Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = magneto-plasmonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2681 KiB  
Article
Waveguide-Assisted Magneto-Optical Effects in 1D Garnet/Co/Au Plasmonic Crystals
by Tatiana Murzina, Andrey Dotsenko, Irina Kolmychek, Vladimir Novikov, Nikita Gusev, Ilya Fedotov and Sergei Gusev
Photonics 2025, 12(7), 728; https://doi.org/10.3390/photonics12070728 - 17 Jul 2025
Viewed by 242
Abstract
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known [...] Read more.
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known for their high-quality tunable resonant optical properties. Here, we present the results of experimental and numerical studies on the functional magneto-optical (MO) response of planar 1D plasmonic crystals composed of Co/Au stripes of submicron period on the surface of a 3 μm thick rare-earth garnet layer. The experimental and numerical studies confirm that the wavelength–angular spectra of such structures contain a set of tunable resonant features in their optical and magneto-optical response, associated with the excitation of (i) surface plasmon polaritons at the Co/Au grating–garnet interface, as well as (ii) waveguide (WG) modes propagating in the garnet slab. A comparison of the MO effects in the transversal and longitudinal magnetization of the plasmonic structures is presented. We show that the most efficient Fano-type MPC magneto-optical response is realized for the WG modes of the first order for the longitudinal magnetization of the structure. Further perspectives regarding the optimization of this type of plasmonic crystal are discussed. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

20 pages, 23355 KiB  
Article
Unveiling Thickness-Dependent Oxidation Effect on Optical Response of Room Temperature RF-Sputtered Nickel Ultrathin Films on Amorphous Glass: An Experimental and FDTD Investigation
by Dylan A. Huerta-Arteaga, Mitchel A. Ruiz-Robles, Srivathsava Surabhi, S. Shiva Samhitha, Santhosh Girish, María J. Martínez-Carreón, Francisco Solís-Pomar, A. Martínez-Huerta, Jong-Ryul Jeong and Eduardo Pérez-Tijerina
Materials 2025, 18(12), 2891; https://doi.org/10.3390/ma18122891 - 18 Jun 2025
Viewed by 493
Abstract
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research [...] Read more.
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research is to investigate the temporal oxidation of RF-sputtered Ni ultrathin films on Corning glass under ambient atmospheric conditions and its impact on their structural, surface, and optical characteristics. Controlled film thicknesses were achieved through precise manipulation of deposition parameters, enabling the analysis of oxidation-induced modifications. Atomic force microscopy (AFM) revealed that films with high structural integrity and surface uniformity are exhibiting roughness values (Rq) from 0.679 to 4.379 nm of corresponding thicknesses ranging from 4 to 85 nm. Scanning electron microscopy (SEM) validated the formation of Ni grains interspersed with NiO phases, facilitating SPR-like effects. UV-visible spectroscopy is demonstrating thickness-dependent spectral (plasmonic peak) shifts. Finite Difference Time Domain (FDTD) simulations corroborate the observed thickness-dependent optical absorbance and the resultant shifts in the absorbance-induced plasmonic peak position and bandgap. Increased NiO presence primarily drives the enhancement of electromagnetic (EM) field localization and the direct impact on power absorption efficiency, which are modulated by the tunability of the plasmonic peak position. Our work demonstrates that controlled fabrication conditions and optimal film thickness selection allow for accurate manipulation of the Ni oxidation process, significantly altering their optical properties. This enables the tailoring of these Ni films for applications in transparent conductive electrodes (TCEs), magneto-optic (MO) devices, spintronics, wear-resistant coatings, microelectronics, and photonics. Full article
Show Figures

