Kateryna Levada, Liudmila Makarova, Abdulkarim Amirov and Valeria Rodionovaadd Show full author list remove Hide full author list
Nanomaterials 2021, 11(5), 1154; https://doi.org/10.3390/nano11051154 - 28 Apr 2021
Cited by 58 | Viewed by 7545
Abstract
Polymer-based magnetoelectric composite materials have attracted a lot of attention due to their high potential in various types of applications as magnetic field sensors, energy harvesting, and biomedical devices. Current researches are focused on the increase in the efficiency of magnetoelectric transformation. In [...] Read more.
Polymer-based magnetoelectric composite materials have attracted a lot of attention due to their high potential in various types of applications as magnetic field sensors, energy harvesting, and biomedical devices. Current researches are focused on the increase in the efficiency of magnetoelectric transformation. In this work, a new strategy of arrangement of clusters of magnetic nanoparticles by an external magnetic field in PVDF and PFVD-TrFE matrixes is proposed to increase the voltage coefficient (αME) of the magnetoelectric effect. Another strategy is the use of 3-component composites through the inclusion of piezoelectric BaTiO3 particles. Developed strategies allow us to increase the αME value from ~5 mV/cm·Oe for the composite of randomly distributed CoFe2O4 nanoparticles in PVDF matrix to ~18.5 mV/cm·Oe for a composite of magnetic particles in PVDF-TrFE matrix with 5%wt of piezoelectric particles. The applicability of such materials as bioactive surface is demonstrated on neural crest stem cell cultures. Full article
(This article belongs to the Special Issue Applications and Properties of Magnetic Nanoparticles)
Show Figures

Figure 1

12 pages, 2668 KB  
Article
Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffolds
by Estela O. Carvalho, Clarisse Ribeiro, Daniela M. Correia, Gabriela Botelho and Senentxu Lanceros-Mendez
Nanomaterials 2020, 10(12), 2421; https://doi.org/10.3390/nano10122421 - 3 Dec 2020
Cited by 20 | Viewed by 4300
Abstract
Scaffolds play an essential role in the success of tissue engineering approaches. Their intrinsic properties are known to influence cellular processes such as adhesion, proliferation and differentiation. Hydrogel-based matrices are attractive scaffolds due to their high-water content resembling the native extracellular matrix. In [...] Read more.
Scaffolds play an essential role in the success of tissue engineering approaches. Their intrinsic properties are known to influence cellular processes such as adhesion, proliferation and differentiation. Hydrogel-based matrices are attractive scaffolds due to their high-water content resembling the native extracellular matrix. In addition, polymer-based magnetoelectric materials have demonstrated suitable bioactivity, allowing to provide magnetically and mechanically activated biophysical electrical stimuli capable of improving cellular processes. The present work reports on a responsive scaffold based on poly (L-lactic acid) (PLLA) microspheres and magnetic microsphere nanocomposites composed of PLLA and magnetostrictive cobalt ferrites (CoFe2O4), combined with a hydrogel matrix, which mimics the tissue’s hydrated environment and acts as a support matrix. For cell proliferation evaluation, two different cell culture conditions (2D and 3D matrices) and two different strategies, static and dynamic culture, were applied in order to evaluate the influence of extracellular matrix-like confinement and the magnetoelectric/magneto-mechanical effect on cellular behavior. MC3T3-E1 proliferation rate is increased under dynamic conditions, indicating the potential use of hydrogel matrices with remotely stimulated magnetostrictive biomaterials for bone tissue engineering. Full article
Show Figures

Figure 1

11 pages, 3635 KB  
Article
Magnetoelectric Plasma Preparation of Silicon-Carbon Nanocomposite as Anode Material for Lithium Ion Batteries
by Fangfang Wang, Maochuan Gao, Ruoyu Hong and Xuesong Lu
Appl. Sci. 2020, 10(8), 2672; https://doi.org/10.3390/app10082672 - 13 Apr 2020
Cited by 6 | Viewed by 3904
Abstract
A high-performance silicon-carbon nanocomposite facilely prepared by one-step magnetoelectric plasma pyrolysis of the mixture of methane, silane, and hydrogen is proposed for lithium-ion batteries. The ratio of silane, methane, and hydrogen was studied to optimize the properties of the composite. When the ratio [...] Read more.
A high-performance silicon-carbon nanocomposite facilely prepared by one-step magnetoelectric plasma pyrolysis of the mixture of methane, silane, and hydrogen is proposed for lithium-ion batteries. The ratio of silane, methane, and hydrogen was studied to optimize the properties of the composite. When the ratio of hydrogen/silane/methane is 1:1:3, the composite is composed of spherical Si nanoparticles that uniformly attach to the surface of the tremelliform carbon nanosheets framework, in which the tremelliform carbon nanosheets can effectively resist the volumetric change of the Si nanoparticles during the cycles and serve as electronic channels. The silicon-carbon nanocomposite exhibits a high reversible capacity (1007 mAh g−1 after 50 cycles), a low charge transfer resistance, and an excellent rate performance. In addition, the proposed process for synthesizing silicon-carbon nanocomposite without expensive materials or toxic reagents is an environmentally friendly and cost-effective method for mass production. Full article
(This article belongs to the Special Issue Nanocomposite Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

