Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (190)

Search Parameters:
Keywords = magnetocaloric effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5366 KiB  
Article
Multifaceted Analysis of Pr2Fe16.75Ni0.25 Intermetallic Compound: Crystallographic Insights, Critical Phenomena, and Thermomagnetic Behavior near Room Temperature
by Jihed Horcheni, Hamdi Jaballah, Sirine Gharbi, Essebti Dhahri and Lotfi Bessais
Magnetochemistry 2025, 11(8), 65; https://doi.org/10.3390/magnetochemistry11080065 - 31 Jul 2025
Viewed by 78
Abstract
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an R3¯m space group. Pr2Fe [...] Read more.
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an R3¯m space group. Pr2Fe16.9Ni0.25 also demonstrates a direct magnetocaloric effect near room temperature, accompanied by a moderate magnetic entropy change (ΔSMmax = 5.5 J kg−1 K−1 at μ0ΔH=5 T) and a broad working temperature range. Furthermore, the Relative Cooling Power (RCP) is approximately 89% of the widely recognized gadolinium (Gd) for μ0ΔH=2 T. This compound exhibits a commendable magnetocaloric response, on par with or even surpassing that of numerous other intermetallic alloys. Critical behavior was analyzed using thermo-magnetic measurements, employing methods such as the modified Arrott plot, critical isotherm analysis, and Kouvel-Fisher techniques. The obtained critical exponents (β, γ, and δ) exhibit similarities to those of the 3D-Ising model, characterized explicitly by intermediate range interactions. Full article
Show Figures

Figure 1

22 pages, 4482 KiB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 331
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

15 pages, 6829 KiB  
Article
Thermal Hysteresis and Reversibility of the Giant Magnetocaloric Effect at the Ferromagnetic Transition of Nd2In
by Bao Gegen, Bao Huhe, Zhi-Qiang Ou, Francois Guillou and Hargen Yibole
Materials 2025, 18(13), 3104; https://doi.org/10.3390/ma18133104 - 1 Jul 2025
Viewed by 321
Abstract
The Nd2In compound exhibits an intriguing borderline first-/second-order transition at its Curie temperature. Several studies have pointed to its potential for magnetic cooling, but also raised controversies about the actual order of the transition, the amplitudes of the hysteresis, and of [...] Read more.
The Nd2In compound exhibits an intriguing borderline first-/second-order transition at its Curie temperature. Several studies have pointed to its potential for magnetic cooling, but also raised controversies about the actual order of the transition, the amplitudes of the hysteresis, and of its magnetocaloric effect. Here, we estimate the thermal hysteresis using magnetic and thermal measurements at different rates. It is found to be particularly small (0.1–0.4 K), leading to almost fully reversible adiabatic temperature changes when comparing zero-field cooling and cyclic protocols. Some open questions remain with regard to the magnetostriction of Nd2In, which is presently found to be limited, in line with the absence of a thermal expansion discontinuity at the transition. The comparison of the magnetocaloric effect in Nd2In and Eu2In highlights that the limited saturation magnetization of the former affects its performance. Further efforts should therefore be made to design materials with such borderline first-/second-order transitions using heavier rare earths. Full article
(This article belongs to the Special Issue Magnetic Shape Memory Alloys: Fundamentals and Applications)
Show Figures

