Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = magnetic semiconductor spintronics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3100 KB  
Article
First-Principles Investigation of Zr-Based Equiatomic Quaternary Heusler Compounds Under Hydrostatic Pressure for Spintronics Applications
by Xiaoli Yuan, Sicong Liu, Peng Wan, Zhenjun Zhang and Chengjun Tao
Nanomaterials 2025, 15(23), 1796; https://doi.org/10.3390/nano15231796 - 28 Nov 2025
Viewed by 395
Abstract
The first-principles method using density functional theory (DFT) reveals the mechanics, electronic structure, and magnetic properties of six Zr-based equiatomic quaternary Heusler compounds and their transformation under hydrostatic pressure. The results show that these compounds maintain mechanical stability under hydrostatic pressures of 0–100 [...] Read more.
The first-principles method using density functional theory (DFT) reveals the mechanics, electronic structure, and magnetic properties of six Zr-based equiatomic quaternary Heusler compounds and their transformation under hydrostatic pressure. The results show that these compounds maintain mechanical stability under hydrostatic pressures of 0–100 GPa, and the ductility of all the alloys is improved except ZrCrFeGe. In the ground state structure, ZrVFeAl and ZrCrFeGe are half metals, ZrVCoAl and ZrCrFeAl are spin gapless semiconductors, while ZrCrMnAl and ZrMnFeAl are regarded as nearly half metals. ZrVFeAl, ZrVCoAl, ZrCrFeAl, and ZrCrFeGe have high spin polarization and satisfy the Slater–Pauling rule, and their spin-flip band gaps are 0.43 eV, 0.35 eV, 0.14 eV, and 0.11 eV, respectively. These half-metallic compounds maintain half-metallicity within a certain pressure range, while spin gapless semiconductors (SGS) complete the SGS~half-metal~near-half-metal transition under hydrostatic pressure. These half-metallic compounds and spin gapless semiconductors are ideal candidates for spintronic applications. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

15 pages, 1573 KB  
Article
Fractional Dynamics of Information Entropy in Quantum Wire System Under Rashba Interaction
by Rabie I. Mohamed, Ramy M. Hafez, Atef F. Hashem and Mahmoud Abdel-Aty
Fractal Fract. 2025, 9(11), 741; https://doi.org/10.3390/fractalfract9110741 - 17 Nov 2025
Viewed by 499
Abstract
We present a theoretical examination of the fractional dynamics of information entropy within a semiconductor nanowire system influenced by Rashba spin–orbit interaction and external magnetic fields. Moreover, we determine the fractional nanowire state through the analytical solution of the fractional Schrödinger equation, considering [...] Read more.
We present a theoretical examination of the fractional dynamics of information entropy within a semiconductor nanowire system influenced by Rashba spin–orbit interaction and external magnetic fields. Moreover, we determine the fractional nanowire state through the analytical solution of the fractional Schrödinger equation, considering various initial states of the nanowire system. Our research emphasizes the impact of the fractional order and the interaction parameters on the behavior of information entropy. Our findings reveal that the temporal behavior of information entropy is highly sensitive to any variations in the magnetic field length, the Rashba spin–orbit interaction, and the fractional order parameter. The results demonstrate that these parameters are pivotal in determining the coherence and correlation properties of the nanowire system. Therefore, precise control of these factors paves the way for enhancing entanglement performance and facilitating information transfer in spintronic and quantum communication applications. Full article
Show Figures