Graphical abstract

9 pages, 1798 KiB  
Article
Magnetoplasmonic Resonators Designed with Hexagonally Arrayed Au/BIG Bilayer Nanodisks on Au Thin Film Layers for Enhanced MOKE and Refractive Index Sensing
by Ziqi Wang, Xiaojian Cui and Yujun Song
Coatings 2025, 15(5), 601; https://doi.org/10.3390/coatings15050601 - 18 May 2025
Viewed by 404
Abstract
A kind of magnetoplasmonic resonators is numerically designed with hexagonally arrayed Au/bismuth iron garnet (BIG) bilayer nanodiscks on Au thin film layers. Multi-physics coupling calculation on their magnetoplasmonic resonance features suggest that there exists a strong resonant coupling between the surface plasmon excited [...] Read more.
A kind of magnetoplasmonic resonators is numerically designed with hexagonally arrayed Au/bismuth iron garnet (BIG) bilayer nanodiscks on Au thin film layers. Multi-physics coupling calculation on their magnetoplasmonic resonance features suggest that there exists a strong resonant coupling between the surface plasmon excited by the hexagonal grating and the waveguide modes induced by Au-BIG-Au, which can significantly enhance the transverse magneto-optical Kerr effect. Interestingly, a new type of circular oscillating can be induced in the optical-transparent BIG layers as the thickness of BIG layers is between 2 nm and 22 nm. This circular oscillating exhibits a distinct thickness-dependent feature, which can be attributed to the near field interference of the excited localized plasmon resonance between the two interfaces formed by the middle BIG nanodiscs in the top Au nanodisks and the bottom Au thin film layers according to the simulation. These unique magnetoplasmonic features endow this kind of magnetoplasmonic resonators with a greatly enhanced refractive index sensing property, with a calculated figure of merit (FOM) value of up to 7527 RIU−1. Full article
Show Figures

Figure 1

12 pages, 8770 KiB  
Article
Optimization of Magnetoplasmonic Behavior in Ag/Fe Bilayer Nanostructures Towards Refractometric Sensing
by João Pedro Miranda Carvalho, Bernardo S. Dias, Luís C. C. Coelho and José M. M. M. de Almeida
Sensors 2025, 25(5), 1419; https://doi.org/10.3390/s25051419 - 26 Feb 2025
Viewed by 530
Abstract
Magneto-optic surface plasmon resonances (MOSPRs) rely on the interaction of magnetic fields with surface plasmon polaritons (SPP) to modulate plasmonic bands with magnetic fields and enhance magneto-optical activity. In the present work, a study on the magnetoplasmonic behavior of Ag/Fe bilayers is carried [...] Read more.
Magneto-optic surface plasmon resonances (MOSPRs) rely on the interaction of magnetic fields with surface plasmon polaritons (SPP) to modulate plasmonic bands with magnetic fields and enhance magneto-optical activity. In the present work, a study on the magnetoplasmonic behavior of Ag/Fe bilayers is carried out by VIS-NIR spectroscopy and backed with SQUID measurements, determining the thickness-dependent magnetization of thin-film samples. The MOSPR sensing properties of Ag/Fe planar bilayers are simulated using Berreman’s matrix formalism, from which an optimized structure composed of 15 nm of Ag and 12.5 nm of Fe is obtained. The selected structure is fabricated and characterized for refractive index (RI) sensitivity, reaching 4946 RIU−1 and returning an effective enhancement of refractometric sensitivity after magneto-optical modulation. A new optimized and cobalt-free magnetoplasmonic Ag/Fe bilayer structure is studied, fabricated, and characterized for the first time towards refractometric sensing, to the best of our knowledge. This configuration exhibits potential for enhancing refractometric sensitivity via magneto-optical modulation, thus paving the way towards a simpler, more accessible, and safe type of RI sensor with potential applications in chemical sensors and biosensors. Full article
Show Figures