Figure 1

14 pages, 9951 KiB  
Article
Magnetocaloric Effect of Gd1-xDyxScO3 (x = 0, 0.1, 0.2 and 1) Polycrystalline Compounds
by Yuwei Li, Xiukun Hu, Qiong Wu, Yi Zhao, Hangfu Yang, Minxiang Pan and Hongliang Ge
Materials 2025, 18(12), 2884; https://doi.org/10.3390/ma18122884 - 18 Jun 2025
Viewed by 352
Abstract
This study systematically investigates the magnetic ordering and magnetocaloric properties of a series of polycrystalline compounds, Gd1-xDyxScO3 (x = 0, 0.1, 0.2 and 1). X-ray powder diffraction (XRD) analysis confirms that all samples exhibit an orthorhombic perovskite structure [...] Read more.
This study systematically investigates the magnetic ordering and magnetocaloric properties of a series of polycrystalline compounds, Gd1-xDyxScO3 (x = 0, 0.1, 0.2 and 1). X-ray powder diffraction (XRD) analysis confirms that all samples exhibit an orthorhombic perovskite structure with a space group of Pbnm. The zero-field cooling and field cooling magnetization curves demonstrate a transition from antiferromagnetic to paramagnetic phases, with Néel temperatures of about 3 K for GdScO3 and 4 K for DyScO3. The doping of Dy3+ weakened long-range antiferromagnetic order and enhanced short-range magnetic disorder in GdScO3, leading to vanished antiferromagnetic transition between 2 and 100 K for the sample of x = 0.2. Using the Arrott–Noakes equation, we constructed Arrott plots to analyze the system’s critical behavior. Both the compounds with x = 0.1 and x = 0.2 conform to the 3D-Heisenberg model. These results indicate the weakened long-range antiferromagnetic order induced by Dy3+ doping. Significant maximal magnetic entropy change (−ΔSMMax) of 36.03 J/kg K at 3 K for the sample Gd0.9Dy0.1ScO3 is achieved as the magnetic field changes from 0 to 50 kOe, which is higher than that of GdScO3 (−ΔSMMax = 34.32 J/kg K) and DyScO3 (−ΔSMMax = 15.63 J/kg K). The considerable magnetocaloric effects (MCEs) suggest that these compounds can be used in the development of low-temperature magnetic refrigeration materials. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

15 pages, 7226 KiB  
Article
Structural, Magnetic, and Magnetocaloric Properties of Ce2(Fe, Co)17 Compounds: Tuning Magnetic Transitions and Enhancing Refrigeration Efficiency
by Hamdi Jaballah, Jihed Horcheni, Jacques Moscovici, Abderrahime Ayadim and Lotfi Bessais
Materials 2025, 18(9), 1958; https://doi.org/10.3390/ma18091958 - 25 Apr 2025
Viewed by 425
Abstract
This study explores the structural, magnetic, and magnetocaloric properties of Ce2(Fe, Co)17 (x = 0, 0.5, 0.6, and 0.7) compounds synthesized via arc melting under high temperatures exceeding 2300 K. The as-cast ingots are subsequently sealed and subjected to [...] Read more.
This study explores the structural, magnetic, and magnetocaloric properties of Ce2(Fe, Co)17 (x = 0, 0.5, 0.6, and 0.7) compounds synthesized via arc melting under high temperatures exceeding 2300 K. The as-cast ingots are subsequently sealed and subjected to a heat treatment at 1323 K to improve homogeneity and crystallinity. Detailed analyses using X-ray diffraction and magnetometry reveal that cobalt substitution significantly impacts the structural and magnetic behavior, enabling precise tuning of the magnetic transition temperature and magnetic order. The substitution induces an anisotropic increase in cell parameters and shifts the magnetocaloric effect (MCE) from low temperatures (200 K for x = 0) to near room temperature (285 K for x = 0.7), enhancing the operating temperature range. The magnetocaloric effect is studied across different magnetic transitions: a metamagnetic and ferro-antiferromagnetic transition followed by a paramagnetic state in one sample, and a direct ferro-paramagnetic transition in another. The compounds exhibit a second-order magnetic phase transition, ensuring a reversible MCE, with a relative cooling power (RCP) that is approximately 85% of that of pure Gd. Moreover, the use of cerium, the most cost-effective rare-earth element (5 $/kg), combined with its low atomic concentration (10%) in these intermetallics, enhances the sustainability and affordability of these materials. These findings underline the potential of iron-rich Ce-based compounds for next-generation refrigeration and energy-harvesting applications. Full article
Show Figures