Figure 1

14 pages, 19249 KB  
Article
Topological Phase Transition in Two-Dimensional Magnetic Material CrI3 Bilayer Intercalated with Mo
by Chen-En Yin, Angus Huang and Horng-Tay Jeng
Materials 2025, 18(20), 4751; https://doi.org/10.3390/ma18204751 - 16 Oct 2025
Viewed by 742
Abstract
Motivated by the seminal discoveries in graphene, the exploration of novel physical phenomena in alternative two-dimensional (2D) materials has attracted tremendous attention. In this work, through theoretical investigation using first-principles calculations, we reveal that Mo-intercalated CrI3 bilayer exhibits ferromagnetic semiconductor behavior with [...] Read more.
Motivated by the seminal discoveries in graphene, the exploration of novel physical phenomena in alternative two-dimensional (2D) materials has attracted tremendous attention. In this work, through theoretical investigation using first-principles calculations, we reveal that Mo-intercalated CrI3 bilayer exhibits ferromagnetic semiconductor behavior with a small easy-plane magnetocrystalline anisotropy energy (MAE) of 0.618 meV/Cr(Mo) between (100) and (001) magnetizations. The spin–orbit coupling (SOC) opens a narrow band gap at the Fermi level for both magnetization orientations with nonzero Chern number for realizing the quantum anomalous Hall effect (QAHE) in the former and with trivial topology in the latter. The small MAE implies the efficient experimental manipulation of magnetization between distinct topologies through an external magnetic field. Our findings provide compelling evidence that the QAHE in this system originates from the quantum spin Hall effect (QSHE), driven by intrinsic magnetism under broken time-reversal symmetry. These unique properties position Mo-intercalated CrI3 as a promising candidate for tunable spintronic applications. Full article
Show Figures

Figure 1

13 pages, 1434 KB  
Article
Tuning of the Electronic and Magnetic Properties of GaN Monolayers via Doping with Lanthanide Atoms and by Applying Biaxial Strain
by Xue Wen, Bocheng Lei, Lili Zhang and Haiming Lu
Nanomaterials 2025, 15(17), 1331; https://doi.org/10.3390/nano15171331 - 29 Aug 2025
Viewed by 846
Abstract
The electronic and magnetic properties of lanthanide-doped GaN monolayers (Ln = La, Pr, Nd, Pm, Eu, and Gd) have been systematically investigated using density functional theory within the GGA-PBE approximation. Our results demonstrate that all Ln dopants except La introduce spin polarization and [...] Read more.
The electronic and magnetic properties of lanthanide-doped GaN monolayers (Ln = La, Pr, Nd, Pm, Eu, and Gd) have been systematically investigated using density functional theory within the GGA-PBE approximation. Our results demonstrate that all Ln dopants except La introduce spin polarization and half-semiconductor behavior into the GaN monolayer. The observed magnetism primarily arises from unpaired 4f electrons, yielding magnetic moments of 2.0, 3.0, 4.0, 6.0, and 7.0 μB for Pr, Nd, Pm, Eu, and Gd, respectively. While La-, Pr-, and Gd-doped systems retain the indirect band gap characteristic of pristine GaN, an indirect-to-direct band gap transition occurs under biaxial tensile strains exceeding 2%. In contrast, Nd, Pm, and Eu doping directly induce a direct band gap without applied strain. Notably, under 6% tensile strain, the Pm- and Eu-GaN systems exhibit half-metallic and metallic properties, respectively. These tunable electronic and magnetic properties suggest that Ln doping offers a promising strategy for designing functional two-dimensional GaN-based electronic and spintronic devices. Full article
(This article belongs to the Special Issue First Principles Study of Two-Dimensional Materials)
Show Figures

Figure 1

16 pages, 4233 KB  
Article
Doping Effects on Magnetic and Electronic Transport Properties in (Ba1−xRbx)(Zn1−yMny)2As2 (0.1 ≤ x, y ≤ 0.25)
by Guoqiang Zhao, Yi Peng, Kenji M. Kojima, Yipeng Cai, Xiang Li, Kan Zhao, Shengli Guo, Wei Han, Yongqing Li, Fanlong Ning, Xiancheng Wang, Bo Gu, Gang Su, Sadamichi Maekawa, Yasutomo J. Uemura and Changqing Jin
Nanomaterials 2025, 15(13), 975; https://doi.org/10.3390/nano15130975 - 23 Jun 2025
Viewed by 903
Abstract
Diluted magnetic semiconductors (DMSs) represent a significant area of interest for research and applications in spintronics. Recently, DMSs derived from BaZn2As2 have garnered significant interest due to the record Curie temperature (TC) of 260 K. However, the [...] Read more.
Diluted magnetic semiconductors (DMSs) represent a significant area of interest for research and applications in spintronics. Recently, DMSs derived from BaZn2As2 have garnered significant interest due to the record Curie temperature (TC) of 260 K. However, the influence of doping on their magnetic evolution and transport characteristics has not been thoroughly investigated. This study aims to fill this gap through susceptibility and magnetization measurements, electric transport analysis, and muon spin relaxation and rotation (µSR) measurements on (Ba1−xRbx)(Zn1−yMny)2As2 (0.1 ≤ x, y ≤ 0.25, BRZMA). Key findings include the following: (1) BRZMA showed a maximum TC of 138 K, much lower than (Ba,K)(Zn,Mn)2As, because of a reduced carrier concentration. (2) A substantial electromagnetic coupling is evidenced by a negative magnetoresistance of up to 34% observed in optimally doped BRZMA. (3) A 100% static magnetic ordered volume fraction is achieved in the low-temperature region, indicating a homogeneous magnet. (4) Furthermore, a systematic and innovative methodology has been initially proposed, characterized by clear step-by-step instructions aimed at enhancing TC, grounded in robust experimental findings. The findings presented provide valuable insights into the spin–charge interplay concerning magnetic and electronic transport properties. Furthermore, they offer clear direction for the investigation of higher TC DMSs. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