Figure 1

17 pages, 14802 KiB  
Article
Biofunctionalization of Magneto-Plasmonic Fe3O4@SiO2-NH2-Au Heterostructures with the Cellulase from Trichoderma reesei
by Anna Tomaszewska, Magdalena Kulpa-Greszta, Oliwia Hryców, Klaudia Niemczyk, Renata Wojnarowska-Nowak, Daniel Broda and Robert Pazik
Molecules 2025, 30(3), 756; https://doi.org/10.3390/molecules30030756 - 6 Feb 2025
Viewed by 1128
Abstract
The study focuses on the synthesis of Fe3O4@SiO2-NH2-Au heterostructures with magneto-plasmonic properties composed of well-defined cubic Fe3O4 cores (79 nm) covered with 10 nm silica shell and gold nanoparticles (8 nm) fabricated [...] Read more.
The study focuses on the synthesis of Fe3O4@SiO2-NH2-Au heterostructures with magneto-plasmonic properties composed of well-defined cubic Fe3O4 cores (79 nm) covered with 10 nm silica shell and gold nanoparticles (8 nm) fabricated on silica shell. The surface-anchored MHDA (16-mercaptohexadecanoic acid) linker facilitated cellulase bioconjugation, which was confirmed through Raman spectroscopy. The presence of gold nanoparticle islands on the heterostructure enabled surface-enhanced Raman scattering (SERS), demonstrating the potential for bioactive substance identification. Immobilization of cellulase allowed for pH enhancement and enzyme thermal stability. The optimal pH shifted from 4.0 (free enzyme) to 6.0 while thermal stability increased by 20 °C. The immobilized cellulase kept its 49% activity after five hydrolysis cycles, compared to significantly lower activity for free cellulase. The proposed heterostructures for cellulase immobilization demonstrate potential for practical applications. Full article
(This article belongs to the Special Issue Design and Application Based on Versatile Nano-Composites)
Show Figures

Figure 1

12 pages, 2403 KiB  
Article
Tunable Group Delay of Reflected Beam in Multilayered Structures with Antisymmetric Graphene via Magnetic Control
by Xinghua Wu, Yanyan Guo and Qingkai Wang
Coatings 2025, 15(2), 196; https://doi.org/10.3390/coatings15020196 - 6 Feb 2025
Viewed by 703
Abstract
In this paper, we demonstrate the magnetic field-adjustable group delay of the reflected beam in the terahertz frequency range, using a multilayer architecture incorporating three layers of antisymmetric graphene. The observed enhancement in group delay results from localized field amplification, which occurs due [...] Read more.
In this paper, we demonstrate the magnetic field-adjustable group delay of the reflected beam in the terahertz frequency range, using a multilayer architecture incorporating three layers of antisymmetric graphene. The observed enhancement in group delay results from localized field amplification, which occurs due to the excitation of surface plasmon polaritons on the graphene at the interface between two dielectric layers. By considering the quantum mechanical response of graphene, the polarity of the group delay can be reversed by exploiting the antisymmetric conductivity characteristics of graphene. Furthermore, the group delay can be dynamically modulated either by varying the external magnetic field or by adjusting the structural parameters. The achieved enhancement and tunability of the group delay offer significant potential for the development of graphene-based terahertz modulation devices and other optical delay applications. Full article
(This article belongs to the Collection Advanced Optical Films and Coatings)
Show Figures

Figure 1

14 pages, 8595 KiB  
Article
Magnetic Properties and Thermal Stability of AuCo Alloy Obtained by High-Pressure Torsion
by Timofey P. Tolmachev, Ilya A. Morozov, Sofya A. Petrova, Denis A. Shishkin, Elena A. Tolmacheva, Vitaliy P. Pilyugin and Ștefan Țălu
Metals 2025, 15(2), 118; https://doi.org/10.3390/met15020118 - 25 Jan 2025
Viewed by 832
Abstract
AuCo alloys are promising materials due to their magnetic, magneto-optical and magneto-plasmonic properties. These two metals are characterized by having zero mutual solubility at room temperature, significant differences in their physical and mechanical parameters and positive enthalpy of mixing. In the form of [...] Read more.
AuCo alloys are promising materials due to their magnetic, magneto-optical and magneto-plasmonic properties. These two metals are characterized by having zero mutual solubility at room temperature, significant differences in their physical and mechanical parameters and positive enthalpy of mixing. In the form of bulk samples, AuCo alloys can be synthesized by high-pressure torsion. In this study, the influence of the thermal conditions of high-pressure torsion synthesis and subsequent annealing procedures on the phase composition, magnetic domain structure and bulk magnetic properties of non-equilibrium AuCo alloys are investigated. Magnetic atomic force microscopy revealed the presence of a different magnetic domain structure in the AuCo alloys after high-pressure torsion synthesis at −193 and 23 °C. Specifically, in the AuCo alloy synthesized after 10 revolutions at 23 °C, a stripe domain structure was formed, whereas, after cryo-deformation, blurred low-contrast domain walls prevailed in the allow. The regularities of the magnetic domain structure were compared with the magnetic response of the bulk sample obtained by vibrating sample magnetometry. It was found that the saturation magnetization was slightly higher for the alloy synthesized at 23 °C, while the coercive force was higher for the AuCo alloy synthesized at −193 °C. Thermal treatment of these alloys leads to an increase in coercivity which doubles and reaches a plateau after annealing at 310 °C after cryo-deformation. Full article
Show Figures

Figure 1

13 pages, 3446 KiB  
Article
Femtosecond Laser Ablation and Delamination of Functional Magnetic Multilayers at the Nanoscale
by Pavel Varlamov, Jan Marx, Yoav Urbina Elgueta, Andreas Ostendorf, Ji-Wan Kim, Paolo Vavassori and Vasily Temnov
Nanomaterials 2024, 14(18), 1488; https://doi.org/10.3390/nano14181488 - 13 Sep 2024
Cited by 6 | Viewed by 1841
Abstract
Laser nanostructuring of thin films with ultrashort laser pulses is widely used for nanofabrication across various fields. A crucial parameter for optimizing and understanding the processes underlying laser processing is the absorbed laser fluence, which is essential for all damage phenomena such as [...] Read more.
Laser nanostructuring of thin films with ultrashort laser pulses is widely used for nanofabrication across various fields. A crucial parameter for optimizing and understanding the processes underlying laser processing is the absorbed laser fluence, which is essential for all damage phenomena such as melting, ablation, spallation, and delamination. While threshold fluences have been extensively studied for single compound thin films, advancements in ultrafast acoustics, magneto-acoustics, and acousto-magneto-plasmonics necessitate understanding the laser nanofabrication processes for functional multilayer films. In this work, we investigated the thickness dependence of ablation and delamination thresholds in Ni/Au bilayers by varying the thickness of the Ni layer. The results were compared with experimental data on Ni thin films. Additionally, we performed femtosecond time-resolved pump-probe measurements of transient reflectivity in Ni to determine the heat penetration depth and evaluate the melting threshold. Delamination thresholds for Ni films were found to exceed the surface melting threshold suggesting the thermal mechanism in a liquid phase. Damage thresholds for Ni/Au bilayers were found to be significantly lower than those for Ni and fingerprint the non-thermal mechanism without Ni melting, which we attribute to the much weaker mechanical adhesion at the Au/glass interface. This finding suggests the potential of femtosecond laser delamination for nondestructive, energy-efficient nanostructuring, enabling the creation of high-quality acoustic resonators and other functional nanostructures for applications in nanosciences. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

19 pages, 3634 KiB  
Article
Polarized and Evanescent Guided Wave Surface-Enhanced Raman Spectroscopy of Ligand Interactions on a Plasmonic Nanoparticle Optical Chemical Bench
by Xining Chen and Mark P. Andrews
Biosensors 2024, 14(9), 409; https://doi.org/10.3390/bios14090409 - 23 Aug 2024
Cited by 1 | Viewed by 1791
Abstract
This study examined applications of polarized evanescent guided wave surface-enhanced Raman spectroscopy to determine the binding and orientation of small molecules and ligand-modified nanoparticles, and the relevance of this technique to lab-on-a-chip, surface plasmon polariton and other types of field enhancement techniques relevant [...] Read more.
This study examined applications of polarized evanescent guided wave surface-enhanced Raman spectroscopy to determine the binding and orientation of small molecules and ligand-modified nanoparticles, and the relevance of this technique to lab-on-a-chip, surface plasmon polariton and other types of field enhancement techniques relevant to Raman biosensing. A simplified tutorial on guided-wave Raman spectroscopy is provided that introduces the notion of plasmonic nanoparticle field enhancements to magnify the otherwise weak TE- and TM-polarized evanescent fields for Raman scattering on a simple plasmonic nanoparticle slab waveguide substrate. The waveguide construct is called an optical chemical bench (OCB) to emphasize its adaptability to different kinds of surface chemistries that can be envisaged to prepare optical biosensors. The OCB forms a complete spectroscopy platform when integrated into a custom-built Raman spectrograph. Plasmonic enhancement of the evanescent field is achieved by attaching porous carpets of Au@Ag core shell nanoparticles to the surface of a multi-mode glass waveguide substrate. We calibrated the OCB by establishing the dependence of SER spectra of adsorbed 4-mercaptopyridine and 4-aminobenzoic acid on the TE/TM polarization state of the evanescent field. We contrasted the OCB construct with more elaborate photonic chip devices that also benefit from enhanced evanescent fields, but without the use of plasmonics. We assemble hierarchies of matter to show that the OCB can resolve the binding of Fe2+ ions from water at the nanoscale interface of the OCB by following the changes in the SER spectra of 4MPy as it coordinates the cation. A brief introduction to magnetoplasmonics sets the stage for a study that resolves the 4ABA ligand interface between guest magnetite nanoparticles adsorbed onto host plasmonic Au@Ag nanoparticles bound to the OCB. In some cases, the evanescent wave TM polarization was strongly attenuated, most likely due to damping by inertial charge carriers that favor optical loss for this polarization state in the presence of dense assemblies of plasmonic nanoparticles. The OCB offers an approach that provides vibrational and orientational information for (bio)sensing at interfaces that may supplement the information content of evanescent wave methods that rely on perturbations in the refractive index in the region of the evanescent wave. Full article
(This article belongs to the Special Issue SERS-Based Biosensors: Design and Biomedical Applications)
Show Figures

Figure 1

12 pages, 4144 KiB  
Article
Enhancing Power Conversion Efficiency of Organic Solar Cells with Magnetoplasmonic Fe3O4@Au@m-ABS Nanoparticles
by Pradeep Kumar, Shih-Han Huang, Chia-Yi Hsu, Ssu-Yung Chung, Hou-Chin Cha, Chih-Min Chuang, Kuen-Lin Chen and Yu-Ching Huang
Nanomaterials 2024, 14(14), 1175; https://doi.org/10.3390/nano14141175 - 10 Jul 2024
Cited by 6 | Viewed by 2579
Abstract
Organic–inorganic nanocomposites have the potential to be used in photovoltaic materials due to their eco-friendliness, suitable band gaps, and high stability. In this work, we integrated gold and Fe3O4 magnetic nanoparticles with poly-m-amino benzene sulfonic (m-ABS) to synthesize Fe3 [...] Read more.
Organic–inorganic nanocomposites have the potential to be used in photovoltaic materials due to their eco-friendliness, suitable band gaps, and high stability. In this work, we integrated gold and Fe3O4 magnetic nanoparticles with poly-m-amino benzene sulfonic (m-ABS) to synthesize Fe3O4@Au@poly-(m-aminobenzenesulfonic acid) (Fe3O4@Au@m-ABS) magneto-plasmonic nanoparticles (MPNPs) to enhance the performance of the organic photovoltaic (OPV). These MPNPs exhibit broad UV-Vis absorption and a low band gap of 2.878 eV, enhancing their suitability for photovoltaic applications. The MPNPs were introduced into the ZnO electron transporting layer (ETL) and active layer to investigate the influence of MPNPs on the power conversion efficiency (PCE) of the OPVs. When 0.1 vol% MPNPs were incorporated in the ETL, the OPVs achieved a PCE of 14.24% and a fill factor (FF) of 69.10%. On the other hand, when 0.1 vol% MPNPs were incorporated in the active layer, the OPVs showed a PCE of 14.11% and an FF of 68.83%. However, the OPVs without MPNPs only possessed a PCE of 13.15% and an FF of 63.69%. The incorporation of MPNPs increased the PCE by 8.3% in the OPV device. These findings suggest that Fe3O4@Au@m-ABS MPNPs are promising nanocomposite materials for enhancing the performance of OPVs. Full article
(This article belongs to the Special Issue Nanomaterials for Photovoltaic System Applications)
Show Figures

Figure 1

19 pages, 10539 KiB  
Article
Elastic Liposomes Containing Calcium/Magnesium Ferrite Nanoparticles Coupled with Gold Nanorods for Application in Photothermal Therapy
by Ana Rita F. Pacheco, Ana Margarida Barros, Carlos O. Amorim, Vítor S. Amaral, Paulo J. G. Coutinho, Ana Rita O. Rodrigues and Elisabete M. S. Castanheira
Nanomaterials 2024, 14(8), 679; https://doi.org/10.3390/nano14080679 - 15 Apr 2024
Cited by 2 | Viewed by 1887
Abstract
This work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing Mg0.75Ca0.25Fe2O4 nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic [...] Read more.
This work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing Mg0.75Ca0.25Fe2O4 nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic components were characterized regarding their structural, morphological, magnetic and photothermal properties. The magnetic nanoparticles display a cubic shape and a size (major axis) of 37 ± 3 nm, while the longitudinal and transverse sizes of the nanorods are 46 ± 7 nm and 12 ± 1.6 nm, respectively. A new methodology was employed to couple the magnetic and plasmonic nanostructures, using cysteine as bridge. The potential for photothermia was evaluated for the magnetic nanoparticles, gold nanorods and the coupled magnetic/plasmonic nanoparticles, which demonstrated a maximum temperature variation of 28.9 °C, 33.6 °C and 37.2 °C, respectively, during a 30 min NIR-laser irradiation of 1 mg/mL dispersions. Using fluorescence anisotropy studies, a phase transition temperature (Tm) of 35 °C was estimated for MPELs, which ensures an enhanced fluidity crucial for effective crossing of the skin layers. The photothermal potential of this novel nanostructure corresponds to a specific absorption rate (SAR) of 616.9 W/g and a maximum temperature increase of 33.5 °C. These findings point to the development of thermoelastic nanocarriers with suitable features to act as photothermal hyperthermia agents. Full article
Show Figures

Figure 1

31 pages, 12545 KiB  
Review
Phthalocyanine and Porphyrin Derivatives and Their Hybrid Materials in Optical Sensors Based on the Phenomenon of Surface Plasmon Resonance
by Tamara Basova
Chemosensors 2024, 12(4), 56; https://doi.org/10.3390/chemosensors12040056 - 6 Apr 2024
Cited by 5 | Viewed by 3159
Abstract
In this review, the state of research over the past fifteen years in the field of the applications of metal phthalocyanines and porphyrin derivatives as well as their hybrid materials with carbon nanotubes, metal oxides, and polymers in optical sensors based on the [...] Read more.
In this review, the state of research over the past fifteen years in the field of the applications of metal phthalocyanines and porphyrin derivatives as well as their hybrid materials with carbon nanotubes, metal oxides, and polymers in optical sensors based on the phenomenon of surface plasmon resonance (SPR) is analyzed. The first chapter of the review presents an analysis of works on the use of porphyrins and phthalocyanines in classical SPR sensors for the detection of gases and volatile organic vapors, as well as their improved modifications, such as total internal reflection ellipsometry (TIRE) and magneto-optical SPR (MOSPR) methods, while the second chapter is devoted to their application for the detection of various analytes in solutions. The third chapter of the review summarizes publications describing recent advances in the use of porous materials based on hybrids of carbon nanotubes and oxides with metal phthalocyanines. The fourth chapter describes two-dimensional metal-organic frameworks (MOFs) based on metal porphyrin derivatives as SPR sensitizers. Full article
Show Figures

Figure 1

25 pages, 9585 KiB  
Review
Integration of Plasmonic Structures in Photonic Waveguides Enables Novel Electromagnetic Functionalities in Photonic Circuits
by Giovanni Magno, Vy Yam and Béatrice Dagens
Appl. Sci. 2023, 13(23), 12551; https://doi.org/10.3390/app132312551 - 21 Nov 2023
Cited by 6 | Viewed by 4064
Abstract
The development of integrated, compact, and multifunctional photonic circuits is crucial in increasing the capacity of all-optical signal processing for communications, data management, and microsystems. Plasmonics brings compactness to numerous photonic functions, but its integration into circuits is not straightforward due to insertion [...] Read more.
The development of integrated, compact, and multifunctional photonic circuits is crucial in increasing the capacity of all-optical signal processing for communications, data management, and microsystems. Plasmonics brings compactness to numerous photonic functions, but its integration into circuits is not straightforward due to insertion losses and poor mode matching. The purpose of this article is to detail the integration strategies of plasmonic structures on dielectric waveguides, and to show through some examples the variety and the application prospect of integrated plasmonic functions. Full article
Show Figures

Figure 1

12 pages, 2298 KiB  
Article
Magnetically Tunable Goos–Hänchen Shift of Reflected Beam in Multilayer Structures Containing Anisotropic Graphene
by Yunyang Ye, Xinye Zhang and Leyong Jiang
Coatings 2023, 13(10), 1763; https://doi.org/10.3390/coatings13101763 - 13 Oct 2023
Cited by 3 | Viewed by 1457
Abstract
In this paper, the magnetically tunable Goos–Hänchen (GH) shift of a reflected beam at terahertz frequencies is achieved by using a multilayer structure where three layers of anisotropic graphene are inserted. The enhanced GH shift phenomenon results from the local field enhancement owing [...] Read more.
In this paper, the magnetically tunable Goos–Hänchen (GH) shift of a reflected beam at terahertz frequencies is achieved by using a multilayer structure where three layers of anisotropic graphene are inserted. The enhanced GH shift phenomenon results from the local field enhancement owing to the excitation of graphene surface plasmon polaritons at the interface between two dielectric materials. By considering the quantum response of graphene, the GH shift can be switched from negative to positive by harnessing the anisotropic conductivity of graphene, and the GH shift can be actively tuned through the external magnetic field or by controlling the structural parameters. By setting appropriate magnetic field and structural parameters, we can obtain GH values of −140 microns to 220 microns in the terahertz band. This enhanced and tunable GH shift is promising for fabricating graphene-based terahertz shift devices and other applications in nanophotonics. Full article
(This article belongs to the Special Issue Optical Properties of Crystals and Thin Films, Volume II)
Show Figures

Figure 1

17 pages, 5922 KiB  
Article
Magneto-Plasmonic Nanoparticles Generated by Laser Ablation of Layered Fe/Au and Fe/Au/Fe Composite Films for SERS Application
by Lina Mikoliunaite, Evaldas Stankevičius, Sonata Adomavičiūtė-Grabusovė, Vita Petrikaitė, Romualdas Trusovas, Martynas Talaikis, Martynas Skapas, Agnė Zdaniauskienė, Algirdas Selskis, Valdas Šablinskas and Gediminas Niaura
Coatings 2023, 13(9), 1523; https://doi.org/10.3390/coatings13091523 - 30 Aug 2023
Cited by 6 | Viewed by 2299
Abstract
Magneto-plasmonic nanoparticles were fabricated using a 1064 nm picosecond-pulsed laser for ablation of Fe/Au and Fe/Au/Fe composite thin films in acetone. Nanoparticles were characterized by electron microscopy, ultraviolet-visible (UV-VIS) absorption, and Raman spectroscopy. Hybrid nanoparticles were arranged on an aluminum substrate by a [...] Read more.
Magneto-plasmonic nanoparticles were fabricated using a 1064 nm picosecond-pulsed laser for ablation of Fe/Au and Fe/Au/Fe composite thin films in acetone. Nanoparticles were characterized by electron microscopy, ultraviolet-visible (UV-VIS) absorption, and Raman spectroscopy. Hybrid nanoparticles were arranged on an aluminum substrate by a magnetic field for application in surface-enhanced Raman spectroscopy (SERS). Transmission electron microscopy and energy dispersive spectroscopy analysis revealed the spherical core-shell (Au-Fe) structure of nanoparticles. Raman spectroscopy of bare magneto-plasmonic nanoparticles confirmed the presence of magnetite (Fe3O4) without any impurities from maghemite or hematite. In addition, resonantly enhanced carbon-based bands were detected in Raman spectra. Plasmonic properties of hybrid nanoparticles were probed by SERS using the adsorbed biomolecule adenine. Based on analysis of experimental spectra and density functional theory modeling, the difference in SERS spectra of adsorbed adenine on laser-ablated Au and magneto-plasmonic nanoparticles was explained by the binding of adenine to the Fe3O4 structure at hybrid nanoparticles. The hybrid nanoparticles are free from organic stabilizers, and because of the biocompatibility of the magnetic shell and SERS activity of the plasmonic gold core, they can be widely applied in the construction of biosensors and biomedicine applications. Full article
Show Figures

Graphical abstract

Back to TopTop