Figure 1

12 pages, 4964 KiB  
Article
Cationic Mismatch Effect Induced by Double Substitution on the Structural and Magnetic Properties of La0.5Ca0.5MnO3
by Wadie Abdelhedi, Akram Krichene, Wahiba Boujelben and Nassira Chniba-Boudjada
Magnetochemistry 2025, 11(5), 36; https://doi.org/10.3390/magnetochemistry11050036 - 23 Apr 2025
Viewed by 747
Abstract
In this study, we aimed to induce controlled structural disorder through a double substitution approach in the La0.5Ca0.5MnO3 compound by investigating La0.5−xRexCa0.5−yAeyMnO3 compounds with x = 0.05 [...] Read more.
In this study, we aimed to induce controlled structural disorder through a double substitution approach in the La0.5Ca0.5MnO3 compound by investigating La0.5−xRexCa0.5−yAeyMnO3 compounds with x = 0.05 and 0.1 and Re = Eu, Nd, Gd, Pr, and Ae = Ba and Sr. The y values are adjusted to maintain a constant average ionic radius (<rA> = 1.198 Å) and an unchanged Mn3+/Mn4+ ratio. These samples were synthesized using the sol–gel method. XRD analysis confirms structural stability despite the induced disorder, showing subtle lattice distortions. Magnetic measurements reveal that introducing low disorder annihilates the charge ordered (CO) state, enhances double-exchange interactions, and influences the ferromagnetic (FM) volume fractions. Moderate disorder strengthens AFM–CO state, triggering a first–order metamagnetic transition and reducing the Curie temperature value. Magnetic field-dependent magnetization data show disorder dependent magnetic behavior and suggest the presence of the Griffiths phase for all samples, confirming the role of structural disorder in tuning magnetic phase coexistence. Pr-based samples display a considerable magnetocaloric effect near their Curie temperature. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Novel Functional Magnetic Materials)
Show Figures

Figure 1

10 pages, 2905 KiB  
Article
Magnetism and Low-Temperature Magnetocaloric Effect in Gd7(BO3)(PO4)2O6 Compound with Monoclinic Lattice
by Lu Tian, Xuetong He, Zhiwen Shen, Xinqiang Gao and Zhaojun Mo
Appl. Sci. 2025, 15(7), 3802; https://doi.org/10.3390/app15073802 - 31 Mar 2025
Cited by 1 | Viewed by 527
Abstract
The development of magnetic refrigerants with both low-field responsiveness and a large magnetic entropy change in the sub-Kelvin temperature range remains a critical challenge for advancing cryogenic technologies. This study focuses on the monoclinic compound Gd7(BO3)(PO4)2 [...] Read more.
The development of magnetic refrigerants with both low-field responsiveness and a large magnetic entropy change in the sub-Kelvin temperature range remains a critical challenge for advancing cryogenic technologies. This study focuses on the monoclinic compound Gd7(BO3)(PO4)2O6, in which high-density Gd3+ ions form magnetic frustrated structures within the bc-plane and stack along the a-axis direction. The combination of a high magnetic ion density and frustrated magnetic configuration enables the coexistence of a low magnetic transition temperature and excellent magnetocaloric effects. Magnetic susceptibility measurements reveal an antiferromagnetic-to-paramagnetic phase transition below 2 K. The maximum magnetic entropy change reaches 35.2 J kg−1 K−1 under a varying magnetic field of 0–7 T. This study highlights the potential of frustrated magnetic interactions in monoclinic lattices with a high Gd3+ content for achieving superior cryogenic magnetocaloric performance. Full article
Show Figures

Figure 1

14 pages, 4754 KiB  
Article
Slow Relaxation of Magnetization and Magnetocaloric Effects in One-Dimensional Oxamato-Based Lanthanide(III) Coordination Polymers
by Jhonny W. Maciel, Lucas H. G. Kalinke, Renato Rabelo, Meiry E. Alvarenga, Felipe Terra Martins, Nicolás Moliner and Danielle Cangussu
Magnetochemistry 2025, 11(4), 23; https://doi.org/10.3390/magnetochemistry11040023 - 24 Mar 2025
Cited by 1 | Viewed by 1047
Abstract
Herein, we present the synthesis and characterization of a series of isostructural lanthanide(III) compounds with the N-(4-carboxyphenyl)oxamic acid (H3pcpa) ligand of the general formula as {[Ln2(Hpcpa)3(H2O)5]}n [Ln = Dy(III) 1, [...] Read more.
Herein, we present the synthesis and characterization of a series of isostructural lanthanide(III) compounds with the N-(4-carboxyphenyl)oxamic acid (H3pcpa) ligand of the general formula as {[Ln2(Hpcpa)3(H2O)5]}n [Ln = Dy(III) 1, Ho(III) 2, Er(III) 3]. The structure of 3 consists of neutral zig–zag chains of Er(III) ions, with Hpcpa2– ligands acting as bridges in a bidentate/monodentate coordination mode with five water molecules achieving the eight-coordination around the two Er(III) ions within the repeating bis(carboxylate)-bridged dinuclear units along the chain. The magnetic and magnetocaloric properties were studied for 13. Compound 1 presents a field-induced slow relaxation of the magnetization with a “reciprocating thermal behavior” below 5 K for H = 0.25 T, while 2 shows maxima of the magnetic entropy from 3 up to 6 K for ΔH > 2 T. Full article
Show Figures

Graphical abstract

9 pages, 5372 KiB  
Article
A Model of a “Smart” Thermoresponsive Composite with Convertible Surface Geometry Controlled by the Magnetocaloric Effect
by Abdulkarim A. Amirov, Maksim A. Koliushenkov, Dibir M. Yusupov, Eldar K. Murliev, Alisa M. Chirkova and Alexander P. Kamantsev
J. Compos. Sci. 2025, 9(3), 97; https://doi.org/10.3390/jcs9030097 - 21 Feb 2025
Viewed by 2153
Abstract
A model of a “smart” composite based on a thermosensitive PNIPAM polymer deposited on a FeRh substrate with a modified periodic microstructure was proposed. The initial parameters of the model were determined from the properties of the actual composite sample and its components. [...] Read more.
A model of a “smart” composite based on a thermosensitive PNIPAM polymer deposited on a FeRh substrate with a modified periodic microstructure was proposed. The initial parameters of the model were determined from the properties of the actual composite sample and its components. Cooling of the sample using a magnetic field was shown by two independent methods, and at ~37 °C, it was −5.5 °C when a magnetic field of 1.8 T was applied. Based on experimental data, models of traditional and modified PNIPAM/FeRh composites were constructed. Calculations show that surface modification allows for an increase in the activation time for a polymer layer that is 20 µm thick from ~20 ms for a conventional composite to ~60 ms for a modified composite. Modification of the surface in the form of wells can be used to more effectively implement the idea of loading and releasing drugs for potential biomedical applications. Full article
Show Figures

Figure 1

9 pages, 5236 KiB  
Article
Magnetocaloric Effect in 3D Gd(III)-Oxalate Coordination Framework
by Fang-Wen Lv, Mei-Xin Hong, Xue-Ting Wang, Haiquan Tian, Chun-Chang Wang and Xiu-Ying Zheng
Nanomaterials 2025, 15(1), 32; https://doi.org/10.3390/nano15010032 - 28 Dec 2024
Cited by 1 | Viewed by 907
Abstract
Cryogenic magnetic refrigerants based on the magnetocaloric effect (MCE) hold significant potential as substitutes for the expensive and scarce He-3. Gd(III)-based complexes are considered excellent candidates for low-temperature magnetic refrigerants. We have synthesized a series of Ln(III)-based metal-organic framework (MOF) Ln-3D (Ln = [...] Read more.
Cryogenic magnetic refrigerants based on the magnetocaloric effect (MCE) hold significant potential as substitutes for the expensive and scarce He-3. Gd(III)-based complexes are considered excellent candidates for low-temperature magnetic refrigerants. We have synthesized a series of Ln(III)-based metal-organic framework (MOF) Ln-3D (Ln = Gd/Dy) by the slow release of oxalates in situ from organic ligands (disodium edetate dehydrate (EDTA-2Na) and thiodiglycolic acid). Structural analysis shows that the Ln-3D is a neutral 3D framework with one-dimensional channels connected by [Ln(H2O)3]3+ as nodes and C2O42− as linkers. Magnetic measurements show that Gd-3D exhibits very weak antiferromagnetic interactions with a maximum −ΔSm value of 36.6 J kg−1 K−1 (−ΔSv = 74.47 mJ cm−3 K−1) at 2 K and 7 T. The −ΔSm value is 28.4 J kg−1 K−1 at 2 K and 3 T, which is much larger than that of commercial Gd3Ga5O12 (GGG), indicating its potential as a low-temperature magnetic refrigerant. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Figure 1

17 pages, 1179 KiB  
Article
Magnetocaloric Effect for a Q-Clock-Type System
by Michel Aguilera, Sergio Pino-Alarcón, Francisco J. Peña, Eugenio E. Vogel, Natalia Cortés and Patricio Vargas
Entropy 2025, 27(1), 11; https://doi.org/10.3390/e27010011 - 27 Dec 2024
Viewed by 794
Abstract
In this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with Q possible orientations, known as the “Q-state clock model”. When the Q-state clock model has Q5 possible [...] Read more.
In this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with Q possible orientations, known as the “Q-state clock model”. When the Q-state clock model has Q5 possible configurations, it presents the famous Berezinskii–Kosterlitz–Thouless (BKT) phase associated with vortex states. We calculate the thermodynamic quantities using Monte Carlo simulations for even Q numbers, ranging from Q=2 to Q=8 spin orientations per site in a lattice. We use lattices of different sizes with N=L×L=82,162,322,642,and1282 sites, considering free boundary conditions and an external magnetic field varying between B=0 and B=1.0 in natural units of the system. By obtaining the entropy, it is possible to quantify the MCE through an isothermal process in which the external magnetic field on the spin system is varied. In particular, we find the values of Q that maximize the MCE depending on the lattice size and the magnetic phase transitions linked with the process. Given the broader relevance of the Q-state clock model in areas such as percolation theory, neural networks, and biological systems, where multi-state interactions are essential, our study provides a robust framework in applied quantum mechanics, statistical physics, and related fields. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

13 pages, 449 KiB  
Article
Thermodynamic Properties of an Electron Gas in a Two-Dimensional Quantum Dot: An Approach Using Density of States
by Luís Fernando C. Pereira and Edilberto O. Silva
Quantum Rep. 2024, 6(4), 664-676; https://doi.org/10.3390/quantum6040040 - 24 Nov 2024
Cited by 3 | Viewed by 1826
Abstract
Potential applications of quantum dots in the nanotechnology industry make these systems an important field of study in various areas of physics. In particular, thermodynamics has a significant role in technological innovations. With this in mind, we studied some thermodynamic properties in quantum [...] Read more.
Potential applications of quantum dots in the nanotechnology industry make these systems an important field of study in various areas of physics. In particular, thermodynamics has a significant role in technological innovations. With this in mind, we studied some thermodynamic properties in quantum dots, such as entropy and heat capacity, as a function of the magnetic field over a wide range of temperatures. The density of states plays an important role in our analyses. At low temperatures, the variation in the magnetic field induces an oscillatory behavior in all thermodynamic properties. The depopulation of subbands is the trigger for the appearance of the oscillations. Full article
Show Figures

Figure 1

11 pages, 3010 KiB  
Article
Excellent Magnetocaloric Properties near 285 K of Amorphous Fe88Pr6Ce4B2 Ribbon
by Xiangjie Liu, Jiameng Yuan, Qiang Wang, Ding Ding and Lei Xia
Metals 2024, 14(11), 1214; https://doi.org/10.3390/met14111214 - 24 Oct 2024
Viewed by 1080
Abstract
A novel amorphous Fe88Pr6Ce4B2 ribbon with better magnetocaloric properties near 285 K is reported in the present work. The Fe88Pr6Ce4B2 ribbon exhibits a typical second-order ferromagnetic–paramagnetic transition near its [...] Read more.
A novel amorphous Fe88Pr6Ce4B2 ribbon with better magnetocaloric properties near 285 K is reported in the present work. The Fe88Pr6Ce4B2 ribbon exhibits a typical second-order ferromagnetic–paramagnetic transition near its Curie temperature (Tc, ~284 K), with a maximum magnetic entropy change (−ΔSmpeak) of ~4.15 J/(kg × K) under 5 T and a maximum adiabatic temperature rise (ΔTad) of ~2.57 K under 5 T, both of which are almost the largest amongst the iron-based metallic glasses with Tc = 285 ± 10 K. The high −ΔSmpeak enables several amorphous hybrids with table-like −ΔSmT curves to be synthesized by appropriately proportioning the Fe88Pr6Ce4B2 ribbon and other amorphous ribbons with different Tc. The larger average −ΔSm and effective refrigeration capacity, as well as the appropriate temperature range, make the two amorphous hybrids potential candidates for use as refrigerants in household magnetic air conditioners. Full article
(This article belongs to the Section Crystallography and Applications of Metallic Materials)
Show Figures

Figure 1

8 pages, 1818 KiB  
Communication
Structural, Magnetic, and Magneto-Thermal Properties of Rare Earth Intermetallic GdRhIn
by Ravinder Kumar, Arrab Ali Maz, Satyendra Kumar Mishra and Sachin Gupta
Sensors 2024, 24(19), 6326; https://doi.org/10.3390/s24196326 - 30 Sep 2024
Cited by 1 | Viewed by 1777
Abstract
We study the structural, magnetic, and magneto-thermal properties of the GdRhIn compound. The room-temperature X-ray diffraction measurements show a hexagonal crystal structure. Temperature and field dependence of magnetization suggest two magnetic transitions—antiferromagnetic to ferromagnetic at 16 K and ferromagnetic to paramagnetic at 34 [...] Read more.
We study the structural, magnetic, and magneto-thermal properties of the GdRhIn compound. The room-temperature X-ray diffraction measurements show a hexagonal crystal structure. Temperature and field dependence of magnetization suggest two magnetic transitions—antiferromagnetic to ferromagnetic at 16 K and ferromagnetic to paramagnetic at 34 K. The heat capacity measurements confirm both the magnetic transitions in GdRhIn. The magnetization data were used to calculate isothermal magnetic entropy change and refrigerant capacity in GdRhIn, which was found to be 10.3 J/Kg-K for the field change of 70 kOe and 282 J/Kg for the field change of 50 kOe, respectively. The large magnetocaloric effect in GdRhIn suggests that the material could be used for magnetic refrigeration at low temperatures. Full article
(This article belongs to the Special Issue Ferroelectric Materials for Sensors and Device Applications)
Show Figures

Figure 1

12 pages, 10278 KiB  
Article
Enhanced Magnetocaloric Properties of the (MnNi)0.6Si0.62(FeCo)0.4Ge0.38 High-Entropy Alloy Obtained by Co Substitution
by Zhigang Zheng, Pengyan Huang, Xinglin Chen, Hongyu Wang, Shan Da, Gang Wang, Zhaoguo Qiu and Dechang Zeng
Entropy 2024, 26(9), 799; https://doi.org/10.3390/e26090799 - 19 Sep 2024
Cited by 2 | Viewed by 1467
Abstract
In order to improve the magnetocaloric properties of MnNiSi-based alloys, a new type of high-entropy magnetocaloric alloy was constructed. In this work, Mn0.6Ni1−xSi0.62Fe0.4CoxGe0.38 (x = 0.4, 0.45, and 0.5) are [...] Read more.
In order to improve the magnetocaloric properties of MnNiSi-based alloys, a new type of high-entropy magnetocaloric alloy was constructed. In this work, Mn0.6Ni1−xSi0.62Fe0.4CoxGe0.38 (x = 0.4, 0.45, and 0.5) are found to exhibit magnetostructural first-order phase transitions from high-temperature Ni2In-type phases to low-temperature TiNiSi-type phases so that the alloys can achieve giant magnetocaloric effects. We investigate why chexagonal/ahexagonal (chexa/ahexa) gradually increases upon Co substitution, while phase transition temperature (Ttr) and isothermal magnetic entropy change (ΔSM) tend to gradually decrease. In particular, the x = 0.4 alloy with remarkable magnetocaloric properties is obtained by tuning Co/Ni, which shows a giant entropy change of 48.5 J∙kg−1K−1 at 309 K for 5 T and an adiabatic temperature change (ΔTad) of 8.6 K at 306.5 K. Moreover, the x = 0.55 HEA shows great hardness and compressive strength with values of 552 HV2 and 267 MPa, respectively, indicating that the mechanical properties undergo an effective enhancement. The large ΔSM and ΔTad may enable the MnNiSi-based HEAs to become a potential commercialized magnetocaloric material. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

Back to TopTop