14 pages, 2689 KB  
Article
Tunable Electronic Bandgaps and Optical and Magnetic Properties in Antiferromagnetic MPS3/GaN (M = Mn, Fe, and Ni) Heterobilayers
by Shijian Tian, Li Han, Libo Zhang, Kaixuan Zhang, Mengjie Jiang, Jie Wang, Shiqi Lan, Xuyang Lv, Yichong Zhang, Aijiang Lu, Yan Huang, Huaizhong Xing and Xiaoshuang Chen
Nanomaterials 2025, 15(11), 832; https://doi.org/10.3390/nano15110832 - 30 May 2025
Viewed by 913
Abstract
Research on two dimensional (2D) antiferromagnetic materials and heterobilayers is gaining prominence in spintronics. This study focuses on MPS3 monolayers and their van der Waals heterobilayers with GaN monolayers. We systematically investigated the structural stability, electronic properties, and magnetic characteristics of MPS [...] Read more.
Research on two dimensional (2D) antiferromagnetic materials and heterobilayers is gaining prominence in spintronics. This study focuses on MPS3 monolayers and their van der Waals heterobilayers with GaN monolayers. We systematically investigated the structural stability, electronic properties, and magnetic characteristics of MPS3 (M = Mn, Fe, and Ni) monolayers via first-principles calculations, and explored their potential applications in optoelectronics and spintronics. Through phonon spectrum analysis, the dynamic stability of MPS3 monolayers was confirmed, and their bond lengths, charge distributions, and wide-bandgap semiconductor properties were analyzed in detail. In addition, the potential applications of MPS3 monolayers in UV detection were explored. Upon constructing the MPS3/GaN heterobilayer structure, a significant reduction in the bandgap was observed, thereby expanding its potential applications in the visible light spectrum. The intrinsic antiferromagnetic nature of MPS3 monolayers was confirmed through calculations, with the magnetic moments of the magnetic atoms M being 4.560, 3.672, and 1.517, respectively. Moreover, the heterobilayer structures further enhanced the magnetic moments of these elements. The magnetic properties of MPS3 monolayers were further analyzed using spin-orbit coupling (SOC), confirming their magnetic anisotropy. These results provide a theoretical basis for the design of novel two-dimensional spintronic and optoelectronic devices based on MPS3. Full article
Show Figures