18 pages, 4887 KB  
Article
Size-Dependent and Multi-Field Coupling Behavior of Layered Multiferroic Nanocomposites
by Yang Shi and Yongkun Wang
Materials 2019, 12(2), 260; https://doi.org/10.3390/ma12020260 - 14 Jan 2019
Cited by 5 | Viewed by 3645
Abstract
The prediction of magnetoelectric (ME) coupling in nano-scaled multiferroic composites is significant for nano-devices. In this paper, we propose a nonlinear multi-field coupling model for ME effect in layered multiferroic nanocomposites based on the surface stress model, strain gradient theory and nonlinear magneto-elastic-thermal [...] Read more.
The prediction of magnetoelectric (ME) coupling in nano-scaled multiferroic composites is significant for nano-devices. In this paper, we propose a nonlinear multi-field coupling model for ME effect in layered multiferroic nanocomposites based on the surface stress model, strain gradient theory and nonlinear magneto-elastic-thermal coupling constitutive relation. With this novel model, the influence of external fields on strain gradient and flexoelectricity is discussed for the first time. Meanwhile, a comprehensive investigation on the influence of size-dependent parameters and multi-field conditions on ME performance is made. The numerical results show that ME coupling is remarkably size-dependent as the thickness of the composites reduces to nanoscale. Especially, the ME coefficient is enhanced by either surface effect or flexoelectricity. The strain gradient in composites at the nano-scale is significant and influenced by the external stimuli at different levels via the change in materials’ properties. More importantly, due to the nonlinear multi-field coupling behavior of ferromagnetic materials, appropriate compressive stress and temperature may improve the value of ME coefficient and reduce the required magnetic field. This paper provides a theoretical basis to analyze and evaluate multi-field coupling characteristics of nanostructure-based ME devices. Full article
(This article belongs to the Collection Magnetoelastic Materials)
Show Figures

Figure 1

15 pages, 2935 KB  
Article
Multiferroic Core-Shell Nanofibers, Assembly in a Magnetic Field, and Studies on Magneto-Electric Interactions
by Gollapudi Sreenivasulu, Jitao Zhang, Ru Zhang, Maksym Popov, Vladimir Petrov and Gopalan Srinivasan
Materials 2018, 11(1), 18; https://doi.org/10.3390/ma11010018 - 23 Dec 2017
Cited by 38 | Viewed by 5406
Abstract
Ferromagnetic–ferroelectric nanocomposites are of interest for realizing strong strain-mediated coupling between electric and magnetic subsystems due to a high surface area-to-volume ratio. This report is on the synthesis of nickel ferrite (NFO)–barium titanate (BTO) core–shell nanofibers, magnetic field assisted assembly into superstructures, and [...] Read more.
Ferromagnetic–ferroelectric nanocomposites are of interest for realizing strong strain-mediated coupling between electric and magnetic subsystems due to a high surface area-to-volume ratio. This report is on the synthesis of nickel ferrite (NFO)–barium titanate (BTO) core–shell nanofibers, magnetic field assisted assembly into superstructures, and studies on magneto-electric (ME) interactions. Electrospinning techniques were used to prepare coaxial fibers of 0.5–1.5 micron in diameter. The core–shell structure of annealed fibers was confirmed by electron microscopy and scanning probe microscopy. The fibers were assembled into discs and films in a uniform magnetic field or in a field gradient. Studies on ME coupling in the assembled films and discs were done by magnetic field (H)-induced polarization, magneto–dielectric effects at low frequencies and at 16–24 GHz, and low-frequency ME voltage coefficients (MEVC). We measured ~2–7% change in remnant polarization and in the permittivity for H = 7 kOe, and a MEVC of 0.4 mV/cm Oe at 30 Hz. A model has been developed for low-frequency ME effects in an assembly of fibers and takes into account dipole–dipole interactions between the fibers and fiber discontinuity. Theoretical estimates for the low-frequency MEVC have been compared with the data. These results indicate strong ME coupling in superstructures of the core–shell fibers. Full article
Show Figures

Figure 1

7 pages, 1390 KB  
Article
Wide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content
by Pedro Martins, Marco Silva, Silvia Reis, Nélson Pereira, Harvey Amorín and Senentxu Lanceros-Mendez
Polymers 2017, 9(2), 62; https://doi.org/10.3390/polym9020062 - 14 Feb 2017
Cited by 29 | Viewed by 6944
Abstract
In order to obtain a wide-range magnetoelectric (ME) response on a ME nanocomposite that matches industry requirements, Tb0.3Dy0.7Fe1.92 (Terfenol-D)/CoFe2O4/P(VDF-TrFE) flexible films were produced by the solvent casting technique and their morphologic, piezoelectric, magnetic and magnetoelectric properties were investigated. The [...] Read more.
In order to obtain a wide-range magnetoelectric (ME) response on a ME nanocomposite that matches industry requirements, Tb0.3Dy0.7Fe1.92 (Terfenol-D)/CoFe2O4/P(VDF-TrFE) flexible films were produced by the solvent casting technique and their morphologic, piezoelectric, magnetic and magnetoelectric properties were investigated. The obtained composites revealed a high piezoelectric response (≈−18 pC·N−1) that is independent of the weight ratio between the fillers. In turn, the magnetic properties of the composites were influenced by the composite composition. It was found that the magnetization saturation values decreased with the increasing CoFe2O4 content (from 18.5 to 13.3 emu·g−1) while the magnetization and coercive field values increased (from 3.7 to 5.5 emu·g−1 and from 355.7 to 1225.2 Oe, respectively) with the increasing CoFe2O4 content. Additionally, the films showed a wide-range dual-peak ME response at room temperature with the ME coefficient increasing with the weight content of Terfenol-D, from 18.6 to 42.3 mV·cm−1·Oe−1. Full article
(This article belongs to the Special Issue Hybrid Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop