Enhancing Power Conversion Efficiency of Organic Solar Cells with Magnetoplasmonic Fe3O4@Au@m-ABS Nanoparticles
Abstract
1. Introduction
2. Experiment
2.1. Reagents and Materials
2.2. Synthesis of Material
2.3. Fabrication of Organic Solar Cells
3. Results and Discussion
3.1. The Morphology and Optical Property Analysis
3.2. Organic Photovoltaic Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raad, S.H.; Atlasbaf, Z.; Raad, S.H.; Atlasbaf, Z. Photovoltaic and Photothermal Solar Cell Design Principles: Efficiency/Bandwidth Enhancement and Material Selection. In Solar PV Panels—Recent Advances and Future Prospects; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Tung, H.T.; Dang, H.P.; Dan, H.K.; Hanh, N.T.M.; Hieu, L.V.; Thang, B.V. Highly catalytic reduced graphene oxide decorated Cu2S counter electrode boosting quantum dot–sensitized solar cell performance. Phys. Scr. 2024, 99, 025992. [Google Scholar] [CrossRef]
- Shabzendedar, S.; Modarresi-Alam, A.R.; Noroozifar, M.; Kerman, K. Core-shell nanocomposite of superparamagnetic Fe3O4 nanoparticles with poly(m-aminobenzenesulfonic acid) for polymer solar cells. Org. Electron. 2020, 77, 105462. [Google Scholar] [CrossRef]
- Kannan, U.M.; Giribabu, L.; Jammalamadaka, S.N. Demagnetization field driven charge transport in a TiO2 based dye sensitized solar cell. Sol. Energy 2019, 187, 281–289. [Google Scholar] [CrossRef]
- Alamu, G.A.; Ayanlola, P.S.; Adedokun, O.; Sanusi, Y.K.; Fajinmi, G.R. Enhanced photovoltaic performance of green synthesized Fe3O4 nanostructures embedded in TiO2 photoanode for dye sensitized solar cells. Optik 2024, 300, 171642. [Google Scholar] [CrossRef]
- Rezaei, B.; Afshar-Taromi, F.; Ahmadi, Z.; Amiri Rigi, S.; Yousefi, N. Enhancement of power conversion efficiency of bulk heterojunction polymer solar cells using core/shell, Au/graphene plasmonic nanostructure. Mater. Chem. Phys. 2019, 228, 325–335. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, X.; Li, J.; Zhu, Y. Comparative Study on the Regeneration of Fe3O4@Graphene Oxide Composites. Front. Chem. 2020, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Deng, Z.-Y.; Tsai, P.-Y.; Chiu, C.-Y.; Lin, C.-W.; Chaudhary, P.; Huang, Y.-C.; Chen, K.-L. Enhanced visible-light photocatalytic activity of Fe3O4@MoS2@Au nanocomposites for methylene blue degradation through Plasmon-Induced charge transfer. Sep. Purif. Technol. 2024, 342, 126988. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, U.; Huang, Y.-C.; Tsai, P.-Y.; Liu, C.-H.; Wu, C.-H.; Huang, W.-M.; Chen, K.-L. Photocatalytic activity of a hydrothermally synthesized γ-Fe2O3@Au/MoS2 heterostructure for organic dye degradation under green light. J. Photochem. Photobiol. A Chem. 2022, 433, 114186. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-W.; Chen, J.-M.; Lin, Y.-J.; Chao, L.-W.; Wei, S.-Y.; Wu, C.-H.; Jeng, C.-C.; Wang, L.-M.; Chen, K.-L. Magneto-Optical Characteristics of Streptavidin-Coated Fe3O4@Au Core-Shell Nanoparticles for Potential Applications on Biomedical Assays. Sci. Rep. 2019, 9, 16466. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-L.; Yeh, Y.-W.; Liao, S.-H.; Wu, C.-H.; Wang, L.-M. Study of γ-Fe2O3/Au core/shell nanoparticles as the contrast agent for high-Tc SQUID-based low field nuclear magnetic resonance. In Proceedings of the 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, Japan, 22–25 August 2016; pp. 585–586. [Google Scholar] [CrossRef]
- Das, M.; Bhunia, S.S.; Roy, S. Poly (m-amino benzene sulfonic acid)-based composites on plastic substrates: A simple and cost effective approach towards low ppm ammonia detection at room temperature and kinetic analysis. Synth. Met. 2019, 248, 1–13. [Google Scholar] [CrossRef]
- Lu, H.; Meng, X. Correlation between band gap, dielectric constant, Young’s modulus and melting temperature of GaN nanocrystals and their size and shape dependences. Sci. Rep. 2015, 5, 16939. [Google Scholar] [CrossRef] [PubMed]
- Katan, C.; Mercier, N.; Even, J. Quantum and Dielectric Confinement Effects in Lower-Dimensional Hybrid Perovskite Semiconductors. Chem. Rev. 2019, 119, 3140–3192. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Rabani, E.; Efros, A.L.; Vaxenburg, R.; Ashkenazi, O.; Azulay, D.; Banin, U.; Millo, O. Dielectric Confinement and Excitonic Effects in Two-Dimensional Nanoplatelets. ACS Nano 2020, 14, 8257–8265. [Google Scholar] [CrossRef]
- Xia, Z.; Fang, H.; Zhang, X.; Molokeev, M.S.; Gautier, R.; Yan, Q.; Wei, S.-H.; Poeppelmeier, K.R. CsCu5 Se3: A Copper-Rich Ternary Chalcogenide Semiconductor with Nearly Direct Band Gap for Photovoltaic Application. Chem. Mater. 2018, 30, 1121–1126. [Google Scholar] [CrossRef]
- Jalil, A.; Ilyas, S.Z.; Ahmed, S.; Hassan, A.; Li, D.; Musselman, K.; Khan, Q. A new 2D Si3X(X=S, 0) direct band gap semiconductor with anisotropic carrier mobility. Surf. Sci. 2021, 704, 121736. [Google Scholar] [CrossRef]
- Lee, W.-G.; Chae, S.; Chung, Y.K.; Yoon, W.-S.; Choi, J.-Y.; Huh, J. Indirect-To-Direct Band Gap Transition of One-Dimensional V2 Se9: Theoretical Study with Dispersion Energy Correction. ACS Omega 2019, 4, 18392–18397. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Lee, S.; Kumar, P.; Nian, Q.; Wang, W.; Irudayaraj, J.; Cheng, G.J. Water flattens graphene wrinkles: Laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays. Nanoscale 2015, 7, 19885–19893. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liu, Y.; Liu, G.; Chen, Q.; Li, Y.; Shi, L.; Liu, Z.; Liu, X. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films. Nanoscale Res. Lett. 2019, 14, 94. [Google Scholar] [CrossRef]
- Majumder, S.; Dey, S.; Bagani, K.; Dey, S.K.; Banerjee, S.; Kumar, S. A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4 @SiO2 core–shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors. Dalton Trans. 2015, 44, 7190–7202. [Google Scholar] [CrossRef] [PubMed]
- Modarresi-Alam, A.R.; Zeraatkar, V.; Tabatabaei, F.A.; Bazrafkan, M.; Dastgerdi, A.S.; Malekmakan, R. A solid-state synthesis, mechanism, and characterization of high molecular weight poly (3-aminobenzenesulfonic acid) with FeCl3.6H2O as a binary oxidant and dopant. J. Polym. Res. 2019, 26, 22. [Google Scholar] [CrossRef]
- Yang, T.; Chen, H.; Jing, C.; Luo, S.; Li, W.; Jiao, K. Using poly(m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sens. Actuators B Chem. 2017, 249, 451–457. [Google Scholar] [CrossRef]
- Shabzendedar, S.; Modarresi-Alam, A.R.; Paymozd, F.; Yarmohamadi-Vasel, M.; Kaedi, F.; Li, Y. Solar cells containing two novel superparamagnetic nanocomposites of Fe3O4-TiO2-poly(m-aminobenzenesulfonic acid). Synth. Met. 2023, 295, 117335. [Google Scholar] [CrossRef]
- Sundararajan, B.; Ranjitha Kumari, B.D. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J. Trace Elem. Med. Biol. 2017, 43, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Aliannezhadi, M.; Mirsanai, S.Z.; Jamali, M.; Shariatmadar Tehrani, F. Optical and structural properties of bare MoO3 nanobelt, ZnO nanoflakes, and MoO3/ZnO nanocomposites: The effect of hydrothermal reaction times and molar ratios. Opt. Mater. 2024, 147, 114619. [Google Scholar] [CrossRef]
- Kumar, P.; Chiu, Y.-H.; Deng, Z.-I.; Kumar, U.; Chen, K.-L.; Huang, W.-M.; Wu, C.-H. Surface modification of ZnO nanopillars to enhance the sensitivity towards methane: The studies of experimental and first-principle simulation. Appl. Surf. Sci. 2021, 568, 150817. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, J.; Jeong, S.Y.; Park, S.B.; Lee, S.H.; Lee, K. Broad Work-Function Tunability of p-Type Conjugated Polyelectrolytes for Efficient Organic Solar Cells. Adv. Energy Mater. 2015, 5, 1401653. [Google Scholar] [CrossRef]
- Bak, J.; Van Loo, B.; Kawashima, R.; Komurasaki, K. Discharge characteristics and increased electron current during azimuthally nonuniform propellant supply in an anode layer Hall thruster. J. Appl. Phys. 2020, 128, 023302. [Google Scholar] [CrossRef]
- Wang, K.; Yi, C.; Liu, C.; Hu, X.; Chuang, S.; Gong, X. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells. Sci. Rep. 2015, 5, srep09265. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Casado, S.; Urbina, A.; Prior, J. Magnetic field enhancement of organic photovoltaic cells performance. Sci. Rep. 2017, 7, 4297. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Liu, X.; Deng, C.; Zhang, W.; Song, W. Highly Efficient Nonfullerene Acceptor with Sulfonyl-Based Ending Groups. ACS Appl. Mater. Interfaces 2020, 12, 49659–49665. [Google Scholar] [CrossRef]
Sample | Concentration of MPNP (vol%) | VOC (V) | JSC (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|---|
Reference | 0 | 0.85 (0.84 ± 0.00) | 23.98 (23.66 ± 0.25) | 64.69 (63.63 ± 1.96) | 13.15 (12.65 ± 0.38) |
ZnO | 0.1 | 0.85 (0.84 ± 0.00) | 24.35 (24.29 ± 0.19) | 69.10 (68.30 ± 0.67) | 14.24 (13.91 ± 0.20) |
0.2 | 0.84 (0.83 ± 0.01) | 24.61 (24.17 ± 0.20) | 67.17 (65.71 ± 1.29) | 13.96 (13.26 ± 0.44) | |
PM6:Y6 | 0.1 | 0.85 (0.84 ± 0.01) | 24.16 (24.29 ± 0.12) | 68.83 (66.33 ± 2.52) | 14.11 (13.49 ± 0.57) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Huang, S.-H.; Hsu, C.-Y.; Chung, S.-Y.; Cha, H.-C.; Chuang, C.-M.; Chen, K.-L.; Huang, Y.-C. Enhancing Power Conversion Efficiency of Organic Solar Cells with Magnetoplasmonic Fe3O4@Au@m-ABS Nanoparticles. Nanomaterials 2024, 14, 1175. https://doi.org/10.3390/nano14141175
Kumar P, Huang S-H, Hsu C-Y, Chung S-Y, Cha H-C, Chuang C-M, Chen K-L, Huang Y-C. Enhancing Power Conversion Efficiency of Organic Solar Cells with Magnetoplasmonic Fe3O4@Au@m-ABS Nanoparticles. Nanomaterials. 2024; 14(14):1175. https://doi.org/10.3390/nano14141175
Chicago/Turabian StyleKumar, Pradeep, Shih-Han Huang, Chia-Yi Hsu, Ssu-Yung Chung, Hou-Chin Cha, Chih-Min Chuang, Kuen-Lin Chen, and Yu-Ching Huang. 2024. "Enhancing Power Conversion Efficiency of Organic Solar Cells with Magnetoplasmonic Fe3O4@Au@m-ABS Nanoparticles" Nanomaterials 14, no. 14: 1175. https://doi.org/10.3390/nano14141175
APA StyleKumar, P., Huang, S.-H., Hsu, C.-Y., Chung, S.-Y., Cha, H.-C., Chuang, C.-M., Chen, K.-L., & Huang, Y.-C. (2024). Enhancing Power Conversion Efficiency of Organic Solar Cells with Magnetoplasmonic Fe3O4@Au@m-ABS Nanoparticles. Nanomaterials, 14(14), 1175. https://doi.org/10.3390/nano14141175