Figure 1

11 pages, 3191 KB  
Article
Magnetic Evolution of Carrier Doping and Spin Dynamics in Diluted Magnetic Semiconductors (Ba,Na)(Zn,Mn)2As2
by Guoqiang Zhao, Yipeng Cai, Kenji M. Kojima, Qi Sheng, James Beare, Graeme Luke, Xiang Li, Yi Peng, Timothy Ziman, Kan Zhao, Zheng Deng, Xiancheng Wang, Yongqing Li, Gang Su, Sadamichi Maekawa, Bo Gu, Yasutomo J. Uemura and Changqing Jin
Condens. Matter 2025, 10(2), 30; https://doi.org/10.3390/condmat10020030 - 15 May 2025
Cited by 4 | Viewed by 1937
Abstract
The investigation of novel diluted magnetic semiconductors (DMSs) provides a promising platform for studying magnetism and transport characteristics, with significant implications for spintronics. DMSs based on BaZn2As2 are particularly noteworthy due to their high Curie temperature (TC) [...] Read more.
The investigation of novel diluted magnetic semiconductors (DMSs) provides a promising platform for studying magnetism and transport characteristics, with significant implications for spintronics. DMSs based on BaZn2As2 are particularly noteworthy due to their high Curie temperature (TC) of 260 K, diverse magnetic states, and potential for multilayer heterojunctions. This study investigates the magnetic evolution of carrier doping and spin dynamics in the asperomagnet (Ba,Na)(Zn,Mn)2As2, utilizing a combination of magnetization measurements, ac susceptibility, and muon spin rotation (µSR). Key findings include the following: (1) lower transition temperatures and coercive forces in (Ba,Na)(Zn,Mn)2As2 compared to the ferromagnet (Ba,K)(Zn,Mn)2As2; (2) a dynamic fluctuation peak around the transition temperature observed in both the ac susceptibility and longitudinal field (LF) µSR; and (3) the coexistence of static and dynamic states at low temperatures, exhibiting spin-glass-like characteristics. This study, to the best of our knowledge, may represent the first investigation of asperomagnetic order utilizing µSR techniques. It enhances the understanding of magnetic interactions in BaZn2As2-based systems and provides valuable insights into the exploration of high TC DMSs. Full article
(This article belongs to the Special Issue Superstripes Physics, 3rd Edition)
Show Figures

Figure 1

13 pages, 3405 KB  
Article
First-Principles Investigation of the Structural, Magnetic, and Electronic Properties of Janus MXene Material CrScCO2
by Haishen Huang, Xiaoying Liu, Li Sun, Zhenzhen Shang, Tingyan Zhou, Ping Li and Bo Wu
Coatings 2025, 15(5), 580; https://doi.org/10.3390/coatings15050580 - 13 May 2025
Cited by 1 | Viewed by 1061
Abstract
This study employed first-principles density functional theory (DFT) to systematically investigate the influence of oxygen (–O) functional groups on the structural, magnetic, and electronic properties of Janus MXene CrScC. Nine distinct CrScCO2 configurations with varying oxygen adsorption sites were examined. All configurations [...] Read more.
This study employed first-principles density functional theory (DFT) to systematically investigate the influence of oxygen (–O) functional groups on the structural, magnetic, and electronic properties of Janus MXene CrScC. Nine distinct CrScCO2 configurations with varying oxygen adsorption sites were examined. All configurations exhibited robust ferromagnetic ordering, with total magnetic moments ranging from 1 to 3 μB, predominantly contributed by Cr atoms. Notably, the majority of the configurations exhibited half-metallic behavior, characterized by fully spin-polarized conduction channels and half-metallic gaps spanning 0.23–1.54 eV, with one configuration approaching a spin-gapless semiconductor characterized by a minimal bandgap (<0.1 eV). The ground-state configuration demonstrated strong performance, featuring a 100% spin polarization ratio and a wide half-metallic gap of 0.44 eV, indicating significant potential for spintronic applications. Phonon spectrum calculations confirmed the dynamic stability of the half-metallic ground-state structure, while binding energy analysis highlighted the enhanced stability of the oxygen-functionalized system compared to pristine CrScC. These results demonstrate that –O functional groups play a key role in modulating the magnetism and electronic properties of CrScC, offering versatility for various spintronic device applications. Full article
(This article belongs to the Special Issue Design of Nanostructures for Energy and Environmental Applications)
Show Figures

Figure 1

10 pages, 1986 KB  
Article
Tunable Structure and Properties of Co-Evaporated Co–C60 Nanocomposite Films
by Ziyang Gu, Yiting Gao, Zhou Li, Weihang Zou, Keming Li, Huan Xu, Zhu Xiao and Mei Fang
Nanomaterials 2025, 15(10), 715; https://doi.org/10.3390/nano15100715 - 9 May 2025
Viewed by 780
Abstract
Magnetic nanoparticles (NPs) hold great promise for both fundamental research and future applications due to their unique structural features, high specific surface area, and tailored physical properties. Here, we present a convenient thermal co-evaporation approach to deposit Co–C60 composite films with controlled composition, [...] Read more.
Magnetic nanoparticles (NPs) hold great promise for both fundamental research and future applications due to their unique structural features, high specific surface area, and tailored physical properties. Here, we present a convenient thermal co-evaporation approach to deposit Co–C60 composite films with controlled composition, structure, morphology, and tunable performances, specifically designed for spintronic device applications. By tuning the growth rates of Co and C60 during co-evaporation, the composition of the films can be tuned with different ratios. With a Co/C60 ratio of 5:1, ~300 nm clusters are formed in the films with increased coercivity compared with pure Co films, which is attributed to the interfaces in the composite film. The magnetoresistance (MR), however, becomes dominated by organic semiconductor C60 with ordinary magnetoresistance (OMAR). By increasing the composition of C60 to the ratio of 5:2, the particle diameter decreases while the height increases dramatically, forming magnetic electrodes and, thus, nano-organic spin valves (OSV) in the composite films with giant magnetoresistance (GMR). The work demonstrates a versatile approach to tailoring the structural and functional properties of magnetic NP-composite films for advanced spintronic applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

14 pages, 4706 KB  
Article
Valley-Related Multipiezo Effect in Altermagnet Monolayer V2STeO
by Yufang Chang, Yanzhao Wu, Li Deng, Xiang Yin and Xianmin Zhang
Materials 2025, 18(3), 527; https://doi.org/10.3390/ma18030527 - 24 Jan 2025
Cited by 3 | Viewed by 1662
Abstract
The multipiezo effect realizes the coupling of strain with magnetism and electricity, which provides a new way of designing multifunctional devices. In this study, monolayer V2STeO is demonstrated to be an altermagnet semiconductor with a direct band gap of 0.41 eV. [...] Read more.
The multipiezo effect realizes the coupling of strain with magnetism and electricity, which provides a new way of designing multifunctional devices. In this study, monolayer V2STeO is demonstrated to be an altermagnet semiconductor with a direct band gap of 0.41 eV. The spin splittings of monolayer V2STeO are as high as 1114 and 1257 meV at the valence and conduction bands, respectively. Moreover, a pair of energy degeneracy valleys appears at X and Y points in the first Brillouin zone. The valley polarization and reversion can be achieved by applying uniaxial strains along different directions, indicating a piezovalley effect. In addition, a net magnetization coupled with uniaxial strain and hole doping can be induced in monolayer V2STeO, presenting the piezomagnetic feature. Furthermore, due to the Janus structure, the inversion symmetry of monolayer V2STeO is naturally broken, resulting in the piezoelectric property. The integration of the altermagnet, piezovalley, piezomagnetic, and piezoelectric properties make monolayer V2STeO a promising candidate for multifunctional spintronic and valleytronic devices. Full article
Show Figures

Figure 1

13 pages, 3443 KB  
Article
Menthol-Induced Chirality in Semiconductor Nanostructures: Chiroptical Properties of Atomically Thin 2D CdSe Nanoplatelets Capped with Enantiomeric L-(−)/D-(+)-Menthyl Thioglycolates
by Maria Yu. Skrypnik, Daria A. Kurtina, Sofia P. Karamysheva, Evgeniia A. Stepanidenko, Irina S. Vasil’eva, Shuai Chang, Alexander I. Lebedev and Roman B. Vasiliev
Nanomaterials 2024, 14(23), 1921; https://doi.org/10.3390/nano14231921 - 28 Nov 2024
Cited by 3 | Viewed by 1948
Abstract
Semiconductor colloidal nanostructures capped with chiral organic molecules are a research hotspot due to their wide range of important implications for photonic and spintronic applications. However, to date, the study of chiral ligands has been limited almost exclusively to naturally occurring chiral amino [...] Read more.
Semiconductor colloidal nanostructures capped with chiral organic molecules are a research hotspot due to their wide range of important implications for photonic and spintronic applications. However, to date, the study of chiral ligands has been limited almost exclusively to naturally occurring chiral amino and hydroxy acids, which typically contain only one stereocenter. Here, we show the pronounced induction of chirality in atomically thin CdSe nanoplatelets (NPLs) by capping them with enantiopure menthol derivatives as multi-stereocenter molecules. L-(−)/D-(+)-menthyl thioglycolate, easily synthesized from L-(−)/D-(+)-menthol, is attached to Cd-rich (001) basal planes of 2- and 3-monolayer (ML) CdSe NPLs. We show the appearance of narrow sign-alternating bands in the circular dichroism (CD) spectra of 2 ML NPLs corresponding to heavy-hole (HH) and light-hole (LH) excitons with maximal dissymmetry g-factor up to 2.5 × 10−4. The most intense CD bands correspond to the lower-energy HH exciton, and in comparison with the N-acetyl-L-Cysteine ligand, the CD bands for L-(−)-menthyl thioglycolate have the opposite sign. The CD measurements are complemented with magnetic CD measurements and first-principles modeling. The obtained results may be of interest for designing new chiral semiconductor nanostructures and improving understanding of their chiroptical properties. Full article
(This article belongs to the Special Issue Nano Surface Engineering)
Show Figures

Figure 1

12 pages, 2488 KB  
Article
A Polycarbonate-Assisted Transfer Method for van der Waals Contacts to Magnetic Two-Dimensional Materials
by Kunlin Yang, Guorui Zhao, Yibin Zhao, Jie Xiao, Le Wang, Jiaqi Liu, Wenqing Song, Qing Lan, Tuoyu Zhao, Hai Huang, Jia-Wei Mei and Wu Shi
Micromachines 2024, 15(11), 1401; https://doi.org/10.3390/mi15111401 - 20 Nov 2024
Cited by 1 | Viewed by 3744
Abstract
Magnetic two-dimensional (2D) materials have garnered significant attention for their potential to revolutionize 2D spintronics due to their unique magnetic properties. However, their air-sensitivity and highly insulating nature of the magnetic semiconductors present substantial challenges for device fabrication with effective contacts. In this [...] Read more.
Magnetic two-dimensional (2D) materials have garnered significant attention for their potential to revolutionize 2D spintronics due to their unique magnetic properties. However, their air-sensitivity and highly insulating nature of the magnetic semiconductors present substantial challenges for device fabrication with effective contacts. In this study, we introduce a polycarbonate (PC)-assisted transfer method that effectively forms van der Waals (vdW) contacts with 2D materials, streamlining the fabrication process without the need for additional lithography. This method is particularly advantageous for air-sensitive magnetic materials, as demonstrated in Fe3GeTe2. It also ensures excellent interface contact quality and preserves the intrinsic magnetic properties in magnetic semiconductors like CrSBr. Remarkably, this method achieves a contact resistance four orders of magnitude lower than that achieved with traditional thermally evaporated electrodes in thin-layer CrSBr devices and enables the observation of sharp magnetic transitions similar to those observed with graphene vdW contacts. Compatible with standard dry-transfer processes and scalable to large wafer sizes, our approach provides a straightforward and effective solution for developing complex magnetic heterojunction devices and expanding the applications of magnetic 2D materials. Full article
(This article belongs to the Special Issue 2D-Materials Based Fabrication and Devices)
Show Figures

Figure 1

16 pages, 6665 KB  
Review
Doped, Two-Dimensional, Semiconducting Transition Metal Dichalcogenides in Low-Concentration Regime
by Mallesh Baithi and Dinh Loc Duong
Crystals 2024, 14(10), 832; https://doi.org/10.3390/cryst14100832 - 25 Sep 2024
Cited by 9 | Viewed by 4528
Abstract
Doping semiconductors is crucial for controlling their carrier concentration and enabling their application in devices such as diodes and transistors. Furthermore, incorporating magnetic dopants can induce magnetic properties in semiconductors, paving the way for spintronic devices without an external magnetic field. This review [...] Read more.
Doping semiconductors is crucial for controlling their carrier concentration and enabling their application in devices such as diodes and transistors. Furthermore, incorporating magnetic dopants can induce magnetic properties in semiconductors, paving the way for spintronic devices without an external magnetic field. This review highlights recent advances in growing doped, two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors through various methods, like chemical vapor deposition, molecular beam epitaxy, chemical vapor transport, and flux methods. It also discusses approaches for achieving n- and p-type doping in 2D TMDC semiconductors. Notably, recent progress in doping 2D TMDC semiconductors to induce ferromagnetism and the development of quantum emitters is covered. Experimental techniques for achieving uniform doping in chemical vapor deposition and chemical vapor transport methods are discussed, along with the challenges, opportunities, and potential solutions for growing uniformly doped 2D TMDC semiconductors. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

12 pages, 5416 KB  
Article
Tunable Electronic and Magnetic Properties of 3d Transition Metal Atom-Intercalated Transition Metal Dichalcogenides: A Density Functional Theory Study
by Yujie Liu, Guang Yang, Zhiwen He, Yanbiao Wang, Xianghong Niu, Sake Wang, Yongjun Liu and Xiuyun Zhang
Inorganics 2024, 12(9), 237; https://doi.org/10.3390/inorganics12090237 - 29 Aug 2024
Cited by 4 | Viewed by 2388
Abstract
Currently, intercalation has become an effective way to modify the fundamental properties of two-dimensional (2D) van der Waals (vdW) materials. Using density functional theory, we systematically investigated the structures and electronic and magnetic properties of bilayer transition metal dichalcogenides (TMDs) intercalated with 3 [...] Read more.
Currently, intercalation has become an effective way to modify the fundamental properties of two-dimensional (2D) van der Waals (vdW) materials. Using density functional theory, we systematically investigated the structures and electronic and magnetic properties of bilayer transition metal dichalcogenides (TMDs) intercalated with 3d TM atoms (TM = Sc–Ni), TM@BL_MS2 (M = Mo, V). Our results demonstrate that all the studied TM@BL_MS2s are of high stability, with large binding energies and high diffusion barriers of TM atoms. Interestingly, most TM@BL_MoS2s and TM@BL_VS2s are found to be stable ferromagnets. Among them, TM@BL_MoS2s (TM = Sc, Ti, Fe, Co) are ferromagnetic metals, TM@BL_MoS2 (TM = V, Cr) and TM@BL_VS2 (TM = Sc, V) are ferromagnetic half-metals, and the remaining systems are found to be ferromagnetic semiconductors. Exceptions are found for Ni@BL_MoS2 and Cr@BL_VS2, which are nonmagnetic semiconductors and ferrimagnetic half-metals, respectively. Further investigations reveal that the electromagnetic properties of TM@BL_MoS2 are significantly influenced by the concentration of intercalated TM atoms. Our study demonstrates that TM atom intercalation is an effective approach for manipulating the electromagnetic properties of two-dimensional materials, facilitating their potential applications in spintronic devices. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 2nd Edition)
Show Figures

Figure 1

29 pages, 8177 KB  
Review
Unraveling the Magnetic Properties of NiO Nanoparticles: From Synthesis to Nanostructure
by Carlos Moya, Jorge Ara, Amílcar Labarta and Xavier Batlle
Magnetism 2024, 4(3), 252-280; https://doi.org/10.3390/magnetism4030017 - 28 Aug 2024
Cited by 14 | Viewed by 7684
Abstract
NiO nanoparticles have garnered significant interest due to their diverse applications and unique properties, which differ markedly from their bulk counterparts. NiO nanoparticles are p-type semiconductors with a wide bandgap, high discharge capacity, and high carrier density, making them ideal for use in [...] Read more.
NiO nanoparticles have garnered significant interest due to their diverse applications and unique properties, which differ markedly from their bulk counterparts. NiO nanoparticles are p-type semiconductors with a wide bandgap, high discharge capacity, and high carrier density, making them ideal for use in batteries, sensors, and catalysts. Their ability to generate reactive oxygen species also imparts disinfectant and antibiotic properties. Additionally, the higher Néel temperature of NiO compared with other antiferromagnetic materials makes it suitable for high-temperature applications in spintronic devices and industrial settings. This review focuses on the critical role of structure and composition in determining the magnetic properties of NiO nanoparticles. It examines how finite-size surface effects, morphology, crystallinity, and nickel distribution influence these properties. Fundamental physical properties and characterization techniques are discussed first. Various synthesis methods and their impact on NiO nanoparticle properties are then explored. Their magnetic phenomenology is examined in detail, highlighting the effects of finite size, particle composition and surface, and crystal quality. The review concludes with a summary of key insights and future research directions for optimizing NiO nanoparticles in technological applications. Full article
Show Figures

Graphical abstract

Back to TopTop